High Tunable BaTixZr1-xO3 Films on Dielectric Substrate for Microwave Applications
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Initial Stages of BZT Film Growth
3.2. Structure Characterization of BZT Films
3.3. Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borderon, C.; Ginestar, S.; Gundel, H.W.; Haskou, A.; Nadaud, K.; Renoud, R.; Sharaiha, A. Design and Development of a Tunable Ferroelectric Microwave Surface Mounted Device. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1733–1737. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.-H.; Phuong, N.T.M.; Nguyen, T. Lead-free ferroelectric barium titanate -based thin film for tunable microwave device application. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1091, 012060. [Google Scholar] [CrossRef]
- Abdulazhanov, S.; Le, Q.H.; Huynh, D.K.; Wang, D.; Gerlach, G.; Kämpf, T.A. Wave phase shifter based on fer-roelectric hafnium zirconium oxide varactors. In Proceedings of the 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Bochum, Germany, 16–18 July 2019; Volume 1091, pp. 175–177. [Google Scholar]
- Setter, N.; Damjanovic, D.; Eng, L.; Fox, G.; Gevorgian, S.; Hong, S.; Kingon, A.; Kohlstedt, H.; Park, N.Y.; Stephenson, G.B.; et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006, 100, 051606. [Google Scholar] [CrossRef]
- Subramanyam, G.; Riehl, B.; Ahamed, F.; Biggers, R.; Campbell, A.; Kuylenstierna, D.; Vorobiev, A.; Gevorgian, S. New Research Directions in Tunable Microwave Dielectrics. Integr. Ferroelectr. 2004, 66, 139–151. [Google Scholar] [CrossRef]
- Crunteanu, A.; Muzzupapa, V.; Ghalem, A.; Huitema, L.; Passerieux, D.; Borderon, C.; Renoud, R.; Gundel, H. Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domain. Crystals 2021, 11, 277. [Google Scholar] [CrossRef]
- Soldatenkov, O.; Samoilova, T.; Ivanov, A.; Kozyrev, A.; Ginley, D.; Kaydanova, T. Nonlinear properties of thin ferroe-lectric film-based capacitors at elevated microwave power. Appl. Phys. Lett. 2006, 89, 232901. [Google Scholar] [CrossRef]
- Lu, G.; Linsebigler, A.; Yates, J.T. Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites. J. Phys. Chem. 1994, 98, 11733–11738. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Wang, Y.; Chen, F.; Cao, L.; Yang, X.D. Effect of donor, acceptor, and donor–acceptor codoping on the electrical properties of Ba0.6Sr0.4TiO3 thin films for tunable device applications. J. Am. Ceram. Soc. 2009, 92, 2759–2761. [Google Scholar] [CrossRef]
- Lee, S.A.; Hwang, J.Y.; Ahn, K.; Jeong, S.Y.; Kim, J.M.; Kim, J.P.; Yoon, S.G.; Cho, C.R. Enhanced tunability of transparent epitaxial Ba0.5Sr0.5TiO3/Ga2O3/GaN structures fabricated by pulsed laser deposition. Thin Solid Films 2013, 527, 45–49. [Google Scholar] [CrossRef]
- Takeda, K.; Muraishi, T.; Hoshina, T.; Takeda, H.; Tsurumi, T. Dielectric tunability and electro–optic effect of Ba0.5Sr0.5TiO3 thin films. J. Appl. Phys. 2010, 107, 074105. [Google Scholar] [CrossRef]
- Maiti, T.; Guo, R.; Bhalla, A.S. Electric field dependent dielectric properties and high tunability of BaZrxTi1−xO3 relaxor ferroelectrics. Appl. Phys. Lett. 2006, 89, 122909. [Google Scholar] [CrossRef]
- Hennings, D.; Schnell, A.; Simon, G. Diffuse ferroelectric phase transitions in Ba(Ti1−yZry)O3 ceramics. J. Am. Ceram. Soc. 1982, 65, 539–544. [Google Scholar] [CrossRef]
- Yu, Z.; Ang, C.; Guo, R.; Bhalla, A.S. Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3 ceramics under dc electric field. Appl. Phys. Lett. 2002, 81, 1285–1287. [Google Scholar] [CrossRef]
- Tang, X.G.; Chew, K.H.; Chan, H.L.W. Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater. 2004, 52, 5177–5183. [Google Scholar] [CrossRef]
- Jinwoong, K.; Shima, H.; Yamamoto, T.; Yasui, S.; Funakubo, H.; Yamada, T.; Nishida, K. Ba(ZrxTi1−x)O3 thin films for tunable microwave applications. Ceram. Int. 2015, 41, S323–S330. [Google Scholar] [CrossRef]
- Moura, F.; Simões, A.; Stojanovic, B.; Zaghete, M.; Longo, E.; Varela, J. Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method. J. Alloy. Compd. 2008, 462, 129–134. [Google Scholar] [CrossRef]
- Chen, H.; Yang, C.; Zhang, J.; Wang, B.; Ji, H. Electrical behavior of BaZr0.1Ti0.9O3 and BaZr0.2Ti0.8O3 thin films. Appl. Surf. Sci. 2008, 255, 4585–4589. [Google Scholar] [CrossRef]
- Miao, J.; Yuan, J.; Wu, H.; Yang, S.B.; Xu, B.; Cao, L.X.; Zhao, B.R. Crystal orientation dependence of the dielectric properties for epitaxial BaZr0.15Ti0.85O3 thin films. Appl. Phys. Lett. 2007, 90, 022903. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, R.; Bhalla, A.S. Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals. J. Appl. Phys. 2000, 88, 410–415. [Google Scholar] [CrossRef]
- Zhai, J.; Yao, X.; Zhang, L.; Shen, B. Dielectric nonlinear characteristics of Ba(Zr0.35Ti0.65)O3 thin films grown by a sol-gel process. Appl. Phys. Lett. 2004, 84, 3136–3138. [Google Scholar] [CrossRef]
- Maiti, T.; Alberta, E.; Guo, R.; Bhalla, A. The polar cluster like behavior in Ti4+ substituted BaZrO3 ceramics. Mater. Lett. 2006, 60, 3861–3865. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Yu, S.; Zhang, W. Effect of substrate temperature on structural and electrical properties of BaZr0.2Ti0.8O3 lead-free thin films by pulsed laser deposition. Ceram. Int. 2016, 42, 13262–13267. [Google Scholar] [CrossRef]
- Ying, Z.; Yun, P.; Wang, D.Y.; Zhou, X.Y.; Song, Z.T.; Feng, S.L.; Wang, Y.; Chan, H.L.W. Fine-grained BaZr0.2Ti0.8O3 thin films for tunable device applications. J. Appl. Phys. 2007, 101, 086101. [Google Scholar] [CrossRef]
- Zhu, X.H.; Li, J.; Zheng, D.N. Frequency and temperature dependence of tunable dielectric properties of Ba(Zr0.2Ti0.8)O3 thin films grown on (001) MgO. Appl. Phys. Lett. 2007, 90, 142913. [Google Scholar] [CrossRef]
- Jie, W.J.; Zhu, J.; Qin, W.F.; Wei, X.H.; Xiong, J.; Zhang, Y.; Bhalla, A.; Li, Y.R. Enhanced dielectric characteristics of preferential (1 1 1)-oriented BZT thin films by manganese doping. J. Phys. D Appl. Phys. 2007, 40, 2854–2857. [Google Scholar] [CrossRef]
- Yu, S.; Liu, R.; Ge, L.; Zhao, L.; Li, L.; Zhang, C.; Zheng, H.; Sun, Y. High tunability in (1 1 0)-oriented BaZr0.2Ti0.8O3 (BTZ) lead-free thin films fabricated by pulsed laser deposition. Ceram. Int. 2018, 44, 3005–3008. [Google Scholar] [CrossRef]
- Tang, X.G.; Tian, H.Y.; Wang, J.; Wong, K.H.; Chan, H.L.W. Effect of CaRuO3 interlayer on the dielectric properties of Ba(Zr,Ti)O3 thin films prepared by pulsed laser deposition. Appl. Phys. Lett. 2006, 89, 142911. [Google Scholar] [CrossRef]
- Tang, X.G.; Liu, Q.X.; Jiang, Y.P.; Zheng, R.K.; Chan, H.L.W. Enhanced dielectric properties of highly (100)-oriented Ba(Zr,Ti)O3 thin films grown on La0.7Sr0.3MnO3 bottom layer. J. Appl. Phys. 2006, 100, 114105. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Collins, G.; Ma, C.R.; Chen, C.L.; Alemayehu, A.D.; Subramanyam, G.; Dai, C.; Lin, Y.; He, J.; et al. High epitaxial ferroelectric relaxor Mn-doped Ba (Zr,Ti)O3 thin films on MgO substrates. J. Adv. Dielectr. 2011, 1, 383–387. [Google Scholar] [CrossRef]
- Zheng, H.; Li, L.; Yu, S.; Sun, Z.; Chen, S. Tunable performance of BaZr0.2Ti0.8O3 thin films prepared by pulsed laser deposition. Ceram. Int. 2017, 43, 13154–13158. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, X.; Wong, K.; Chan, H. Dielectric properties and high tunability of (100)-oriented Ba(Zr0.2Ti0.8)O3 thin films prepared by pulsed laser deposition. Scr. Mater. 2006, 54, 197–200. [Google Scholar] [CrossRef]
- Xu, J.; Menesklou, W.; Ivers-Tiffée, E. Investigation of BZT thin films for tunable microwave applications. J. Eur. Ceram. Soc. 2005, 25, 2289–2293. [Google Scholar] [CrossRef]
- Xu, J.; Menesklou, W. Annealing Effects on Structural and Dielectric Properties of Tunable BZT Thin Films. J. Electroceramics 2004, 13, 229–233. [Google Scholar] [CrossRef]
- Bera, J.; Rout, S. On the formation mechanism of BaTiO3–BaZrO3 solid solution through solid-oxide reaction. Mater. Lett. 2005, 59, 135–138. [Google Scholar] [CrossRef]
- Maiti, T.; Guo, R.; Bhalla, A.S. Enhanced electric field tunable dielectric properties of BaZrxTi1−xO3 relaxor ferroelectrics. Appl. Phys. Lett. 2007, 90, 182901. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Serenkov, I.T.; Sakharov, V.I. Investigation of the initial stages of the growth of barium-strontium titanate ferroelectric films by medium-energy ion scattering. Phys. Solid State 2010, 52, 2561–2564. [Google Scholar] [CrossRef]
- Kukushkin, S. Evolution processes in multicomponent and multiphase films. Thin Solid Films 1992, 207, 302–312. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Serenkov, I.T.; Sakharov, V.I.; Afrosimov, V.V.; Odinets, A.A. Influence of the substrate temperature on the initial stages of growth of barium strontium titanate films on sapphire. Phys. Solid State 2016, 58, 364–369. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Zlygostov, M.V.; Serenkov, I.T.; Sakharov, V.I.; Afrosimov, V.V.; Odinets, A.A. Initial Stages of Growth of Barium Zirconate Titanate and Barium Stannate Titanate Films on Single-Crystal Sapphire and Silicon Carbide. Phys. Solid State 2018, 60, 2091–2096. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Zlygostov, M.V.; Gagarin, A.G.; Sapego, E.N. Ferroelectric Barium Zirconate Titanate Films on Sapphire Substrates. Tech. Phys. Lett. 2018, 44, 1077–1080. [Google Scholar] [CrossRef]
- Tumarkin, A.; Sapego, E.; Gagarin, A.; Senkevich, S. Enhanced tunability of BaTixSn1−xO3 films on dielectric substrate. Appl. Sci. 2021, 11, 7367. [Google Scholar] [CrossRef]
- Samsonov, G.V. The Oxide Handbook; IFI/Plenum: New York, NY, USA, 1973. [Google Scholar]
No. | Ar/O2 | Ts | Ba | Zr | Ti | O | hcov, nm | C, % | Amount |
---|---|---|---|---|---|---|---|---|---|
2264 | 0 | 880 | 0.198 | 0.039 | 0.163 | 0.60 | 3.71 | 25 | 7.5 |
2265 | 0.5 | 880 | 0.199 | 0.040 | 0.161 | 0.60 | 2.91 | 38 | 7.3 |
2266 | 1 | 880 | 0.199 | 0.041 | 0.160 | 0.60 | 3.6 | 88 | 7.6 |
2267 | 0 | 700 | 0.199 | 0.039 | 0.162 | 0.60 | 3.53 | 30 | 7.4 |
2268 | 0.5 | 700 | 0.199 | 0.040 | 0.161 | 0.60 | 2.7 | 44 | 7.2 |
2269 | 1 | 700 | 0.200 | 0.040 | 0.160 | 0.60 | 3.96 | 76 | 7.5 |
Composition | Substrate | Construction | Tunability, % | Reference |
---|---|---|---|---|
Mn-BaTi0.8Zr0.2O3 | Pt/Si | MDM | 69 | [26] |
BaTi0.65Zr0.35O3 | Pt/Si | MDM | 42 | [21] |
BaTi0.8Zr0.2O3 | Pt/Si | MDM | 69 | [32] |
BaTi0.85Zr0.15O3 | CaRuO3/Pt/Si | MDM | 75 | [28] |
BaTi0.8Zr0.2O3 | LaSrMnO3/Pt/Si | MDM | 73 | [29] |
BaTi0.8Zr0.2O3 | Pt/Si | MDM | 70 | [23] |
BaTi0.8Zr0.2O3 | Sn doped In2O3 | MDM | 53 | [27] |
BaTi0.8Zr0.2O3 | F doped SnO2 | MDM | 44 | [27] |
BaTi0.8Zr0.2O3 | Pt/Si | MDM | 59 | [27] |
BaTi0.8Zr0.2O3 | Pt/LaAlO3 | MDM | 44 | [18] |
BaTi0.9Zr0.1O3 | Pt/LaAlO3 | MDM | 59 | [18] |
BaTi0.8Zr0.2O3 | LaAlO3/Sr2AlTaO6 | planar | 50 | [24] |
BaTi0.8Zr0.2O3 | MgO | planar | 50 | [25] |
Mn-BaTi0.8Zr0.2O3 | MgO | planar | 53 | [30] |
BaTi0.7Zr0.3O3 | MgO | planar | 76 (1 MHz) | [34] |
BaTi0.7Zr0.3O3 | Al2O3 | planar | 78 (3 GHz) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumarkin, A.; Sapego, E.; Gagarin, A.; Karamov, A. High Tunable BaTixZr1-xO3 Films on Dielectric Substrate for Microwave Applications. Molecules 2022, 27, 6086. https://doi.org/10.3390/molecules27186086
Tumarkin A, Sapego E, Gagarin A, Karamov A. High Tunable BaTixZr1-xO3 Films on Dielectric Substrate for Microwave Applications. Molecules. 2022; 27(18):6086. https://doi.org/10.3390/molecules27186086
Chicago/Turabian StyleTumarkin, Andrei, Evgeny Sapego, Alexander Gagarin, and Artem Karamov. 2022. "High Tunable BaTixZr1-xO3 Films on Dielectric Substrate for Microwave Applications" Molecules 27, no. 18: 6086. https://doi.org/10.3390/molecules27186086
APA StyleTumarkin, A., Sapego, E., Gagarin, A., & Karamov, A. (2022). High Tunable BaTixZr1-xO3 Films on Dielectric Substrate for Microwave Applications. Molecules, 27(18), 6086. https://doi.org/10.3390/molecules27186086