Bioaccessibility of Phenolic Acids and Flavonoids from Buckwheat Biscuits Prepared from Flours Fermented by Lactic Acid Bacteria
Abstract
:1. Introduction
2. Results
2.1. Bioaccessibility of Phenolic Acids
2.2. Bioaccessibility of Flavonoids
3. Discussion
3.1. Bioaccessibility of Phenolic Acids
3.2. Bioaccessibility of Flavonoids
4. Materials and Methods
4.1. Chemicals
4.2. Fermentation of Buckwheat Flours by LAB, Preparation of Buckwheat Biscuits from Fermented Flours (BBF), and In Vitro Digestion of BBF
4.2.1. Buckwheat Flour
4.2.2. Fermentation of Buckwheat Flours
4.2.3. Preparation of BBF from Fermented Flour
4.2.4. In Vitro Digestion of Buckwheat Biscuits
4.3. Extraction, Isolation, and HPLC Analysis of Phenolic Compounds from BBF before and after In Vitro Digestion
4.4. Calculation of the Bioaccessibility Index of Phenolic Compounds
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gimenez-Bastida, J.A.; Zieliński, H. Buckwheat as a functional food and its effects on health. J. Agric. Food Chem. 2015, 63, 7896–7913. [Google Scholar] [CrossRef] [PubMed]
- Gimenez-Bastida, J.; Piskuła, M.; Zieliński, H. Recent Advances in Processing and Development of Buckwheat Derived Bakery and Non-Bakery Products—A Review. Pol. J. Food Nutr. Sci. 2015, 65, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Saturni, L.; Ferretti, G.; Bacchetti, T. The gluten-free diet: Safety and nutritional quality. Nutrients 2010, 2, 16–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhou, M.; Tang, Y.; Li, F.; Tang, Y.; Shao, J.; Xue, W.; Wu, Y. Bioactive compounds in functional buckwheat food. Food Res. Int. 2012, 49, 389–395. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef]
- Simwaka, J.E.; Chamba, M.V.M.; Huiming, Z.; Masamba, K.G.; Luo, Y. Effect of fermentation on physicochemical and anti-nutritional factors of complementary foods from millet, sorghum, pumpkin and amaranth seed flours. Int. Food Res. J. 2017, 24, 1869–1879. [Google Scholar]
- Coda, R.; Di Cagno, R.; Gobbetti, M.; Rizzello, C.G. Sourdough lactic acid bacteria: Exploration of non-wheat cereal-based fermentation. Food Microbiol. 2014, 37, 51–58. [Google Scholar] [CrossRef]
- Wronkowska, M.; Jeliński, T.; Majkowska, A.; Zieliński, H. Physical properties of buckwheat water biscuits formulated on fermented flours by selected lactic acid bacteria. Pol. J. Food Nutr. Sci. 2018, 68, 25–31. [Google Scholar] [CrossRef]
- Dordevic, T.M.; Siler-Marinkovic, S.S.; Dimitrijevic-Brankovic, S.I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem. 2010, 119, 957–963. [Google Scholar] [CrossRef]
- Zieliński, H.; Szawara-Nowak, D.; Bączek, N.; Wronkowska, M. Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours. Food Chem. 2019, 271, 291–297. [Google Scholar] [CrossRef]
- Zieliński, H.; Honke, J.; Topolska, J.; Bączek, N.; Piskuła, M.K.; Wiczkowski, W.; Wronkowska, M. ACE inhibitory properties and phenolics profile of fermented flours and baked and digested biscuits from buckwheat. Foods 2020, 9, 847. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, H.; Wiczkowski, W.; Honke, J.; Piskuła, M.K. In vitro expanded bioaccessibility of quercetin-3-rutinoside and quercetin aglycone from buckwheat biscuits formulated from flours fermented by lactic acid bacteria. Antioxidants 2021, 10, 571. [Google Scholar] [CrossRef] [PubMed]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Garcia, E.; Carvajal-Lerida, I.; Perez-Galvez, A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 2009, 29, 751–760. [Google Scholar] [CrossRef]
- Zieliński, H.; Szawara-Nowak, D.; Wronkowska, M. Bioaccessibility of anti-AGEs activity, antioxidant capacity and phenolics from water biscuits prepared from fermented buckwheat flours. LWT-Food Sci. Technol. 2020, 123, 109051. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Carbonell-Capella, J.M.; Buniowska, M.; Barba, F.J.; Esteve, M.J.; Frıgola, A. Analytical Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds from Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Aherne, S.A.; Daly, T.; Jiwan, M.A.; O’Sullivan, L.; O’Brien, N.M. Bioavailability of β-carotene isomers from raw and cooked carrots using an in vitro digestion model coupled with a human intestinal Caco-2 cell model. Food Res. Int. 2010, 43, 1449–1454. [Google Scholar] [CrossRef]
- Bouayed, J.; Deußer, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 2012, 131, 1466–1472. [Google Scholar] [CrossRef]
- Hemery, Y.M.; Anson, N.M.; Havenaar, R.; Haenen, G.R.M.M.; Noort, M.W.J.; Rouau, X. Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions. Food Res. Int. 2010, 43, 1429–1438. [Google Scholar] [CrossRef]
- Gayoso, L.; Claerbout, A.S.; Calvo, M.I.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D. Bioaccessibility of rutin, caffeic acid and rosmarinic acid: Influence of the in vitro gastrointestinal digestion models. J. Funct. Foods 2016, 26, 428–438. [Google Scholar] [CrossRef]
- Managa, M.G.; Akinola, S.A.; Remize, F.; Garcia, C.; Sivakumar, D. Physicochemical Parameters and Bioaccessibility of Lactic Acid Bacteria Fermented Chayote Leaf (Sechium edule) and Pineapple (Ananas comosus) Smoothies. Front. Nutr. 2021, 8, 649189. [Google Scholar] [CrossRef] [PubMed]
- Cele, N.P.; Akinola, S.A.; Shoko, T.; Manhevi, V.E.; Remize, F.; Sivakumar, D. The Bioaccessibility and Antioxidant Activities of Fermented Mango Cultivar Juices after Simulated In Vitro Digestion. Foods 2022, 11, 2702. [Google Scholar] [CrossRef] [PubMed]
- Bloem, A.; Bertrand, A.; Lonvaud-Funel, A.; de Revel, G. Vanillin production from simple phenols by wine-associated lactic acid bacteria. Lett. Appl. Microbiol. 2007, 44, 62–67. [Google Scholar] [CrossRef]
- Fitzgerald, D.J.; Stratford, M.; Narbad, A. Analysis of the inhibition of food spoilage yeasts by vanillin. Int. J. Food Microbiol. 2003, 86, 113–122. [Google Scholar] [CrossRef]
- Phelps, C.D.; Young, L.Y. Microbial Metabolism of the Plant Phenolic Compounds Ferulic and Syringic Acids under Three Anaerobic Conditions. Microb. Ecol. 1997, 33, 206–215. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2009, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G.; Kay, C.D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, D.; Szawara-Nowak, D.; Zieliński, H. Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment. J. Agric. Food Chem. 2007, 55, 6124–6131. [Google Scholar] [CrossRef]
- Payne, M.J.; Hurst, W.J.; Miller, K.B.; Rank, C.; Stuart, D.A. Impact of fermentation, drying, roasting and dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.S.; Bea, I.Y.; Lee, H.G. Predicting buckwheat flavonoids bioavailability in different food matrices under in vitro simulated human digestion. Cereal Chem. 2017, 94, 310–314. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Schneider, R.G. Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. J. Cereal Sci. 2020, 95, 103070. [Google Scholar] [CrossRef]
- Thilakarathna, S.H.; Rupasinghe, H.P.V. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef] [PubMed]
- AACC, American Association of Cereal Chemists. AACC Official Methods 10–52, Baking Quality of Cookie Flour—Micro Method, 9th ed.; Approved Methods of the American Association of Cereal Chemists; AACC: Minneapolis, MN, USA, 1995. [Google Scholar]
- Hidalgo, A.; Brandolini, A. Heat damage of water biscuits from einkorn, durum and bread wheat flours. Food Chem. 2011, 128, 471–478. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Conde-Aguilera, J.A.; Haro, A.; De La Cueva, S.P.; Rufián-Henares, J.A. A combined procedure to evaluate the global antioxidant response of bread. J. Cereal Sci. 2010, 56, 239–246. [Google Scholar] [CrossRef]
- Zieliński, H.; Honke, J.; Bączek, N.; Majkowska, A.; Wronkowska, M. Bioaccessibility of D-chiro-inositol from water biscuits formulated from buckwheat flours fermented by lactic acid bacteria and fungi. LWT-Food Sci. Technol. 2019, 106, 37–43. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Sawicki, T.; Mitrus, J.; Kasprzykowski, Z.; Horbowicz, M. Profile of phenolic acids and antioxidant capacity in organs of common buckwheat sprout. Acta Aliment. 2016, 45, 250–257. [Google Scholar] [CrossRef]
Sample/Phenolic Acid | Vanillic | Protocatechuic | Syringic | p-Coumaric | Sinapic | t-Cinnamic | Caffeic | Ferulic |
---|---|---|---|---|---|---|---|---|
Control biscuits (BBc) | 112.66 ± 2.66b | 65.79 ± 2.46bc | 43.63 ± 1.33d | 21.53 ± 3.10b | 8.33 ± 0.10c | 7.86 ± 0.02d | 3.40 ± 0.11c | 3.21 ± 0.13cd |
BBF fermented by: | ||||||||
L. plantarum IB | 84.41 ± 3.29c | 73.48 ± 2.40b | 53.83 ± 3.03c | 16.29 ± 0.76c | 2.47 ± 0.07f | 13.15 ± 0.62ab | 3.54 ± 0.08c | 3.76 ± 0.13c |
L. plantarum W42 | 75.60 ± 2.49d | 85.48 ± 1.96a | 50.44 ± 2.18c | 13.50 ± 3.64cd | 1.29 ± 0.05g | 14.07 ± 0.49a | 2.27 ± 0.14cd | 3.64 ± 0.11c |
L. delbrucki subsp. bulgaricus 151 | 97.14 ± 6.39c | 52.71 ± 1.97c | 34.71 ± 0.46d | 7.58 ± 0.36e | 5.57 ± 0.24d | 2.82 ± 0.14e | 4.21 ± 0.07c | 2.47 ± 0.09e |
L. casei Lcy | 95.40 ± 3.37c | 78.82 ± 0.98a | 36.93 ± 0.19d | 6.37 ± 0.08e | 4.76 ± 0.15e | 11.33 ± 1.01b | 3.95 ± 0.05c | 2.71 ± 0.11e |
Streptococcus thermophilus MK-10 | 111.15 ± 4.17b | 39.72 ± 2.07d | 38.48 ± 0.66d | 8.26 ± 0.54e | 6.67 ± 0.15d | 1.87 ± 0.05e | 4.45 ± 0.11c | 2.51 ± 0.07e |
L. acidophilus La5 | 108.18 ± 2.26b | 81.98 ± 4.05a | 46.56 ± 0.81c | 11.33 ± 0.21c | 7.77 ± 0.29cd | 3.05 ± 0.17e | 11.68 ± 0.73a | 4.29 ± 0.10b |
L. acidophilus V | 115.33 ± 3.10b | 82.47 ± 1.00a | 60.81 ± 2.19bc | 9.67 ± 0.24d | 8.24 ± 0.15c | 4.35 ± 0.09e | 11.93 ± 1.11a | 4.17 ± 0.14bc |
L. acidophilus 145 | 104.28 ± 0.37b | 61.19 ± 4.57c | 52.36 ± 0.55bc | 4.00 ± 0.12e | 6.20 ± 0.13d | 11.65 ± 0.50b | 2.49 ± 0.07cd | 3.23 ± 0.04c |
L. casei 2K | 112.01 ± 1.56b | 57.00 ± 1.51c | 36.94 ± 1.53d | 12.72 ± 0.56cd | 22.35 ± 0.34a | 3.09 ± 0.02e | 10.30 ± 0.34a | 6.00 ± 0.10a |
L. delbrucki subsp. bulgaricus K | 83.06 ± 1.59cd | 42.57 ± 0.30d | 21.42 ± 0.49e | 8.30 ± 0.35d | 4.35 ± 0.12e | 3.09 ± 0.03e | 1.59 ± 0.05d | 2.97 ± 0.11d |
L. rhamnosus GG | 100.91 ± 0.84b | 52.52 ± 2.62c | 35.64 ± 0.96d | 13.68 ± 0.16cd | 16.24 ± 0.35b | 5.04 ± 0.35e | 7.94 ± 0.36b | 2.41 ± 0.06e |
L. rhamnosus 8/4 | 97.22 ± 2.22c | 43.59 ± 0.50d | 45.50 ± 1.85cd | 3.41 ± 0.02e | 4.20 ± 0.04e | 5.27 ± 0.11e | 1.36 ± 0.04d | 3.44 ± 0.05c |
L. rhamnosus K | 129.02 ± 2.65a | 73.90 ± 3.60b | 159.66 ± 6.62a | 28.53 ± 0.64a | 7.12 ± 0.38d | 10.00 ± 0.53c | 11.68 ± 0.35a | 3.19 ± 0.14cd |
L. salivarius AWH | 95.95 ± 6.11c | 50.33 ± 1.71c | 35.30 ± 1.77d | 7.64 ± 0.32de | 8.64 ± 0.78c | 6.12 ± 0.28e | 3.17 ± 0.12c | 2.90 ± 0.12d |
Average for BBF | 100.69 ± 14.15 | 62.55 ± 16.34 | 50.61 ± 32.98 | 10.81 ± 6.32 | 7.56 ± 5.53 | 6.78 ± 4.31 | 5.75 ± 4.04 | 3.41 ± 0.96 |
Sample/Phenolic Acid | Vanillic | Protocatechuic | Syringic | p-Coumaric | Sinapic | t-Cinnamic | Caffeic | Ferulic |
---|---|---|---|---|---|---|---|---|
Control biscuits (BBc) | 187.90 ± 18.83c | 203.57 ± 6.15d | 130.65 ± 1.22c | 26.33 ± 0.14e | 22.16 ± 0.30b | 8.29 ± 0.02f | 14.64 ± 0.09e | 8.17 ± 0.21c |
BBF fermented by: | ||||||||
L. plantarum IB | 197.89 ± 6.37c | 327.77 ± 3.64a | 208.15 ± 6.37ab | 23.60 ± 0.19f | 24.22 ± 0.86b | 46.90 ± 0.26a | 37.38 ± 0.52c | 10.48 ± 0.18b |
L. plantarum W42 | 243.73 ± 5.25b | 297.80 ± 7.81b | 199.22 ± 4.88ab | 26.36 ± 0.30e | 28.11 ± 0.74ab | 40.53 ± 0.95b | 52.54 ± 0.76a | 10.61 ± 0.16b |
L. delbrucki subsp. bulgaricus 151 | 212.09 ± 5.68c | 242.62 ± 4.62d | 211.32 ± 1.23a | 28.75 ± 0.26e | 29.93 ± 0.60a | 12.41 ± 0.34f | 44.38 ± 0.48b | 10.38 ± 0.25b |
L. casei Lcy | 226.05 ± 1.41c | 228.62 ± 2.12d | 76.55 ± 2.21d | 14.14 ± 0.24h | 6.77 ± 0.05e | 29.31 ± 0.91d | 21.98 ± 0.15d | 6.37 ± 0.09c |
Streptococcus thermophilus MK-10 | 236.60 ± 2.85b | 166.90 ± 3.99d | 85.61 ± 1.61d | 19.59 ± 0.44g | 13.39 ± 0.26d | 17.10 ± 0.72e | 27.18 ± 0.61d | 6.95 ± 0.04c |
L. acidophilus La5 | 233.95 ± 4.89b | 271.34 ± 9.51c | 184.67 ± 4.79b | 47.08 ± 1.25a | 32.12 ± 0.27a | 15.24 ± 0.17e | 57.05 ± 0.27a | 11.94 ± 0.14a |
L. acidophilus V | 244.10 ± 5.66b | 285.54 ± 1.17b | 174.31 ± 4.23b | 40.18 ± 0.85b | 25.30 ± 1.04b | 17.51 ± 0.53e | 45.29 ± 1.35b | 10.44 ± 0.17b |
L. acidophilus 145 | 247.57 ± 8.06b | 258.21 ± 6.99c | 198.11 ± 8.79ab | 17.01 ± 0.24g | 15.07 ± 0.36cd | 34.73 ± 0.21c | 23.50 ± 0.19d | 9.71 ± 0.15b |
L. casei 2K | 233.78 ± 6.70b | 291.43 ± 3.88b | 154.45 ± 3.99c | 41.87 ± 0.45b | 30.52 ± 1.58a | 17.57 ± 0.4e | 51.27 ± 1.43a | 11.14 ± 0.29b |
L. delbrucki subsp. bulgaricus K | 233.54 ± 1.97b | 210.31 ± 3.64d | 231.97 ± 3.90a | 27.14 ± 0.28e | 25.62 ± 0.54b | 11.59 ± 0.20f | 36.72 ± 1.31c | 10.26 ± 0.28b |
L. rhamnosus GG | 268.28 ± 14.23a | 245.80 ± 6.36c | 177.38 ± 7.54b | 36.67 ± 0.47c | 29.11 ± 0.13a | 19.80 ± 0.67d | 49.08 ± 0.27ab | 11.01 ± 0.25b |
L. rhamnosus 8/4 | 266.25 ± 14.04a | 339.72 ± 8.67a | 212.00 ± 8.22a | 19.29 ± 0.44g | 17.34 ± 0.08c | 19.58 ± 0.83d | 42.53 ± 0.60c | 10.43 ± 0.10b |
L. rhamnosus K | 228.37 ± 1.05c | 265.03 ± 3.65b | 186.60 ± 6.75ab | 30.15 ± 0.29de | 30.09 ± 0.78a | 14.49 ± 0.10e | 52.30 ± 1.08a | 10.49 ± 0.18b |
L. salivarius AWH | 281.37 ± 10.60a | 307.99 ± 2.40ab | 180.70 ± 4.93ab | 30.33 ± 0.47de | 31.22 ± 0.93a | 18.89 ± 0.49d | 46.38 ± 1.47b | 9.88 ± 0.22b |
Average for BBF | 239.54 ± 22.01 | 267.08 ± 46.74 | 177.22 ± 45.11 | 28.73 ± 9.87 | 24.20 ± 7.91 | 22.55 ± 10.96 | 41.97 ± 11.19 | 10.01 ± 1.52 |
Sample/Phenolic Acid | Vanillic | Protocatechuic | Syringic | p-Coumaric | Sinapic | t-Cinnamic | Caffeic | Ferulic |
---|---|---|---|---|---|---|---|---|
Control biscuits (BBC) | 1.67 | 3.09 | 2.99 | 1.22 | 2.66 | 1.05 | 4.31 | 2.55 |
BBF fermented by: | ||||||||
L. plantarum IB | 2.34 | 4.46 | 3.87 | 1.45 | 9.81 | 3.57 | 10.56 | 2.79 |
L. plantarum W42 | 3.22 | 3.48 | 3.95 | 1.95 | 21.79 | 2.88 | 23.18 | 2.92 |
L. delbrucki subsp. bulgaricus 151 | 2.18 | 4.60 | 6.09 | 3.79 | 5.37 | 4.40 | 10.55 | 4.20 |
L. casei Lcy | 2.37 | 2.90 | 2.07 | 2.22 | 1.42 | 2.59 | 5.57 | 2.35 |
Streptococcus thermophilus MK-10 | 2.13 | 4.20 | 2.22 | 2.37 | 2.01 | 9.15 | 6.11 | 2.77 |
L. acidophilus La5 | 2.16 | 3.31 | 3.97 | 4.15 | 4.13 | 4.99 | 4.88 | 2.78 |
L. acidophilus V | 2.12 | 3.46 | 2.87 | 4.15 | 3.07 | 4.03 | 3.80 | 2.50 |
L. acidophilus 145 | 2.37 | 4.22 | 3.78 | 4.25 | 2.43 | 2.98 | 9.44 | 3.01 |
L. casei 2K | 2.09 | 5.11 | 4.18 | 3.29 | 1.37 | 5.68 | 4.98 | 1.86 |
L. delbrucki subsp. bulgaricus K | 2.81 | 4.94 | 10.83 | 3.27 | 5.89 | 3.76 | 23.12 | 3.45 |
L. rhamnosus GG | 2.66 | 4.68 | 4.98 | 2.68 | 1.79 | 3.93 | 6.18 | 4.57 |
L. rhamnosus 8/4 | 2.74 | 7.79 | 4.66 | 5.66 | 4.13 | 3.71 | 31.32 | 3.03 |
L. rhamnosus K | 1.77 | 3.59 | 1.17 | 1.06 | 4.23 | 1.45 | 4.48 | 3.29 |
L. salivarius AWH | 2.93 | 6.12 | 5.12 | 3.97 | 3.61 | 3.09 | 14.63 | 3.41 |
Average for BBF | 2.4 ± 0.4 | 4.5 ± 1.3 | 4.3 ± 2.3 | 3.2 ± 1.3 | 5.1 ± 5.3 | 4.0 ± 1.8 | 11.3 ± 8.6 | 3.1 ± 0.7 |
Strain/Flavonoid | Epicatechin | Vitexin | Orientin | Apigenin | Kaempferol | Luteolin |
---|---|---|---|---|---|---|
Control biscuits (BBc) | 91.69 ± 2.73c | 15.04 ± 0.21b | 4.21 ± 0.18b | 2.13 ± 0.20c | 0.75 ± 0.12b | 0.22 ± 0.02ab |
BBF fermented by: | ||||||
L. plantarum IB | 19.13 ± 0.33e | 7.81 ± 0.15d | 2.24 ± 0.04d | 2.91 ± 0.14b | 0.68 ± 0.05b | 0.17 ± 0.01ab |
L. plantarum W42 | 32.50 ± 1.48d | 14.00 ± 0.11b | 2.53 ± 0.02d | 2.46 ± 0.06c | 0.89 ± 0.02b | 0.14 ± 0.01b |
L. delbrucki subsp. bulgaricus 151 | 42.77 ± 2.15d | 14.93 ± 0.26b | 4.40 ± 0.20b | 3.41 ± 0.18a | 0.82 ± 0.07b | 0.13 ± 0.01b |
L. casei Lcy | 41.57 ± 1.35d | 12.74 ± 0.18c | 3.10 ± 0.05cd | 2.30 ± 0.09c | 0.73 ± 0.04b | 0.12 ± 0.03b |
Streptococcus thermophilus MK-10 | 60.54 ± 1.90d | 10.09 ± 0.23d | 3.13 ± 0.09c | 2.39 ± 0.04c | 0.52 ± 0.02c | 0.09 ± 0.01b |
L. acidophilus La5 | 47.39 ± 4.28d | 11.77 ± 0.23c | 2.77 ± 0.10d | 1.94 ± 0.04d | 0.45 ± 0.01c | 0.12 ± 0.01b |
L. acidophilus V | 23.20 ± 0.56e | 11.84 ± 0.33c | 3.02 ± 0.07cd | 1.99 ± 0.08d | 0.47 ± 0.05c | 0.12 ± 0.01b |
L. acidophilus 145 | 17.92 ± 0.43e | 10.00 ± 0.13d | 3.17 ± 0.04c | 1.98 ± 0.10d | 0.45 ± 0.20c | 0.15 ± 0.02ab |
L. casei 2K | 40.96 ± 0.84d | 11.03 ± 0.08c | 2.53 ± 0.12d | 2.63 ± 0.06c | 0.60 ± 0.16c | 0.16 ± 0.02ab |
L. delbrucki subsp. bulgaricus K | 20.60 ± 0.49e | 9.80 ± 0.29d | 4.64 ± 0.19b | 0.67 ± 0.01e | 0.57 ± 0.02c | 0.10 ± 0.01b |
L. rhamnosus GG | 49.87 ± 2.67d | 10.98 ± 0.28d | 2.06 ± 0.15e | 2.86 ± 0.11b | 0.57 ± 0.12c | 0.17 ± 0.03ab |
L. rhamnosus 8/4 | 101.47 ± 6.09c | 11.61 ± 0.21c | 3.19 ± 0.09c | 2.71 ± 0.08b | 1.58 ± 0.06a | 0.22 ± 0.05ab |
L. rhamnosus K | 114.57 ± 3.60b | 12.27 ± 0.15c | 11.48 ± 0.35a | 2.56 ± 0.09c | 0.97 ± 0.24b | 0.25 ± 0.04a |
L. salivarius AWH | 127.64 ± 4.89a | 21.96 ± 0.64a | 3.62 ± 0.13c | 3.02 ± 0.09a | 1.07 ± 0.11b | 0.15 ± 0.05ab |
Average for BBF | 52.87 ± 36.08 | 12.2 ± 3.33 | 3.71 ± 2.35 | 2.42 ± 0.66 | 0.74 ± 0.31 | 0.15 ± 0.04 |
Strain/Flavonoid | Epicatechin | Vitexin | Orientin | Apigenin | Kaempferol | Luteolin |
---|---|---|---|---|---|---|
Control biscuits (BBc) | 16.45 ± 0.53d | 8.30 ± 0.29d | 4.23 ± 0.04d | 1.25 ± 0.02e | 9.27 ± 0.08a | 0.19 ± 0.02b |
BBF fermented by: | ||||||
L. plantarum IB | 22.35 ± 0.83d | 12.50 ± 0.08e | 6.49 ± 0.21b | 1.74 ± 0.01e | 1.99 ± 0.02d | 0.22 ± 0.02b |
L. plantarum W42 | 42.48 ± 1.45bc | 17.51 ± 0.15b | 8.14 ± 0.20a | 2.45 ± 0.05d | 2.51 ± 0.04c | 0.24 ± 0.02b |
L. delbrucki subsp. bulgaricus 151 | 37.27 ± 1.63c | 14.88 ± 0.50c | 6.49 ± 0.24b | 2.15 ± 0.03de | 2.06 ± 0.03cd | 0.18 ± 0.01bc |
L. casei Lcy | 23.69 ± 1.22d | 11.65 ± 0.22e | 4.53 ± 0.15d | 1.68 ± 0.06e | 1.74 ± 0.07e | 0.15 ± 0.01c |
Streptococcus thermophilus MK-10 | 18.12 ± 0.98d | 11.84 ± 0.10e | 6.14 ± 0.04b | 6.89 ± 0.07b | 1.40 ± 0.02e | 0.14 ± 0.03c |
L. acidophilus La5 | 56.07 ± 0.91a | 14.08 ± 0.18c | 4.70 ± 0.02cd | 11.66 ± 0.30a | 1.83 ± 0.03d | 0.20 ± 0.01b |
L. acidophilus V | 44.49 ± 0.89b | 14.33 ± 0.30c | 4.78 ± 0.06cd | 2.77 ± 0.07d | 1.86 ± 0.03d | 0.19 ± 0.01b |
L. acidophilus 145 | 49.26 ± 1.57b | 17.13 ± 0.21b | 6.12 ± 0.28b | 2.94 ± 0.12d | 2.13 ± 0.03c | 0.31 ± 0.02a |
L. casei 2K | 41.34 ± 0.98b | 19.01 ± 0.29a | 7.50 ± 0.13a | 3.15 ± 0.10d | 1.93 ± 0.03d | 0.30 ± 0.01a |
L. delbrucki subsp. bulgaricus K | 32.93 ± 0.77c | 12.06 ± 0.15e | 4.62 ± 0.11cd | 2.26 ± 0.09e | 3.06 ± 0.04b | 0.15 ± 0.02bc |
L. rhamnosus GG | 42.16 ± 2.44b | 12.18 ± 0.23e | 6.28 ± 0.16b | 2.82 ± 0.07d | 2.14 ± 0.02cd | 0.16 ± 0.01bc |
L. rhamnosus 8/4 | 29.38 ± 0.89c | 13.99 ± 0.35c | 6.12 ± 0.17b | 2.09 ± 0.06e | 1.85 ± 0.03d | 0.19 ± 0.00b |
L. rhamnosus K | 39.21 ± 1.52b | 13.40 ± 0.15d | 5.77 ± 0.06c | 2.90 ± 0.03d | 1.84 ± 0.03d | 0.20 ± 0.01b |
L. salivarius AWH | 43.20 ± 2.22b | 12.40 ± 0.28e | 5.93 ± 0.21b | 4.25 ± 0.09c | 2.53 ± 0.06c | 0.19 ± 0.01b |
Average for BBF | 37.28 ± 10.78 | 14.07 ± 2.24 | 5.97 ± 1.06 | 3.55 ± 2.68 | 2.06 ± 0.41 | 0.20 ± 0.05 |
Strain/Flavonoid | Epicatechin | Vitexin | Orientin | Apigenin | Kaempferol | Luteolin |
---|---|---|---|---|---|---|
Control biscuits (BBc) | 0.18 | 0.55 | 1.01 | 0.59 | 12.29 | 0.87 |
BBF fermented by: | ||||||
L. plantarum IB | 1.16 | 1.60 | 2.90 | 0.60 | 2.95 | 1.27 |
L. plantarum W42 | 1.31 | 1.25 | 3.22 | 1.00 | 2.84 | 1.71 |
L. delbrucki subsp. bulgaricus 151 | 0.87 | 1.00 | 1.48 | 0.63 | 2.52 | 1.39 |
L. casei Lcy | 0.57 | 0.91 | 1.46 | 0.73 | 2.38 | 1.25 |
Streptococcus thermophilus MK-10 | 0.30 | 1.17 | 1.96 | 2.88 | 2.68 | 1.63 |
L. acidophilus La5 | 1.18 | 1.20 | 1.69 | 6.01 | 4.03 | 1.74 |
L. acidophilus V | 1.92 | 1.21 | 1.58 | 1.39 | 3.95 | 1.57 |
L. acidophilus 145 | 2.75 | 1.71 | 1.93 | 1.49 | 4.68 | 2.07 |
L. casei 2K | 1.01 | 1.72 | 2.97 | 1.20 | 3.23 | 1.93 |
L. delbrucki subsp. bulgaricus K | 1.60 | 1.23 | 1.00 | 3.37 | 5.34 | 1.48 |
L. rhamnosus GG | 0.85 | 1.11 | 3.05 | 0.98 | 3.74 | 0.98 |
L. rhamnosus 8/4 | 0.29 | 1.21 | 1.92 | 0.77 | 1.17 | 0.86 |
L. rhamnosus K | 0.34 | 1.09 | 0.50 | 1.13 | 1.89 | 0.79 |
L. salivarius AWH | 0.34 | 0.56 | 1.64 | 1.41 | 2.37 | 1.28 |
Average for BBF | 1.04 | 1.21 | 1.95 | 1.69 | 3.13 | 1.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, H.; Wiczkowski, W.; Topolska, J.; Piskuła, M.K.; Wronkowska, M. Bioaccessibility of Phenolic Acids and Flavonoids from Buckwheat Biscuits Prepared from Flours Fermented by Lactic Acid Bacteria. Molecules 2022, 27, 6628. https://doi.org/10.3390/molecules27196628
Zieliński H, Wiczkowski W, Topolska J, Piskuła MK, Wronkowska M. Bioaccessibility of Phenolic Acids and Flavonoids from Buckwheat Biscuits Prepared from Flours Fermented by Lactic Acid Bacteria. Molecules. 2022; 27(19):6628. https://doi.org/10.3390/molecules27196628
Chicago/Turabian StyleZieliński, Henryk, Wiesław Wiczkowski, Joanna Topolska, Mariusz Konrad Piskuła, and Małgorzata Wronkowska. 2022. "Bioaccessibility of Phenolic Acids and Flavonoids from Buckwheat Biscuits Prepared from Flours Fermented by Lactic Acid Bacteria" Molecules 27, no. 19: 6628. https://doi.org/10.3390/molecules27196628
APA StyleZieliński, H., Wiczkowski, W., Topolska, J., Piskuła, M. K., & Wronkowska, M. (2022). Bioaccessibility of Phenolic Acids and Flavonoids from Buckwheat Biscuits Prepared from Flours Fermented by Lactic Acid Bacteria. Molecules, 27(19), 6628. https://doi.org/10.3390/molecules27196628