Specific Recognition of β-Galactofuranose-Containing Glycans of Synthetic Neoglycoproteins by Sera of Chronic Chagas Disease Patients
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Oligosaccharides
3.2. Conjugation Protocol
3.3. Chemiluminescent ELISA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rassi, A., Jr.; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402. [Google Scholar] [CrossRef]
- PAHO/WHO Chagas Disease. Available online: https://www.paho.org/en/topics/chagas-disease (accessed on 1 December 2021).
- Urbina, J.A. Recent clinical trials for the etiological treatment of chronic Chagas disease: Advances, challenges and perspectives. J. Eukaryot. Microbiol. 2015, 62, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Bern, C. Chagas’ Disease. N. Engl. J. Med. 2015, 373, 456–466. [Google Scholar] [CrossRef]
- Alonso-Padilla, J.; Gallego, M.; Schijman, A.G.; Gascon, J. Molecular diagnostics for Chagas disease: Up to date and novel methodologies. Expert Rev. Mol. Diagn. 2017, 17, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Pinazo, M.J.; Thomas, M.C.; Bustamante, J.; Almeida, I.C.; Lopez, M.C.; Gascon, J. Biomarkers of therapeutic responses in chronic Chagas disease: State of the art and future perspectives. Mem. Inst. Oswaldo Cruz 2015, 110, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Almeida, I.C.; Covas, D.T.; Soussumi, L.M.; Travassos, L.R. A highly sensitive and specific chemiluminescent enzyme-linked immunosorbent assay for diagnosis of active Trypanosoma cruzi infection. Transfusion 1997, 37, 850–857. [Google Scholar] [CrossRef]
- Caballero, Z.C.; Sousa, O.E.; Marques, W.P.; Saez-Alquezar, A.; Umezawa, E.S. Evaluation of serological tests to identify Trypanosoma cruzi infection in humans and determine cross-reactivity with Trypanosoma rangeli and Leishmania spp. Clin. Vaccine Immunol. 2007, 14, 1045–1049. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Padilla, J.; Cortes-Serra, N.; Pinazo, M.J.; Bottazzi, M.E.; Abril, M.; Barreira, F.; Sosa-Estani, S.; Hotez, P.J.; Gascon, J. Strategies to enhance access to diagnosis and treatment for Chagas disease patients in Latin America. Expert Rev. Anti Infect. Ther. 2019, 17, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Milani, S.R.; Travassos, L.R. Anti-alpha-galactosyl antibodies in chagasic patients. Possible biological significance. Braz. J. Med. Biol. Res. Rev. Bras. De Pesqui. Med. E Biol. 1988, 21, 1275–1286. [Google Scholar]
- Avila, J.L.; Rojas, M.; Galili, U. Immunogenic Gal alpha 1----3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J. Immunol. 1989, 142, 2828–2834. [Google Scholar]
- Almeida, I.C.; Milani, S.R.; Gorin, P.A.; Travassos, L.R. Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J. Immunol. 1991, 146, 2394–2400. [Google Scholar]
- Almeida, I.C.; Ferguson, M.A.J.; Schenkman, S.; Travassos, L.R. Lytic anti-α-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosylphosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem. J. 1994, 304, 793–802. [Google Scholar] [CrossRef]
- Torrico, F.; Gascon, J.; Ortiz, L.; Alonso-Vega, C.; Pinazo, M.J.; Schijman, A.; Almeida, I.C.; Alves, F.; Strub-Wourgaft, N.; Ribeiro, I.; et al. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: A proof-of-concept, randomised, placebo-controlled trial. Lancet Infect. Dis. 2018, 18, 419–430. [Google Scholar] [CrossRef]
- Torrico, F.; Gascon, J.; Barreira, F.; Blum, B.; Almeida, I.C.; Alonso-Vega, C.; Barboza, T.; Bilbe, G.; Correia, E.; Garcia, W. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): A phase 2, double-blind, randomised trial. Lancet Infect. Dis. 2021, 21, 1129–1140. [Google Scholar] [CrossRef]
- Alonso-Vega, C.; Urbina, J.A.; Sanz, S.; Pinazo, M.J.; Pinto, J.J.; Gonzalez, V.R.; Rojas, G.; Ortiz, L.; Garcia, W.; Lozano, D. New chemotherapy regimens and biomarkers for Chagas disease: The rationale and design of the TESEO study, an open-label, randomised, prospective, phase-2 clinical trial in the Plurinational State of Bolivia. BMJ Open 2021, 11, e052897. [Google Scholar] [CrossRef] [PubMed]
- Galili, U.; Rachmilewitz, E.A.; Peleg, A.; Flechner, I. A Unique Natural Human IgG Antibody With Anti-Alpha-Galactosyl Specificity. J. Exp. Med. 1984, 160, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- Schnaidman, B.B.; Yoshida, N.; Gorin, P.A.; Travassos, L.R. Cross-reactive polysaccharides from Trypanosoma cruzi and fungi (especially Dactylium dendroides). J. Protozool. 1986, 33, 186–191. [Google Scholar] [CrossRef]
- De Arruda, M.V.; Colli, W.; Zingales, B. Terminal beta-D-galactofuranosyl epitopes recognized by antibodies that inhibit Trypanosoma cruzi internalization into mammalian cells. Eur. J. Biochem. 1989, 182, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Golgher, D.B.; Colli, W.; Souto-Padrón, T.; Zingales, B. Galactofuranose-containing glycoconjugates of epimastigote and trypomastigote forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1993, 60, 249–264. [Google Scholar] [CrossRef]
- McConville, M.J.; Ferguson, M.A.J. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 1993, 294, 305–324. [Google Scholar] [CrossRef] [PubMed]
- McNeil, M.; Wallner, S.J.; Hunter, S.W.; Brennan, P.J. Demonstration that the galactosyl and arabinosyl residues in the cell-wall arabinogalactan of Mycobacterium leprae and Mycobacterium tuberculosis are furanoid. Carbohydr. Res. 1987, 166, 299–308. [Google Scholar] [CrossRef]
- Mamat, U.; Seydel, U.; Grimmecke, D.; Holst, O.; Rietschel, E.T. Comprehensive Natural Products Chemistry; Elsevier: Barking, UK, 1999; Volume 3. [Google Scholar]
- Marino, C.; Rinflerch, A.; de Lederkremer, R.M. Galactofuranose antigens, a target for diagnosis of fungal infections in humans. Future Sci. OA 2017, 3, Fso199. [Google Scholar] [CrossRef]
- Previato, J.O.; Wait, R.; Jones, C.; DosReis, G.A.; Todeschini, A.R.; Heise, N.; Previato, L.M. Glycoinositolphospholipid from Trypanosoma cruzi: Structure, biosynthesis and immunobiology. Adv. Parasitol. 2004, 56, 1–41. [Google Scholar]
- De Lederkremer, R.M.; Agusti, R. Glycobiology of Trypanosoma cruzi. Adv. Carbohydr. Chem. Biochem. 2009, 62, 311–366. [Google Scholar]
- De Lederkremer, R.M.; Colli, W. Galactofuranose-containing glycoconjugates in trypanosomatids. Glycobiology 1995, 5, 547–552. [Google Scholar] [CrossRef]
- Previato, J.O.; Gorin, P.A.J.; Mazurek, M.; Xavier, M.T.; Fournet, B.; Wieruszesk, J.M.; Mendonca-Previato, L. Primary structure of the oligosaccharide chain of lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. J. Biol. Chem. 1990, 265, 2518–2526. [Google Scholar] [CrossRef]
- De Lederkremer, R.M.; Lima, C.; Ramirez, M.I.; Ferguson, M.A.J.; Homans, S.W.; Thomas-Oates, J. Complete Structure of the Glycan of Lipopeptidophosphoglycan from Trypanosoma cruzi Epimastigotes. J. Biol. Chem. 1991, 266, 23670–23675. [Google Scholar] [CrossRef]
- Mendonca-Previato, L.; Penha, L.; Garcez, T.C.; Jones, C.; Previato, J.O. Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj. J. 2013, 30, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, I.C.; Camargo, M.M.; Procópio, D.O.; Silva, L.S.; Mehlert, A.; Travassos, L.R.; Gazzinelli, R.T.; Ferguson, M.A. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. Embo J. 2000, 19, 1476–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travassos, L.R.; Almeida, I.C. Carbohydrate immunity in American trypanosomiasis. Springer Semin. Immunopathol. 1993, 15, 183–204. [Google Scholar] [CrossRef]
- Almeida, I.C.; Krautz, G.M.; Krettli, A.U.; Travassos, L.R. Glycoconjugates of Trypanosoma cruzi: A 74 kD antigen of trypomastigotes specifically reacts with lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas disease. J. Clin. Lab. Anal. 1993, 7, 307–316. [Google Scholar] [CrossRef]
- Serrano, A.A.; Schenkman, S.; Yoshida, N.; Mehlert, A.; Richardson, J.M.; Ferguson, M.A.J. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J. Biol. Chem. 1995, 270, 27244–27253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgi, M.E.; de Lederkremer, R.M. The Glycan Structure of T. cruzi mucins Depends on the Host. Insights on the Chameleonic Galactose. Molecules 2020, 25, 3913. [Google Scholar] [CrossRef]
- Güther, M.L.; de Almeida, M.L.; Yoshida, N.; Ferguson, M.A. Structural studies on the glycosylphosphatidylinositol membrane anchor of Trypanosoma cruzi 1G7-antigen. The structure of the glycan core. J. Biol. Chem. 1992, 267, 6820–6828. [Google Scholar] [CrossRef]
- Couto, A.S.; De Lederkremer, R.M.; Colli, W.; Alves, M.J. The glycosylphosphatidylinositol anchor of the trypomastigote-specific Tc-85 glycoprotein from Trypanosoma cruzi. Metabolic-labeling and structural studies. Eur. J. Biochem. 1993, 217, 597–602. [Google Scholar] [CrossRef]
- Previato, J.O.; Jones, C.; Xavier, M.T.; Wait, R.; Travassos, L.R.; Parodi, A.J.; Mendonça-Previato, L. Structural characterization of the major glycosylphosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain. J. Biol. Chem. 1995, 270, 7241–7250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreira, J.C.; Jones, C.; Wait, R.; Previato, J.O.; Mendonca-Previato, L. Structural variation in the glycoinositolphospholipids of different strains of Trypanosoma cruzi. Glycoconj. J. 1996, 13, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Montoya, A.L.; Austin, V.M.; Portillo, S.; Vinales, I.; Ashmus, R.A.; Estevao, I.; Jankuru, S.R.; Alraey, Y.; Al-Salem, W.S.; Acosta-Serrano, Á.; et al. Reversed Immunoglycomics Identifies α-Galactosyl-Bearing Glycotopes Specific for Leishmania major Infection. JACS Au 2021, 1, 1275–1287. [Google Scholar] [CrossRef]
- Randell, K.D.; Johnston, B.D.; Brown, P.N.; Pinto, B.M. Synthesis of galactofuranosyl-containing oligosaccharides corresponding to the glycosylinositolphospholipid of Trypanosoma cruzi. Carbohydr. Res. 2000, 325, 253–264. [Google Scholar] [CrossRef]
- Gandolfi-Donadio, L.; Gallo-Rodriguez, C.; de Lederkremer, R.M. Synthesis of alpha-D-Galp-(1-->3)-beta-D-Galf-(1-->3)-D-man, a terminal trisaccharide of Leishmania type-2 glycoinositolphospholipids. J. Org. Chem. 2002, 67, 4430–4435. [Google Scholar] [CrossRef]
- Ruda, K.; Lindberg, J.; Garegg, P.J.; Oscarson, S.; Konradsson, P. Synthesis of the Leishmania LPG Core Heptasaccharyl myo-Inositol. J. Am. Chem. Soc. 2000, 122, 11067–11072. [Google Scholar] [CrossRef]
- Hederos, M.; Konradsson, P. Synthesis of the Trypanosoma cruzi LPPG Heptasaccharyl myo-Inositol. J. Am. Chem. Soc. 2006, 128, 3414–3419. [Google Scholar] [CrossRef]
- Completo, G.C.; Lowary, T.L. Synthesis of galactofuranose-containing acceptor substrates for mycobacterial galactofuranosyltransferases. J. Org. Chem. 2008, 73, 4513–4525. [Google Scholar] [CrossRef]
- Winnik, F.M.; Carver, J.P.; Krepinsky, J.J. Syntheses of Model Oligosaccharides of Biological Significance. 2. Synthesis of a Tetramannoside and of Two Lyxose-Containing Trisaccharides. J. Org. Chem. 1982, 47, 2701–2707. [Google Scholar] [CrossRef]
- Ashmus, R.A.; Schocker, N.S.; Cordero-Mendoza, Y.; Marques, A.F.; Monroy, E.Y.; Pardo, A.; Izquierdo, L.; Gállego, M.; Gascon, J.; Almeida, I.C. Potential use of synthetic α-galactosyl-containing glycotopes of the parasite Trypanosoma cruzi as diagnostic antigens for Chagas disease. Org. Biomol. Chem. 2013, 11, 5579–5583. [Google Scholar] [CrossRef]
- Schocker, N.S.; Portillo, S.; Brito, C.R.; Marques, A.F.; Almeida, I.C.; Michael, K. Synthesis of Galα(1,3)Galβ(1,4)GlcNAcα-, Galβ(1,4)GlcNAcα- and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease. Glycobiology 2016, 26, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Schocker, N.S.; Portillo, S.; Ashmus, R.A.; Brito, C.R.N.; Silva, I.E.; Cordero-Mendoza, Y.; Marques, A.F.; Monroy, E.Y.; Pardo, A.; Izquierdo, L. Probing for Trypanosoma cruzi cell surface glycobiomarkers for the diagnosis and follow-up of chemotherapy of Chagas disease. In Coupling and Decoupling of Diverse Molecular Units in Glycosciences; Witzczak, Z.J., Bielski, R., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 195–211. [Google Scholar]
- Frey, A.; Di Canzio, J.; Zurakowski, D. A statistically defined endpoint titer determination method for immunoassays. J. Immunol. Methods 1998, 221, 35–41. [Google Scholar] [CrossRef]
- Greiner, M.; Pfeiffer, D.; Smith, R.D. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 2000, 45, 23–41. [Google Scholar] [CrossRef]
- De Lederkremer, R.M.; Bertello, L.E. Glycoinositolphospholipids, free and as anchors of proteins, in Trypanosoma cruzi. Curr. Pharm. Des. 2001, 7, 1165–1179. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. 2018, 184, 38–52. [Google Scholar] [CrossRef]
- Zingales, B.; Miles, M.A.; Campbell, D.A.; Tibayrenc, M.; Macedo, A.M.; Teixeira, M.M.G.; Schijman, A.G.; Llewellyn, M.S.; Lages-Silva, E.; Machado, C.R. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 2012, 12, 240–253. [Google Scholar] [CrossRef]
- Martinez-Perez, A.; Poveda, C.; Ramirez, J.D.; Norman, F.; Girones, N.; Guhl, F.; Monge-Maillo, B.; Fresno, M.; Lopez-Velez, R. Prevalence of Trypanosoma cruzi’s Discrete Typing Units in a cohort of Latin American migrants in Spain. Acta Trop. 2016, 157, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Krettli, A.U.; Brener, Z. Resistance against Trypanosoma cruzi associated to anti-living trypomastigote antibodies. J. Immunol. 1982, 128, 2009–2012. [Google Scholar]
- Krettli, A.U.; Cancado, J.R.; Brener, Z. Effect of specific chemotherapy on the levels of lytic antibodies in Chagas’s disease. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 334–340. [Google Scholar] [CrossRef]
- Galvao, L.M.; Nunes, R.M.; Cancado, J.R.; Brener, Z.; Krettli, A.U. Lytic antibody titre as a means of assessing cure after treatment of Chagas disease: A 10 years follow-up study. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 220–223. [Google Scholar] [CrossRef]
- Krautz, G.M.; Kissinger, J.C.; Krettli, A.U. The targets of the lytic antibody response against Trypanosoma cruzi. Parasitol. Today 2000, 16, 31–34. [Google Scholar] [CrossRef]
- Mendonca-Previato, L.; Todeschini, A.R.; Heise, N.; Previato, J.O. Protozoan parasite-specific carbohydrate structures. Curr. Opin. Struct. Biol. 2005, 15, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Rodriguez, U.; Portillo, S.; Ashmus, R.A.; Duran, J.A.; Schocker, N.S.; Iniguez, E.; Montoya, A.L.; Zepeda, B.G.; Olivas, J.J.; Karimi, N.H. Purification of glycosylphosphatidylinositol-anchored mucins from Trypanosoma cruzi trypomastigotes and synthesis of α-Gal-containing neoglycoproteins: Application as biomarkers for reliable diagnosis and early assessment of chemotherapeutic outcomes of Chagas disease. Methods Mol. Biol. 2019, 1955, 287–308. [Google Scholar]
- Lopez, R.; Giorgi, M.E.; Melgarejo, L.T.; Ducrey, I.; Balouz, V.; Gonzalez-Salas, D.; Camara, M.L.M.; Buscaglia, C.A.; de Lederkremer, R.M.; Marino, C. Synthesis and characterization of alpha-d-Galp-(1-->3)-beta-d-Galp epitope-containing neoglycoconjugates for chagas disease serodiagnosis. Carbohydr. Res. 2019, 478, 58–67. [Google Scholar] [CrossRef]
Disease/Control | n | NGP29b | NGP32b | ||
---|---|---|---|---|---|
Positive | Negative | Positive | Negative | ||
Pre-TG-ROC Analysis | |||||
CCD | 75 | 60 | 15 | 65 | 10 |
H | 15 | 3 | 12 | 1 | 14 |
Post-TG-ROC Analysis | |||||
CCD | 75 | 59 | 16 | 64 | 11 |
H | 15 | 1 | 14 | 0 | 15 |
Parameter | NGP29b | NGP32b | ||
---|---|---|---|---|
Pre-TG-ROC | Post-TG-ROC | Pre-TG-ROC | Post-TG-ROC | |
% | ||||
Sensitivity | 80.0 | 78.7 | 86.7 | 85.3 |
Specificity | 80.0 | 93.3 | 93.3 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, A.L.; Gil, E.R.; Heydemann, E.L.; Estevao, I.L.; Luna, B.E.; Ellis, C.C.; Jankuru, S.R.; Alarcón de Noya, B.; Noya, O.; Zago, M.P.; et al. Specific Recognition of β-Galactofuranose-Containing Glycans of Synthetic Neoglycoproteins by Sera of Chronic Chagas Disease Patients. Molecules 2022, 27, 411. https://doi.org/10.3390/molecules27020411
Montoya AL, Gil ER, Heydemann EL, Estevao IL, Luna BE, Ellis CC, Jankuru SR, Alarcón de Noya B, Noya O, Zago MP, et al. Specific Recognition of β-Galactofuranose-Containing Glycans of Synthetic Neoglycoproteins by Sera of Chronic Chagas Disease Patients. Molecules. 2022; 27(2):411. https://doi.org/10.3390/molecules27020411
Chicago/Turabian StyleMontoya, Alba L., Eileni R. Gil, Emily L. Heydemann, Igor L. Estevao, Bianca E. Luna, Cameron C. Ellis, Sohan R. Jankuru, Belkisyolé Alarcón de Noya, Oscar Noya, Maria Paola Zago, and et al. 2022. "Specific Recognition of β-Galactofuranose-Containing Glycans of Synthetic Neoglycoproteins by Sera of Chronic Chagas Disease Patients" Molecules 27, no. 2: 411. https://doi.org/10.3390/molecules27020411
APA StyleMontoya, A. L., Gil, E. R., Heydemann, E. L., Estevao, I. L., Luna, B. E., Ellis, C. C., Jankuru, S. R., Alarcón de Noya, B., Noya, O., Zago, M. P., Almeida, I. C., & Michael, K. (2022). Specific Recognition of β-Galactofuranose-Containing Glycans of Synthetic Neoglycoproteins by Sera of Chronic Chagas Disease Patients. Molecules, 27(2), 411. https://doi.org/10.3390/molecules27020411