Nutritional Composition, Efficacy, and Processing of Vigna angularis (Adzuki Bean) for the Human Diet: An Overview
Abstract
:1. Introduction
2. Nutritional Composition
2.1. Starch
2.2. Protein
2.3. Fat
2.4. Polysaccharides
2.5. Polyphenols
3. Processing Properties
4. Healthy Benefits
4.1. Antioxidant Activity
4.2. Antimicrobial and Anti-Inflammatory Activity
4.3. Antidiabetic Activity
4.4. Hypolipidemic Activity
4.5. Multiple Functions for Healthy Benefits
5. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Becerra-Tomás, N.; Papandreou, C.; Salas-Salvadó, J. Legume Consumption and Cardiometabolic Health. Adv. Nutr. 2019, 10 (Suppl. 4), S437–S450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yao, Y.; Tan, L.; Wang, Q.; Xu, Y.; Liu, H.; Liu, J. Application of HACCP System in Standardization Production of Adzuki Bean. J. Anhui Agric. Sci. 2007, 23, 7039–7041. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2010.
- Ariga, T.; Koshiyama, I.; Fukushima, D. Antioxidative Properties of Procyanidins B-1 and B-3 from Azuki Beans in Aqueous Systems. Agric. Biol. Chem. 1988, 52, 2717–2722. [Google Scholar]
- Duke, J.A. Handbook of Legumes of World Economic Importance; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Kang, Y.J.; Satyawan, D.; Shim, S.; Lee, T.; Lee, J.; Hwang, W.J.; Kim, S.K.; Lestari, P.; Laosatit, K.; Kim, K.H. Draft genome sequence of adzuki bean, Vigna angularis. Sci. Rep. 2015, 5, 8069. [Google Scholar] [CrossRef] [PubMed]
- Mengjie, Z. Study on Measures and Physiological Mechanisms to Effectively Reduce Acetochlor and Atrazine Phytotoxicity to Dicotyledon Crops (Adzuki Bean, Pepper). Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Shi, Z.; Yao, Y.; Zhu, Y.; Ren, G. Nutritional composition and biological activities of 17 Chinese adzuki bean (Vigna angularis) varieties. Food Agric. Immunol. 2017, 28, 78–89. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, L.; Tang, J.; Xiang, J.; Chu, N.; Yang, J. Physicochemical Properties and Starch Characteristics of Adzuki Beans. Chin. Agric. Sci. Bull. 2018, 34, 143–148. [Google Scholar]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, J.; Fu, H.; Meng, L.; Li, H. Analysis of 18 Elements in Seed Coats of Mung Bean, Adzuki Bean and Black Soybean. Food Sci. 2015, 36, 126–129. [Google Scholar]
- Lestari, P.; Kang, Y.J.; Han, K.; Gwag, J.; Moon, J.; Kim, Y.H.; Lee, Y.; Lee, S. Genome-wide single nucleotide polymorphism discovery and validation in adzuki bean. Mol. Breed. 2014, 33, 497–501. [Google Scholar] [CrossRef]
- Xu, X. Studies on the Properties of Starches and Proteins in Beans (Small Red Bean, Large Red Bean and Scarlet Runner Bean). Master’s Thesis, South China University of Technology, Guangzhou, China, 2010. [Google Scholar]
- Panzeri, D.; Nissim, W.G.; Labra, M.; Grassi, F. Revisiting the Domestication Process of African Vigna Species (Fabaceae): Background, Perspectives and Challenges. Plants 2022, 11, 532. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Oyatomi, O.; Babalola, O.O.; Abberton, M. Breeding Potentials of Bambara Groundnut for Food and Nutrition Security in the Face of Climate Change. Front. Plant Sci. 2022, 12, 798993. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, Q.; Liu, B.; Cheng, K.; Chen, F.; Wang, M. Neuroprotective Potential of Mung Bean (Vigna radiata L.) Polyphenols in Alzheimer’s Disease: A Review. J. Agric. Food Chem. 2021, 69, 11554–11571. [Google Scholar] [CrossRef]
- Sudhakaran, S.M.N.; Bukkan, D.S. A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek). J. Food Biochem. 2021, 45, e13743. [Google Scholar]
- Mishra, G.P.; Dikshit, H.K.; Sv, R.; Tripathi, K.; Kumar, R.R.; Aski, M.; Singh, A.; Roy, A.; Kumari, N.; Dasgupta, U.; et al. Yellow Mosaic Disease (YMD) of Mungbean (Vigna radiata (L.) Wilczek): Current Status and Management Opportunities. Front. Plant Sci. 2020, 11, 918. [Google Scholar] [CrossRef] [PubMed]
- Boukar, O.; Abberton, M.; Oyatomi, O.; Togola, A.; Tripathi, L.; Fatokun, C. Introgression Breeding in Cowpea [Vigna unguiculata (L.) Walp.]. Front. Plant Sci. 2020, 11, 567425. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.L.; Azam-Ali, S.; Goh, E.V.; Mustafa, M.; Chai, H.H.; Ho, W.K.; Mayes, S.; Mabhaudhi, T.; Azam-Ali, S.; Massawe, F. Bambara Groundnut: An Underutilized Leguminous Crop for Global Food Security and Nutrition. Front. Nutr. 2020, 7, 601496. [Google Scholar] [CrossRef]
- Udeh, E.L.; Nyila, M.A.; Kanu, S.A. Nutraceutical and antimicrobial potentials of Bambara groundnut (Vigna subterranean): A review. Heliyon 2020, 6, e5205. [Google Scholar] [CrossRef]
- Pattanayak, A.; Roy, S.; Sood, S.; Iangrai, B.; Banerjee, A.; Gupta, S.; Joshi, D.C. Rice bean: A lesser known pulse with well-recognized potential. Planta 2019, 250, 873–890. [Google Scholar] [CrossRef]
- Nair, R.M.; Pandey, A.K.; War, A.R.; Hanumantharao, B.; Shwe, T.; Alam, A.; Pratap, A.; Malik, S.R.; Karimi, R.; Mbeyagala, E.K.; et al. Biotic and Abiotic Constraints in Mungbean Production—Progress in Genetic Improvement. Front. Plant Sci. 2019, 10, 1340. [Google Scholar] [CrossRef]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef]
- Mayes, S.; Ho, W.K.; Chai, H.H.; Gao, X.; Kundy, A.C.; Mateva, K.I.; Zahrulakmal, M.; Hahiree, M.K.I.M.; Kendabie, P.; Licea, L.C.S.; et al. Bambara groundnut: An exemplar underutilised legume for resilience under climate change. Planta 2019, 250, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Murugesan, S.; Boddepalli, V.N.; Srinivasan, R.; Nair, R.M. Mechanism of Resistance in Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Front. Plant Sci. 2017, 8, 1031. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Lino-Neto, T.; Rosa, E.; Carnide, V. Cowpea: A legume crop for a challenging environment. J. Sci. Food Agric. 2017, 97, 4273–4284. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Xu, M.; Li, B.; Wu, H.; Liu, Y.; Zhang, G.; Ouyang, S.; Li, W. Repeated heat-moisture treatment exhibits superiorities in modification of structural, physicochemical and digestibility properties of red adzuki bean starch compared to continuous heat-moisture way. Food Res. Int. 2017, 102, 776–784. [Google Scholar] [CrossRef]
- Feng, P.; Zhang, Z.; Sun, L.; Shen, X.; Li, R.; Li, Z.; Li, Z.; Zheng, H.; Jiang, C.; Yang, H.; et al. Agronomic Characters and Quality Characteristics of Adzuki Bean of Sanjing Plain. Chin. Agric. Sci. Bull. 2019, 35, 20–24. [Google Scholar]
- Zhang, J.; Zhai, A.; Zhang, D. Effect of sodium chloride on starch properties from different adzuki bean varieties. Food Mach. 2020, 36, 34–38. [Google Scholar]
- Wu, X.; Xue, W.; Zhang, H. Study on Quality Evaluation of Different Adzuke Beans. J. Chin. Cereals Oils Assoc. 2011, 26, 20–24. [Google Scholar]
- Yadav, U.; Singh, N.; Arora, S.; Arora, B. Physicochemical, pasting, and thermal properties of starches isolated from different adzuki bean (Vigna angularis) cultivars. J. Food Process. Preserv. 2019, 43, e14163. [Google Scholar] [CrossRef]
- Zhang, B.; Xue, W. Research Progress in Functional Properties of Adzuki Bean. Food Sci. 2012, 33, 264–266. [Google Scholar]
- Xu, X.; Yang, H.; Jia, B.; Zhang, H.; Zuo, F. Evaluation of Protein Nutritional Value of Main Cultivated Adzuki Bean in Heilongjiang Province. J. Chin. Cereals Oils Assoc. 2021, 36, 29–33. [Google Scholar]
- Meng, G.T.; Ma, C.Y. Thermal gelation of globulin from Phaseolus angularis (red bean). Food Res. Int. 2002, 35, 377–385. [Google Scholar] [CrossRef]
- Meng, G.T.; Ching, K.M.; Ma, C.Y. Thermal aggregation of globulin from an indigenous Chinese legume, Phaseolus angularis (red bean). Food Chem. 2002, 79, 93–103. [Google Scholar] [CrossRef]
- Tang, C.H.; Ling, C.; Ma, C.Y. Thermal aggregation, amino acid composition and in vitro digestibility of vicilin-rich protein isolates from three Phaseolus legumes: A comparative study. Food Chem. 2009, 113, 957–963. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, H.; Lu, B.; Zhou, M. Study on physicochemical properties of red bean starch. J. Yangzhou Univ. 2021, 42, 125–130. [Google Scholar]
- Mozaffarian, D.; Appel, L.J.; Van Horn, L. Components of a Cardioprotective Diet. Circulation 2011, 123, 2870–2891. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, Y.; Ren, G. Immunoregulatory activities of polysaccharides from mung bean. Carbohydr. Polym. 2016, 139, 61–66. [Google Scholar] [CrossRef]
- Yao, Y.; Xue, P.; Zhu, Y.; Gao, Y.; Ren, G. Antioxidant and immunoregulatory activity of polysaccharides from adzuki beans (Vigna angularis). Food Res. Int. 2015, 77 Pt 2, 251–256. [Google Scholar] [CrossRef]
- Lai, F.; Wen, Q.; Li, L.; Wu, H.; Li, X. Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment. Carbohydr. Polym. 2010, 81, 323–329. [Google Scholar] [CrossRef]
- Xue-Li, B.A.; Yang, Y.; Zhang, A.L. Advances in Immunoregulatory Effects of Polysaccharides from Chinese Herbal Medicines on Dendritic Cells. Prog. Vet. Med. 2018, 39, 102–106. [Google Scholar]
- Wu, G.J.; Liu, D.; Wan, Y.J.; Huang, X.J.; Nie, S.P. Comparison of hypoglycemic effects of polysaccharides from four legume species. Food Hydrocoll. 2019, 90, 299–304. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbins, R.J. Phenolic Acids in Foods: An Overview of Analytical Methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, H.; Wang, X.; Li, H.; Li, B. Comparative Study on Total Polyphenols, Total Flavonoids and Antioxidant Activity in Five Kinds of Legumes. Food Res. Dev. 2020, 41, 52–57. [Google Scholar]
- Anwei, C.; Jianfu, W.; Hongwei, Q.; Qingmei, Y.; Jinyue, L.C.G.X. Content and Antioxidant Activity of Polyphenols and Flavonoids from 4 Food Beans. J. Chin. Oils Assoc. 2017, 32, 28–32. [Google Scholar]
- Gan, R.G.; Deng, Z.; Yan, A.; Shah, N.P.; Lui, W.; Chan, C.; Corke, H. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT-Food Sci. Technol. 2016, 73, 168–177. [Google Scholar] [CrossRef]
- Sreerama, Y.N.; Takahashi, Y.; Yamaki, K. Phenolic Antioxidants in Some Vigna Species of Legumes and their Distinct Inhibitory Effects on α-Glucosidase and Pancreatic Lipase Activities. J. Food Sci. 2012, 77, C927–C933. [Google Scholar] [CrossRef]
- Li, W.; Dun, Q.; Li, H.; Deng, Z.; Zhang, B. Qualitative and Quantitative Analysis of Adzuki Bean Phenolics by Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and High Performance Liquid Chromatography Coupled with Triple Quadruple Mass Spectrometry and Their Antioxidant Activity. Food Sci. 2019, 40, 112–118. [Google Scholar]
- Bai, Y.; Xu, Y.; Wang, B.; Li, S.; Guo, F.; Hua, H.; Zhao, Y.; Yu, Z. Comparison of phenolic compounds, antioxidant and antidiabetic activities between selected edible beans and their different growth periods leaves. J. Funct. Foods 2017, 35, 694–702. [Google Scholar] [CrossRef]
- Takahama, U.; Yamauchi, R.; Hirota, S. Antioxidative flavonoids in adzuki-meshi (rice boiled with adzuki bean) react with nitrite under simulated stomach conditions. J. Funct. Foods 2016, 26, 657–666. [Google Scholar] [CrossRef]
- Amarowicz, R.; Estrella, I.; Hernndez, T.; Troszyska, A. Antioxidant Activity of Extract of Adzuki Bean and Its fractions. J. Food Lipids 2008, 15, 119–136. [Google Scholar] [CrossRef]
- Jia, R.; Cai, D.; Ge, S.; Ren, S.; Liu, J. Antibacterial Activity and Mechanism of Polyphenol Extracts from Adzuki Bean Seed Coat against Two Pathogens. Food Sci. 2021, 42, 64–71. [Google Scholar]
- Xie, J.; Liu, H.; Liu, M.; Zheng, M.; Xu, Q.; Liu, J. Extraction Process Optimization and Antioxidant Activity Analysis of Polyphenols from Azuki Bean Coats (Vigna angularis). J. Chin. Inst. Food Sci. Technol. 2020, 20, 147–156. [Google Scholar]
- Ha, T.J.; Park, J.E.; Lee, K.S.; Seo, W.D.; Song, S.B.; Lee, M.H.; Kim, S.; Kim, J.I.; Oh, E.; Pae, S.B.; et al. Identification of anthocyanin compositions in black seed coated Korean adzuki bean (Vigna angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and screening for their antioxidant properties using different solvent systems. Food Chem. 2021, 346, 128882. [Google Scholar] [CrossRef]
- Matina, J.; Aldred, P.; McKnight, S.; Panozzo, J.F.; Kasapis, S.; Adhikari, R.; Adhikari, B. Physicochemical and functional characteristics of lentil starch. Carbohydr. Polym. 2013, 92, 1484–1496. [Google Scholar]
- Wang, S.; Yu, J.; Zhu, Q.; Yu, J.; Jin, F. Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM; 13C CP/MAS NMR and XRD. Food Hydrocoll. 2009, 23, 426–433. [Google Scholar] [CrossRef]
- Guo, Z.; Jia, X.; Zhao, B.; Zeng, S.; Xiao, J.; Zheng, B. C-type starches and their derivatives: Structure and function. Ann. N. Y. Acad. Sci. 2017, 1398, 47–61. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Ding, L.; Zhou, X.; Li, C.; Zhou, S. Effects of Different Processing Methods on Physicochemical Properties and Estimate Glycemic Index of Adzuki Bean (Vigna angularis) Powder. J. Chin. Cereals Oils Assoc. 2021, 36, 33–38. [Google Scholar]
- Bai, J.; Liu, L.; Li, Y.; Peng, Y.; Tian, X.; Jin, Y.; Zhang, Q.; Zhang, X.; Guo, H. Pasting Properties and Microstructure of Adzuki Beans during Cooking. Food Sci. 2018, 39, 41–46. [Google Scholar]
- Song, L.; Wang, J.; Deng, X.; Zhang, Z.; Lei, Y. Processing Characteristics of Isolate Protein from Red Adzuki Bean at Various pH. Anhui Agric. Sci. 2018, 46, 172–174. [Google Scholar]
- Shen, X.; Xu, X.; Yang, H.; Jia, B.; Zhang, H.; Zuo, F. Analysis of Protein Functional Properties of Main Adzuki Bean Varieties in Heilongjiang Province. J. Chin. Cereals Oils Assoc. 2021, 36, 52–57. [Google Scholar]
- Yao, X.; Zheng, X.; Zhao, R.; Li, Z.; Shen, H.; Li, T.; Gu, Z.; Zhou, Y.; Xu, N.; Shi, A.; et al. Quality Formation of Adzuki Bean Baked: From Acrylamide to Volatiles under Microwave Heating and Drum Roasting. Foods 2021, 10, 2762. [Google Scholar] [CrossRef] [PubMed]
- Tor-Roca, A.; Garcia-Aloy, M.; Mattivi, F.; Llorach, R.; Andres-Lacueva, C.; Urpi-Sarda, M. Phytochemicals in Legumes: A Qualitative Reviewed Analysis. J. Agric. Food Chem. 2020, 68, 13486–13496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gan, R.; Li, S.; Zhou, Y.; Li, A.; Xu, D.; Li, H. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Bin, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef]
- Simoes, M.; Saavedra, M.J.; Borges, A. Insights on Antimicrobial Resistance, Biofilms and the Use of Phytochemicals as New Antimicrobial Agents. Curr. Med. Chem. 2015, 22, 2590–2614. [Google Scholar]
- Cardador-Martínez, A.; Loarca-Piña, G.; Oomah, B.D. Antioxidant Activity in Common Beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2002, 50, 6975–6980. [Google Scholar] [CrossRef]
- Nie, Q.; Liao, S.W.; Liu, T. Comparison of antioxidant activities of anthocyanins from four grains and bean. Food Sci. 2007, 9, 46–48. [Google Scholar]
- Ren, S.C.; Wang, P.; Ma, Y.X. Antioxidant activities of common edible bean extract. Soybean Sci. 2009, 28, 1081–1084. [Google Scholar]
- Li, F.; Cai, H.; Lin, Z. Red Bean Polysaccharides Ability of Resistance to Oxidation and Reduction Research. Food Ind. 2014, 35, 190–194. [Google Scholar]
- Chai, W.M.; Wei, Q.M.; Deng, W.L.; Zheng, Y.L.; Chen, X.Y.; Huang, Q.; Ou-Yang, C.; Peng, Y.Y. Anti-melanogenesis properties of condensed tannins from Vigna angularis seeds with potent antioxidant and DNA damage protection activities. Food Funct. 2019, 10, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Noshad, M.; Hojjati, M.; Behbahani, B.A. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microb. Pathog. 2018, 116, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Ishita, I.J.; Jin, S.E.; Ran, J.C.; Chan, M.L.; Kim, Y.S.; Jung, H.A.; Choi, J.S. Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW macrophage cells. Food Chem. Toxicol. 2013, 55, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.; Cho, Y.; Je, J. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem. 2015, 168, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Yook, J.; Kim, K.; Kim, M.; Cha, Y. Black Adzuki Bean (Vigna angularis) Attenuates High-Fat Diet-Induced Colon Inflammation in Mice. J. Med. Food 2017, 20, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Dun, B.; Wei, Z.; Liu, C.; Tian, J.; Ren, G.; Yao, Y. Peptides Released from Extruded Adzuki Bean Protein through Simulated Gastrointestinal Digestion Exhibit Anti-inflammatory Activity. J. Agric. Food Chem. 2021, 69, 7028–7036. [Google Scholar] [CrossRef]
- Ding, Z.; Jia, Y.J.; Sheng, Q.H. The Role of Legumes in Diabetic Diet Intervention. Farm Prod. Process. 2021, 7, 66–70. [Google Scholar]
- Fan, Z.H.; Liu, F.; Zhou, W. Glycemia Index and Digestion Rate of Legume Rich in Starch. J. Chin. Cereals Oils Assoc. 2007, 22, 22–26. [Google Scholar]
- Itoh, T.; Umekawa, H.; Furuichi, Y. Potential ability of hot water adzuki (Vigna angularis) extracts to inhibit the adhesion, invasion, and metastasis of murine B16 melanoma cells. Biosci. Biotechnol. Biochem. 2005, 69, 448–454. [Google Scholar] [CrossRef]
- Kuriya, K.; Nishio, M.; Ono, N.; Masuda, Y.; Katsuzaki, H.; Kondo, S.; Sono, J.; Nakamura, M.; Umekawa, H. Isolation and Characterization of Antihyperglycemic Compounds from Vigna angularis Extracts. J. Food Sci. 2019, 84, 3172–3178. [Google Scholar] [CrossRef]
- Kim, M.; Kim, D.K.; Cha, Y. Black Adzuki Bean (Vigna angularis) Extract Protects Pancreatic β Cells and Improves Glucose Tolerance in C57BL/6J Mice Fed a High-Fat Diet. J. Med. Food 2016, 19, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Mukai, Y.; Kataoka, S.; Kurasaki, M. Azuki bean (Vigna angularis) extract stimulates the phosphorylation of AMP-activated protein kinase in HepG2 cells and diabetic rat liver. J. Sci. Food Agric. 2016, 96, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bai, Z.; Wan, Y.; Shi, H.; Huang, X.; Nie, S. Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway. Food Hydrocoll. 2019, 101, 105456. [Google Scholar] [CrossRef]
- Lee, P.S.; Teng, C.Y.; Hsieh, K.F.; Chiou, Y.S.; Wu, J.C.; Lu, T.J.; Pan, M.H. Adzuki Bean Water Extract Attenuates Obesity by Modulating M2/M1 Macrophage Polarization and Gut Microbiota Composition. Mol. Nutr. Food Res. 2019, 63, 1900626. [Google Scholar] [CrossRef]
- Han, K.; Ohashi, S.; Sasaki, K.; Nagata, R.; Pelpolage, S.; Fukuma, N.; Reed, J.D.; Shimada, K.; Kadoya, N.; Fukushima, M. Dietary adzuki bean paste dose-dependently reduces visceral fat accumulation in rats fed a normal diet. Food Res. Int. 2020, 130, 108890. [Google Scholar] [CrossRef]
- Zhao, Q.; Hou, D.; Fu, Y.; Xue, Y.; Guan, X.; Shen, Q. Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice. Nutrients 2021, 13, 3240. [Google Scholar] [CrossRef]
- Nishi, S.; Saito, Y.; Souma, C.; Kato, J.; Koaze, H.; Hironaka, K.; Kojima, M. Suppression of Serum Cholesterol Levels in Mice by Adzuki Bean Polyphenols. Food Sci. Technol. Res. 2008, 14, 217–220. [Google Scholar] [CrossRef]
- Kitano-Okada, T.; Nagata, R.; Han, K.; Mikami, N.; Satoh, K.; Nishihira, J.; Sasaki, K.; Ohba, K.; Fukusima, M. Safety and efficacy of adzuki bean extract in subjects with moderate to high LDL-C: A randomized trial. Biosci. Biotechnol. Biochem. 2019, 83, 933–941. [Google Scholar] [CrossRef]
- Sato, S.; Kataoka, S.; Kimura, A.; Mukai, Y. Azuki bean (Vigna angularis) extract reduces oxidative stress and stimulates autophagy in the kidneys of streptozotocin-induced early diabetic rats. Food Sci. Biotechnol. 2016, 94, 1298–1303. [Google Scholar] [CrossRef]
- Baracho, N.C.D.V.; Monteiro, N.F.; Borges, M.G.; Arguelho, R.R.D.M. Effect of aqueous extract of the Vigna angularis in rats subjected to an experimental model of moderate chronic kidney disease. Acta Cir. Bras. 2016, 31, 527–532. [Google Scholar] [CrossRef]
- Kim, C.; Kim, M.; Hwang, J. Red Bean Extract Inhibits Immobilization-Induced Muscle Atrophy in C57BL/6N Mice. J. Med. Food 2020, 23, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Mukai, Y.; Sato, S. Polyphenol-containing azuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 491–497. [Google Scholar] [CrossRef]
- Choi, J.M.; Lee, S.I.; Cho, E.J. Effect of Vigna angularis on High-Fat Diet-Induced Memory and Cognitive Impairments. J. Med. Food 2020, 23, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, P.; Pan, D.; Zeng, X.; Guo, Y.; Zhao, G. Effect of adzuki bean sprout fermented milk enriched in γ-aminobutyric acid on mild depression in a mouse model. J. Dairy Sci. 2021, 104, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Yang, J.; Liang, Z. Structure analysis of water-soluble polysaccharide CPPS3 isolated from Codonopsis pilosula. Fitoterapia 2010, 81, 157–161. [Google Scholar] [CrossRef]
Location of Extraction | Name of Compound | Analytical Method | Content (μg/g) |
---|---|---|---|
Adzuki Bean | Protocatechuic acid [52,55] | UPLC-QTOF-MS and HPLC-QQQ-MS [52], HPLC-PAD [55] | 67.6 ± 4.01 [55], 13.94 ± 0.22 [52] |
Adzuki Bean | Protocatechuic aldehyde [55] | HPLC-PAD [55] | 7.71 ± 0.62 [55] |
Adzuki Bean/Adzuki Bean Coat | trans-p-Coumaric acid [52,55,56] | UPLC-QTOF-MS and HPLC-QQQ-MS [52], HPLC-PAD [55], HPLC [56] | 31.3 ± 1.96 [55], 7.16 ± 0.06 [52] |
Adzuki Bean | trans-p-Coumaroyl malic acid [55] | HPLC-PAD [55] | 4.57 ± 0.69 [55] |
Adzuki Bean | Epicatechin [55] | HPLC and LC/MS [54], HPLC-PAD [55] | 25.7 ± 2.06 [55] |
Adzuki Bean | Epigallocatechin gallate [55] | HPLC-PAD [55] | 0.14 ± 0.02 [55] |
Adzuki Bean | Epicatechin glucoside [55] | HPLC-PAD [55] | 159.0 ± 8.31 [55] |
Adzuki Bean | Catechin glucoside [55] | HPLC-PAD [55] | 688.0 ± 35.6 [55] |
Adzuki Bean/Adzuki Bean Coat | Quercetin [52,54,55,56,57] | UPLC-QTOF-MS and HPLC-QQQ-MS [52], HPLC and LC/MS [54], HPLC-PAD [55], HPLC [56,57] | 36.2 ± 1.54 [55], 3.07 ± 0.05 [52] |
Adzuki Bean | Quercetin rutinoside [55] | HPLC-PAD [55] | 38.2 ± 1.52 [55] |
Adzuki Bean | Quercetin galactoside [55] | HPLC-PAD [55] | 46.9 ± 5.87 [55] |
Adzuki Bean | Quercetin glucoside [55] | HPLC-PAD [55] | 181.0 ± 9.14 [55] |
Adzuki Bean | Quercetin arabinoglucoside [55] | HPLC-PAD [55] | 42.8 ± 4.23 [55] |
Adzuki Bean | Dihydroquercetin [55] | HPLC-PAD [55] | 1.15 ± 0.07 [55] |
Adzuki Bean | Dihydroquercetin hexose [55] | HPLC-PAD [55] | 0.54 ± 0.02 [55] |
Adzuki Bean | Dihydroquercetin derivative [55] | HPLC-PAD [55] | 1.35 ± 0.06 [55] |
Adzuki Bean | Myricetin rhamnoside [55] | HPLC-PAD [55] | 212.0 ± 9.85 [55] |
Adzuki Bean | Kaempferol rutinoside [55] | HPLC-PAD [55] | 38.2 ± 1.52 [55] |
Adzuki Bean | Tetrahydroxydihydrochalcone glycoside [55] | HPLC-PAD [55] | 0.55 ± 0.08 [55] |
Adzuki Bean | Procyanidin gallate [55] | HPLC-PAD [55] | 12.4 ± 1.06 [55] |
Adzuki Bean | Procyanidin dimer [55] | HPLC-PAD [55] | 213.0 ± 13.2 [55] |
Adzuki Bean | Procyanidin trimer [55] | HPLC-PAD [55] | 41.8 ± 1.11 [55] |
Adzuki Bean | Kaempferol-3-O-β-D-glucoside [53] | HPLC-ESI-TOF-MS [53] | 1.6 ± 0.1 [53] |
Adzuki Bean | Isoquercitrin [53] | HPLC-ESI-TOF-MS [53] | 0.8 ± 0.03 [53] |
Adzuki Bean/Adzuki Bean Coat | Rutin [50,52,53,54,56,57] | UPLC-QTOF-MS and HPLC-QQQ-MS [52], HPLC-ESI-TOF-MS [53], HPLC and LC/MS [54], HPLC-PAD [55], HPLC [56,57] | 420 ± 0.02 [50], 4.1 ± 0.2 [53], 327.40 ± 5.43 [52] |
Adzuki Bean | Isovitexin-6′-O-α-L-glucoside [53] | HPLC-ESI-TOF-MS [53] | 1.3 ± 0.03 [53] |
Adzuki Bean/Adzuki Bean Coat | Chlorogenic acid [52,53,56,57] | UPLC-QTOF-MS and HPLC-QQQ-MS [52], HPLC-ESI-TOF-MS [53], HPLC-PAD [55], HPLC [56,57] | 14.0 ± 1.3 [53], 1.76 ± 0.05 [52] |
Adzuki Bean | Benzyl-O-β-D-glucopyranoside [53] | HPLC-ESI-TOF-MS [53] | 0.4 ± 0.01 [53] |
Adzuki Bean Coat | Gallic acid [56,57] | HPLC [56,57], | — |
Adzuki Bean/Adzuki Bean Coat | Catechin [52,54,56,57] | UPLC-QTOF-MS and HPLC-QQQ-MS [52], HPLC and LC/MS [54], HPLC [56,57] | 210.70 ± 5.58 [52] |
Adzuki Bean Coat | Epicatechin [56,57] | HPLC [56,57] | — |
Adzuki Bean Coat | Procyanidin B2 [56,57] | HPLC [56,57] | — |
Adzuki Bean Coat | Ferulic acid [56,57] | HPLC [56,57] | — |
Adzuki Bean Coat | Isovitexin [57] | HPLC [57] | — |
Adzuki Bean Coat | Vitexin [57] | HPLC [57] | — |
Adzuki Bean Coat | Isorhamnetin [57] | HPLC [57] | — |
Adzuki Bean/Adzuki Bean Coat | Hyperoside [52,56,57] | UPLC-QTOF-MS and HPLC-QQQ-MS [52], HPLC [56,57] | 2.59 ± 0.05 [52] |
Adzuki Bean Coat | Kaempferol [56,57] | HPLC [56,57] | — |
Adzuki Bean Coat | Syringic acid [56] | HPLC [56] | — |
Adzuki Bean Coat | Caffeic acid [56] | HPLC [56] | — |
Adzuki Bean | 4-Hydroxybenzoic acid [52] | UPLC-QTOF-MS and HPLC-QQQ-MS [52] | 0.52 ± 0.12 [52] |
Adzuki Bean | Luteolin [52] | UPLC-QTOF-MS and HPLC-QQQ-MS [52] | 0.16 ± 0.01 [52] |
Adzuki Bean | Daidzein [52] | UPLC-QTOF-MS and HPLC-QQQ-MS [52] | 3.11 ± 0.19 [52] |
Adzuki Bean | Glycitein [52] | UPLC-QTOF-MS and HPLC-QQQ-MS [52] | 0.09 ± 0.01 [52] |
Black Adzuki Bean | Delphinidin-3,5-O-digalactoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Delphinidin-3,5-O-diglucoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Delphinidin-3-O-galactoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Delphinidin-3-O-glucoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Delphinidin-3-O-rutinoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Delphinidin-3-O-(p-coumaroyl) glucoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Cyanidin-3-O-glucoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Petunidin-3-O-galactoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Petunidin-3-O-glucoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Black Adzuki Bean | Petunidin-3-O-(p-coumaroyl) glucoside [58] | NMR and UPLC-Q-Orbitrap-MS/MS [58] | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yao, X.; Shen, H.; Zhao, R.; Li, Z.; Shen, X.; Wang, F.; Chen, K.; Zhou, Y.; Li, B.; et al. Nutritional Composition, Efficacy, and Processing of Vigna angularis (Adzuki Bean) for the Human Diet: An Overview. Molecules 2022, 27, 6079. https://doi.org/10.3390/molecules27186079
Wang Y, Yao X, Shen H, Zhao R, Li Z, Shen X, Wang F, Chen K, Zhou Y, Li B, et al. Nutritional Composition, Efficacy, and Processing of Vigna angularis (Adzuki Bean) for the Human Diet: An Overview. Molecules. 2022; 27(18):6079. https://doi.org/10.3390/molecules27186079
Chicago/Turabian StyleWang, Yao, Xinmiao Yao, Huifang Shen, Rui Zhao, Zhebin Li, Xinting Shen, Fei Wang, Kaixin Chen, Ye Zhou, Bo Li, and et al. 2022. "Nutritional Composition, Efficacy, and Processing of Vigna angularis (Adzuki Bean) for the Human Diet: An Overview" Molecules 27, no. 18: 6079. https://doi.org/10.3390/molecules27186079
APA StyleWang, Y., Yao, X., Shen, H., Zhao, R., Li, Z., Shen, X., Wang, F., Chen, K., Zhou, Y., Li, B., Zheng, X., & Lu, S. (2022). Nutritional Composition, Efficacy, and Processing of Vigna angularis (Adzuki Bean) for the Human Diet: An Overview. Molecules, 27(18), 6079. https://doi.org/10.3390/molecules27186079