Bioaccessibility of Rosmarinic Acid and Basil (Ocimum basilicum L.) Co-Compounds in a Simulated Digestion Model—The Influence of the Endogenous Plant Matrix, Dose of Administration and Physicochemical and Biochemical Digestion Environment
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material
4.3. Extraction Procedure
4.4. Dry Extract Preparation
Stability of Phytochemicals in the Dry Extract
4.5. Artificial Digestion and Determination of Potential Bioaccessibility
4.5.1. Experiment Design and Preparation of Samples
4.5.2. Digestion Procedure
4.5.3. Bioaccessibility Calculation
4.6. Phytochemical Analyses
4.6.1. Determination of Rosmarinic Acid Content by High-Performance Liquid Chromatography (HPLC)
4.6.2. Spectrophotometric Determination of Total Phenolic Content and in Vitro Antioxidant Activity of Extracts and Plant Material
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Altay, K.; Hayaloglu, A.A.; Dirim, S.N. Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat Mass Transf. 2019, 55, 2173–2184. [Google Scholar] [CrossRef]
- Nadeem, H.R.; Akhtar, S.; Ismail, T.; Qamar, M.; Sestili, P.; Saeed, W.; Azeem, M.; Esatbeyoglu, T. Antioxidant Effect of Ocimum basilicum Essential Oil and Its Effect on Cooking Qualities of Supplemented Chicken Nuggets. Antioxidants 2022, 11, 1882. [Google Scholar] [CrossRef]
- Majdi, C.; Pereira, C.; Dias, M.I.; Calhelha, R.C.; Alves, M.J.; Frih, B.; Charrouf, Z.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Phytochemical characterization and bioactive properties of cinnamon basil (Ocimum basilicum cv. ‘cinnamon’) and lemon basil (ocimum x citriodorum). Antioxidants 2020, 9, 369. [Google Scholar] [CrossRef]
- Yilmaz, A.; Alibas, I. The impact of drying methods on quality parameters of purple basil leaves. J. Food Process. Preserv. 2021, 45, e15638. [Google Scholar] [CrossRef]
- Dhama, K.; Sharun, K.; Gugjoo, M.B.; Tiwari, R.; Alagawany, M.; Iqbal Yatoo, M.; Thakur, P.; Iqbal, H.M.N.; Chaicumpa, W.; Michalak, I.; et al. A Comprehensive Review on Chemical Profile and Pharmacological Activities of Ocimum basilicum. Food Rev. Int. 2021, 39, 119–147. [Google Scholar] [CrossRef]
- Zahran, E.M.; Abdelmohsen, U.R.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochem. Rev. 2020, 19, 907–953. [Google Scholar] [CrossRef]
- Makri, O.; Kintzios, S. Ocimum sp. (Basil): Botany, cultivation, pharmaceutical properties, and biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Teliban, G.C.; Stoleru, V.; Burducea, M.; Lobiuc, A.; Munteanu, N.; Popa, L.D.; Caruso, G. Biochemical, physiological and yield characteristics of red basil as affected by cultivar and fertilization. Agriculture 2020, 10, 48. [Google Scholar] [CrossRef]
- Shiga, T.; Shoji, K.; Shimada, H.; Hashida, S.N.; Goto, F.; Yoshihara, T. Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L. Plant Biotechnol. 2009, 26, 255–259. [Google Scholar] [CrossRef]
- Lei, Y.; Haan, C.; Suan, L. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem. Toxicol. 2018, 121, 687–700. [Google Scholar] [CrossRef]
- Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Effects of rosmarinic acid on nervous system disorders: An updated review. Naunyn. Schmiedebergs. Arch. Pharmacol. 2020, 393, 1779–1795. [Google Scholar] [CrossRef]
- Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A Comprehensive Review of Rosmarinic Acid: From Phytochemistry to Pharmacology and Its New Insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef]
- Azhar, M.K.; Anwar, S.; Hasan, G.M.; Shamsi, A.; Islam, A.; Parvez, S.; Hassan, M.I. Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients 2023, 15, 4297. [Google Scholar] [CrossRef]
- Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, M.I.; Asiri, A.M. Biomedical features and therapeutic potential of rosmarinic acid. Arch. Pharm. Res. 2022, 45, 205–228. [Google Scholar] [CrossRef]
- Nunes, S.; Madureira, R.; Campos, D.; Sarmento, B.; Gomes, A.M.; Pintado, M.; Reis, F. Therapeutic and Nutraceutical Potential of Rosmarinic Acid—Cytoprotective Properties and Pharmacokinetic Profile. Crit. Rev. Food Sci. Nutr. 2015, 57, 1799–1806. [Google Scholar] [CrossRef]
- Amoah, S.; Sandjo, L.; Kratz, J.; Biavatti, M. Rosmarinic Acid—Pharmaceutical and Clinical Aspects. Planta Med. 2016, 82, 388–406. [Google Scholar] [CrossRef]
- Veras, K.S.; Fachel, F.N.S.; de Araújo, B.V.; Teixeira, H.F.; Koester, L.S. Oral Pharmacokinetics of Hydroxycinnamic Acids: An Updated Review. Pharmaceutics 2022, 14, 2663. [Google Scholar] [CrossRef]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic Acid-Human Pharmacokinetics and Health Benefits. Planta Med. 2021, 87, 273–282. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.-M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Res. Int. 2018, 107, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Regolo, L.; Alvarez-Suarez, J.M.; Navarro-Hortal, M.D.; Xiao, J.; Quiles, J.L.; Battino, M.; Giampieri, F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem. 2022, 375, 131904. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 954–994. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Sugier, D.; Świeca, M.; Gawlik-Dziki, U. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chem. 2021, 344, 128581. [Google Scholar] [CrossRef]
- Veras, K.S.; Fachel, F.N.S.; Teixeira, H.F.; Koester, L.S. Technological strategies applied for rosmarinic acid delivery through different routes—A review. J. Drug Deliv. Sci. Technol. 2022, 68, 103054. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.-Y.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Gayoso, L.; Claerbout, A.S.; Calvo, M.I.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D. Bioaccessibility of rutin, caffeic acid and rosmarinic acid: Influence of the in vitro gastrointestinal digestion models. J. Funct. Foods 2016, 26, 428–438. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; De La Rosa, L.A.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules 2017, 22, 669. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Dissanayaka, C.S. Phenolic-protein interactions: Insight from in-silico analyses—A review. Food Prod. Process. Nutr. 2023, 5, 2. [Google Scholar] [CrossRef]
- Qin, W.; Ketnawa, S.; Ogawa, Y. Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Sci. Hum. Wellness 2022, 11, 669–675. [Google Scholar] [CrossRef]
- Martínez-Las Heras, R.; Pinazo, A.; Heredia, A.; Andrés, A. Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chem. 2017, 214, 478–485. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Sugier, D.; Dervişoğlu, G.; Özdemir, F.A.; Kołodziej, B. Phytochemical profile, in vitro bioaccessibility, and anticancer potential of golden root (Rhodiola rosea L.) extracts. Food Chem. 2023, 404, 134779. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.J.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Xiao, J. Recent advances on the stability of dietary polyphenols. eFood 2022, 3, 21. [Google Scholar] [CrossRef]
- Friedman, M.; Jürgens, H.S. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber—Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Phan, A.D.T.; D’Arcy, B.R.; Gidley, M.J. Polyphenol-cellulose interactions: Effects of pH, temperature and salt. Int. J. Food Sci. Technol. 2016, 51, 203–211. [Google Scholar] [CrossRef]
- Durak, A.; Gawlik-Dziki, U.; Kowlska, I. Coffee with ginger—Interactions of biologically active phytochemicals in the model system. Food Chem. 2015, 166, 261–269. [Google Scholar] [CrossRef]
- Freeman, B.L.; Eggett, D.L.; Parker, T.L. Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J. Food Sci. 2010, 75, C570–C576. [Google Scholar] [CrossRef]
- Chaitanya, M.V.N.L.; Ramanunny, A.K.; Babu, M.R.; Gulati, M.; Vishwas, S.; Singh, T.G.; Chellappan, D.K.; Adams, J.; Dua, K.; Singh, S.K. Journey of Rosmarinic Acid as Biomedicine to Nano-Biomedicine for Treating Cancer: Current Strategies and Future Perspectives. Pharmaceutics 2022, 14, 2401. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
Sample | RAC (mg∙g−1 DW) | TPC (mg GAE∙g−1 DW) | FRAP (mg TE∙g−1 DW) | ABTS (mg TE∙g−1 DW) | Extract Yield (mg DE∙g−1 PM) |
---|---|---|---|---|---|
Plant material | 19.80 ± 0.06 | 53.88 ± 1.40 | 102.35 ± 1.68 | 149.22 ± 3.78 | - |
Dry extract | 64.37 ± 0.37 | 174.11 ± 4.65 | 327.08 ± 5.41 | 485.52 ± 9.95 | 306.7 |
Stability (%) | 99.72 ± 0.85 | 99.12 ± 2.59 | 98.06 ± 3.23 | 99.83 ± 2.29 | - |
Sample /Dose | Gastric Bioaccessibility (%) | |||||
---|---|---|---|---|---|---|
RA E | RA D | PM E | PM D | DE E | DE D | |
500 | 98.4 ± 2.82 aA | 95.5 ± 2.91 abA | 27.4 ± 1.07 dA | 31.7±0.91 dA | 92.3 ± 1.90 bcA | 87.4 ± 1.95 cA |
375 | 98.4 ± 2.93 aA | 95.5 ± 3.04 abA | 20.0 ± 0.74 dB | 23.2±0.83 dB | 91.3 ± 1.98 bcA | 87.5 ± 2.16 cA |
250 | 98.5 ± 3.12 aA | 95.6 ± 3.19 abA | 13.0 ± 0.54 dC | 15.1±0.55 dC | 91.6 ± 2.16 bcA | 87.0 ± 1.99 cA |
125 | 98.7 ± 3.60 aA | 95.7 ± 3.62 abA | 7.7 ± 0.29 dD | 7.9±0.28 dD | 91.2 ± 2.27 bcA | 86.0 ± 2.20 cA |
50 | 99.4 ± 3.68 aA | 95.9 ± 3.47 abA | 6.0 ± 0.28 dDE | 6.3±0.27 dDE | 90.6 ± 2.49 bcA | 83.9 ± 2.21 cA |
25 | 98.6 ± 4.30 aA | 95.7 ± 4.27 aA | 5.5 ± 0.32 dE | 5.6±0.34 dE | 87.5 ± 2.44 bA | 74.8 ± 2.06 cB |
Sample /Dose | Gastrointestinal Bioaccessibility (%) | |||||
---|---|---|---|---|---|---|
RA E | RA D | PM E | PM D | DE E | DE D | |
500 | 74.1 ± 3.27 cA | 80.5 ± 3.44 bcA | 38.4 ± 1.31 dA | 40.4 ± 1.26 dA | 86.3 ± 1.79 abA | 88.4 ± 3.03 aA |
375 | 74.1 ± 3.33 cA | 80.0 ± 3.84 bcA | 34.3 ± 1.20 dB | 36.2 ± 1.03 dB | 85.2 ± 1.56 abA | 87.6 ± 3.03 aA |
250 | 73.9 ± 3.35 bA | 79.1 ± 3.63 abA | 28.2 ± 1.07 cC | 31.2 ± 0.97 cC | 82.6 ± 1.47 aAB | 82.6 ± 3.03 aAB |
125 | 73.4 ± 3.63 aA | 76.2 ± 3.84 aAB | 23.3 ± 0.86 bD | 23.4 ± 0.63 bD | 80.4 ± 1.73 aB | 78.1 ± 2.79 aBC |
50 | 71.8 ± 3.72 abA | 67.7 ± 3.69 bB | 18.9 ± 0.78 cE | 17.0 ± 0.59 cE | 75.5 ± 1.84 aC | 74.3 ± 3.19 abC |
25 | 69.3 ± 4.24 abA | 53.5 ± 3.35 bC | 14.7 ± 0.71 cF | 13.0 ± 0.54 cF | 72.0 ± 1.14 aC | 65.9 ± 2.91 aD |
Sample /Dose | Total Phenolic Content (mg GAE/Dose) | Bioaccessibility (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PM | PM E | PM D | DE | DE E | DE D | PM E | PM D | DE E | DE D | ||
Gastric digestion | 500 | 26.94 ± 0.70 a | 18.38 ± 0.25 c | 18.96 ± 0.29 c | 26.70 ± 0.71 a | 25.30 ± 0.39 b | 25.08 ± 0.50 b | 68.3 ± 2.69 bA | 70.4 ± 2.93 bA | 94.8 ± 3.98 aA | 94.0 ± 4.39 aA |
375 | 20.20 ± 0.53 a | 13.61 ± 0.18 c | 13.39 ± 0.19 c | 20.03 ± 0.53 ab | 19.07 ± 0.28 b | 19.09 ± 0.23 b | 67.4 ± 2.64 bA | 66.3 ± 2.67 bA | 95.3 ± 3.95 aA | 95.4 ± 3.70 aA | |
250 | 13.47 ± 0.35 a | 8.83 ± 0.05 c | 8.80 ± 0.11 c | 13.35 ± 0.36 a | 12.29 ± 0.17 b | 12.68 ± 0.19 b | 65.6 ± 2.08 bA | 65.4 ± 2.55 bA | 92.1 ± 3.74 aA | 95.0 ± 3.97 aA | |
125 | 6.73 ± 0.18 a | 3.85 ± 0.05 c | 3.49 ± 0.05 d | 6.68 ± 0.18 a | 6.08 ± 0.09 b | 6.02 ± 0.12 b | 57.2 ± 2.24 bB | 51.9 ± 2.07 bB | 91.1 ± 3.80 aA | 90.3 ± 4.18 aA | |
50 | 2.69 ± 0.07 a | 1.42 ± 0.04 d | 1.04 ± 0.02 e | 2.67 ± 0.07 a | 2.26 ± 0.05 b | 2.09 ± 0.05 c | 52.6 ± 2.82 bBC | 38.7 ± 1.83 cC | 84.7 ± 4.25 aA | 78.3 ± 4.05 aB | |
25 | 1.35 ± 0.04 a | 0.66 ± 0.03 d | 0.35 ± 0.01 e | 1.34 ± 0.04 a | 0.83 ± 0.04 b | 0.78 ± 0.04 c | 49.3 ± 3.15 bC | 25.7 ± 1.54 cD | 62.1 ± 4.51 aB | 58.4 ± 4.31 aC | |
Gastrointestinal digestion | 500 | 26.94 ± 0.70 a | 20.84 ± 0.30 c | 19.32 ± 0.26 d | 26.70 ± 0.71 a | 24.64 ± 0.36 b | 23.97 ± 0.52 b | 77.4 ± 3.15 bA | 71.8 ± 2.83 bA | 92.3 ± 3.80 aA | 89.8 ± 4.33 aA |
375 | 20.20 ± 0.53 a | 15.49 ± 0.20 c | 14.03 ± 0.19 d | 20.03 ± 0.53 a | 18.37 ± 0.32 b | 17.96 ± 0.42 b | 76.7 ± 3.00 bA | 69.5 ± 2.74 bAB | 91.8 ± 4.04 aA | 89.7 ± 4.51 aA | |
250 | 13.47 ± 0.35 a | 10.18 ± 0.13 c | 8.93 ± 0.12 d | 13.35 ± 0.36 a | 11.65 ± 0.13 b | 11.08 ± 0.24 c | 75.6 ± 2.96 bA | 66.4 ± 2.60 cAB | 87.3 ± 3.30 abA | 83.1 ± 4.03 bAB | |
125 | 6.73 ± 0.18 a | 4.94 ± 0.09 c | 4.22 ± 0.05 d | 6.68 ± 0.18 a | 5.16 ± 0.08 bc | 5.33 ± 0.08 c | 73.4 ± 3.22 aA | 62.8 ± 2.33 bB | 77.3 ± 3.20 aB | 79.9 ± 3.27 aB | |
50 | 2.69 ± 0.07 a | 1.53 ± 0.03 b | 1.34 ± 0.02 c | 2.67 ± 0.07 a | 1.44 ± 0.04 bc | 1.36 ± 0.03 c | 56.8 ± 2.65 aB | 49.9 ± 2.09 bC | 54.0 ± 3.07 abC | 51.1 ± 2.41 bC | |
25 | 1.35 ± 0.04 a | 0.54 ± 0.03 b | 0.47 ± 0.02 b | 1.34 ± 0.04 a | 0.47 ± 0.02 b | 0.38 ± 0.02 c | 40.2 ± 3.46 aC | 34.8 ± 2.36 abD | 35.0 ± 2.41 abD | 28.8 ± 1.94 bD |
Sample /Dose | Ferric Reducing Antioxidant Power (mg TE/Dose) | Bioaccessibility (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PM | PM E | PM D | DE | DE E | DE D | PM E | PM D | DE E | DE D | ||
Gastric digestion | 500 | 51.18 ± 0.84 a | 26.37 ± 0.27 d | 32.50 ± 0.43 c | 50.16 ± 0.83 a | 39.32 ± 0.50 b | 39.53 ± 1.46 b | 51.5 ± 1.36 cA | 63.5 ± 1.88 bA | 78.4 ± 2.30 aA | 78.8 ± 4.22 aA |
375 | 38.38 ± 0.63 a | 18.83 ± 0.31 d | 23.55 ± 0.33 c | 37.62 ± 0.62 a | 29.17 ± 0.55 b | 29.65 ± 1.04 b | 49.1 ± 1.60 cAB | 61.4 ± 1.87 bA | 77.6 ± 2.74 aA | 78.9 ± 4.06 aA | |
250 | 25.59 ± 0.42 a | 11.98 ± 0.18 e | 15.26 ± 0.17 d | 25.08 ± 0.42 a | 18.67 ± 0.23 b | 19.76 ± 0.22 c | 46.9 ± 1.48 cAB | 59.7 ± 1.64 bA | 74.4 ± 2.15 aAB | 78.8 ± 2.19 aA | |
125 | 12.79 ± 0.21 a | 5.43 ± 0.07 f | 6.56 ± 0.09 e | 12.54 ± 0.21 a | 9.24 ± 0.10 d | 9.94 ± 0.26 c | 42.4 ± 1.23 cBC | 51.3 ± 1.52 bB | 73.7 ± 2.03 aAB | 79.3 ± 3.39 aA | |
50 | 5.12 ± 0.08 a | 2.03 ± 0.07 c | 2.26 ± 0.04 c | 5.02 ± 0.08 a | 3.43 ± 0.08 b | 3.57 ± 0.14 b | 39.7 ± 2.01 bC | 44.2 ± 1.44 bC | 68.5 ± 2.75 aB | 71.1 ± 3.98 aA | |
25 | 2.56 ± 0.04 a | 0.97 ± 0.07 c | 0.90 ± 0.02 c | 2.51 ± 0.04 a | 1.51 ± 0.06 b | 1.54 ± 0.05 b | 37.9 ± 3.17 bC | 35.2 ± 1.43 bD | 60.4 ± 3.26 aC | 61.5 ± 2.91 aB | |
Gastrointestinal digestion | 500 | 51.18 ± 0.84 a | 34.73 ± 1.10 c | 31.66 ± 0.42 d | 50.16 ± 0.83 a | 42.80 ± 0.59 b | 45.11 ± 1.48 b | 67.9 ± 3.26 bA | 61.9 ± 1.83 bA | 85.4 ± 2.60 aA | 90.0 ± 4.44 aA |
375 | 38.38 ± 0.63 a | 25.79 ± 0.30 d | 23.36 ± 0.28 e | 37.62 ± 0.62 a | 31.92 ± 0.47 c | 33.53 ± 0.91 b | 67.2 ± 1.89 bA | 60.9 ± 1.74 cA | 84.9 ± 2.66 aA | 89.2 ± 3.91 aA | |
250 | 25.59 ± 0.42 a | 16.19 ± 0.28 c | 15.03 ± 0.19 d | 25.08 ± 0.42 a | 21.09 ± 0.30 b | 21.70 ± 0.28 b | 63.3 ± 2.14 bAB | 58.8 ± 1.70 bA | 84.1 ± 2.58 aA | 86.6 ± 2.56 aA | |
125 | 12.79 ± 0.21 a | 7.73 ± 0.21 c | 6.44 ± 0.09 d | 12.54 ± 0.21 a | 9.23 ± 0.24 b | 9.22 ± 0.12 b | 60.4 ± 2.64 bB | 50.4 ± 1.51 cB | 73.6 ± 3.14 aB | 73.6 ± 2.16 aB | |
50 | 5.12 ± 0.08 a | 2.61 ± 0.07 c | 2.18 ± 0.04 d | 5.02 ± 0.08 a | 2.90 ± 0.08 b | 2.09 ± 0.16 c | 51.0 ± 2.20 bC | 42.7 ± 1.51 cC | 57.8 ± 2.56 aC | 41.6 ± 3.90 cC | |
25 | 2.56 ± 0.04 a | 0.83 ± 0.03 b | 0.85 ± 0.04 b | 2.51 ± 0.04 a | 0.69 ± 0.02 c | 0.52 ± 0.05 d | 32.5 ± 1.73 aD | 33.1 ± 1.94 aD | 27.7 ± 1.44 bD | 20.7 ± 2.49 cD |
Sample /Dose | ABTS•+ Antiradical Activity (mg TE/Dose) | Bioaccessibility (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PM | PM E | PM D | DE | DE E | DE D | PM E | PM D | DE E | DE D | ||
Gastric digestion | 500 | 74.61 ± 1.89 a | 32.77 ± 0.33 e | 37.42 ± 0.48 d | 74.46 ± 1.53 a | 59.16 ± 0.83 b | 51.08 ± 1.06 c | 43.9 ± 1.55 dA | 50.2 ± 1.91 cA | 79.5 ± 2.74 aA | 68.6 ± 2.83 bA |
375 | 55.96 ± 1.42 a | 24.49 ± 0.31 e | 27.97 ± 0.28 d | 55.85 ± 1.14 a | 44.22 ± 0.19 b | 37.81 ± 0.58 c | 43.8 ± 1.65 dA | 50.0 ± 1.77 cA | 79.2 ± 1.96 aA | 67.7 ± 2.42 bA | |
250 | 37.31 ± 0.94 a | 16.27 ± 0.18 e | 18.54 ± 0.22 d | 37.23 ± 0.76 a | 28.89 ± 0.30 b | 25.25 ± 0.57 c | 43.6 ± 1.58 dA | 49.7 ± 1.86 cA | 77.6 ± 2.40 aA | 67.8 ± 2.93 bA | |
125 | 18.65 ± 0.47 a | 7.65 ± 0.09 e | 8.87 ± 0.15 d | 18.62 ± 0.38 a | 15.05 ± 0.26 b | 12.69 ± 0.33 c | 41.1 ± 1.53 dAB | 47.6 ± 1.98 cAB | 80.9 ± 3.07 aA | 68.2 ± 3.16 bA | |
50 | 7.46 ± 0.19 a | 2.76 ± 0.06 e | 3.26 ± 0.06 d | 7.45 ± 0.15 a | 5.50 ± 0.11 b | 4.60 ± 0.13 c | 37.1 ± 1.78 dB | 43.7 ± 1.85 cB | 73.9 ± 2.93 aA | 61.9 ± 2.97 bA | |
25 | 3.73 ± 0.09 a | 1.31 ± 0.08 d | 1.32 ± 0.03 d | 3.72 ± 0.08 a | 2.42 ± 0.04 b | 1.87 ± 0.08 c | 35.2 ± 2.91 cB | 35.5 ± 1.83 cC | 65.0 ± 2.31 aB | 50.3 ± 3.12 bB | |
Gastrointestinal digestion | 500 | 74.61 ± 1.89 a | 54.13 ± 0.83 b | 50.16 ± 0.56 c | 74.46 ± 1.53 a | 48.41 ± 0.86 c | 51.57 ± 1.01 bc | 72.6 ± 2.95 aA | 67.3 ± 2.45 bA | 65.0 ± 2.49 bA | 69.3 ± 2.78 abA |
375 | 55.96 ± 1.42 a | 40.17 ± 0.60 b | 36.53 ± 0.30 c | 55.85 ± 1.14 a | 35.97 ± 0.46 c | 38.12 ± 0.60 bc | 71.8 ± 2.88 aA | 65.3 ± 2.19 bAB | 64.4 ± 2.14 cA | 68.3 ± 2.48 abA | |
250 | 37.31 ± 0.94 a | 25.81 ± 0.43 b | 23.42 ± 0.21 c | 37.23 ± 0.76 a | 23.52 ± 0.37 c | 25.18 ± 0.46 b | 69.2 ± 2.90 aA | 62.8 ± 2.14 aAB | 63.2 ± 2.28 aAB | 67.7 ± 2.61 aAB | |
125 | 18.65 ± 0.47 a | 12.80 ± 0.18 b | 10.80 ± 0.09 c | 18.62 ± 0.38 a | 11.85 ± 0.53 bc | 11.38 ± 0.24 c | 68.7 ± 2.72 aA | 57.9 ± 1.95 bB | 63.7 ± 4.16 abA | 61.2 ± 2.52 abBC | |
50 | 7.46 ± 0.19 a | 4.23 ± 0.10 b | 2.94 ± 0.10 c | 7.45 ± 0.15 a | 4.14 ± 0.09 b | 3.29 ± 0.12 c | 56.7 ± 2.78 aB | 39.5 ± 2.39 bC | 55.7 ± 2.36 aB | 44.3 ± 2.52 bC | |
25 | 3.73 ± 0.09 a | 1.72 ± 0.09 b | 1.18 ± 0.14 c | 3.72 ± 0.08 a | 1.51 ± 0.07 bc | 1.32 ± 0.06 c | 46.3 ± 3.52 aC | 31.7 ± 4.49 bD | 40.5 ± 2.80 abC | 35.4 ± 2.42 bD |
Extraction Step | Solvent Ratio by Volume per 1 Part of Initial Plant Material (v/w) | Time (min) | Temperature (°C) |
---|---|---|---|
I | 15 | 60 | 40 |
II | 10 | 30 | 40 |
III | 5 | 15 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sęczyk, Ł.; Kołodziej, B. Bioaccessibility of Rosmarinic Acid and Basil (Ocimum basilicum L.) Co-Compounds in a Simulated Digestion Model—The Influence of the Endogenous Plant Matrix, Dose of Administration and Physicochemical and Biochemical Digestion Environment. Molecules 2024, 29, 901. https://doi.org/10.3390/molecules29040901
Sęczyk Ł, Kołodziej B. Bioaccessibility of Rosmarinic Acid and Basil (Ocimum basilicum L.) Co-Compounds in a Simulated Digestion Model—The Influence of the Endogenous Plant Matrix, Dose of Administration and Physicochemical and Biochemical Digestion Environment. Molecules. 2024; 29(4):901. https://doi.org/10.3390/molecules29040901
Chicago/Turabian StyleSęczyk, Łukasz, and Barbara Kołodziej. 2024. "Bioaccessibility of Rosmarinic Acid and Basil (Ocimum basilicum L.) Co-Compounds in a Simulated Digestion Model—The Influence of the Endogenous Plant Matrix, Dose of Administration and Physicochemical and Biochemical Digestion Environment" Molecules 29, no. 4: 901. https://doi.org/10.3390/molecules29040901
APA StyleSęczyk, Ł., & Kołodziej, B. (2024). Bioaccessibility of Rosmarinic Acid and Basil (Ocimum basilicum L.) Co-Compounds in a Simulated Digestion Model—The Influence of the Endogenous Plant Matrix, Dose of Administration and Physicochemical and Biochemical Digestion Environment. Molecules, 29(4), 901. https://doi.org/10.3390/molecules29040901