Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa italica Retz
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic and Flavonoids Content
2.2. Antioxidant Activity
2.2.1. Reducing Power Test
2.2.2. Scavenging of the Free Radical DPPH
2.2.3. Total Antioxidant Capacity
2.3. Antimicrobial Studies
Determination of the Antimicrobial Activity of the Extracts
3. Materials and Methods
3.1. Plant Material
3.2. Determination of the Phenolic Content
3.3. Determination of the Flavonoid Content
3.4. Antioxidant Tests
3.4.1. Reducing Power Test
3.4.2. Free Radical Scavenging Capacity
- A0: Absorbance of the solution (DPPH) without the extracts.
- A: Absorbance of the solution (DPPH) with the extracts.
3.4.3. Total Antioxidant Capacity
3.5. Antimicrobial Activity of Anchusa italica Retz
3.5.1. Agar Disk Diffusion
- Not sensitive: DIZ was lower than 8 mm
- Sensitive: DIZ was between 9 and 14 mm
- Very sensitive: DIZ was between 15 and 19 mm
- Extremely sensitive: DIZ was superior then 20 mm
3.5.2. Minimum Inhibitory Concentration (MIC)
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kraft, K. Complementary/Alternative Medicine in the Context of Prevention of Disease and Maintenance of Health. Prev. Med. 2009, 49, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.I.M.; Hussain, F.H.S.; Gilardoni, G.; Thu, Z.M.; Clericuzio, M.; Vidari, G. Phytochemistry of Verbascum Species Growing in Iraqi Kurdistan and Bioactive Iridoids from the Flowers of Verbascum Calvum. Plants 2020, 9, 1066. [Google Scholar] [CrossRef]
- Hussain, F.H.S.; Osw, P.S. Isolation of Kaempferol 3-O-Rutinoside From Kurdish Plant Anchusa Italica Retz. and Bioactivity of Some Extracts. Eur. J. Mol. Clin. Med. 2020, 7, 2465–2480. [Google Scholar]
- Hussain, F.H.S.; Ahamad, J.; Osw, P.S. A Comprehensive Review on Pharmacognostical and Pharmacological Characters of Anchusa Azurea. Adv. Med. Dent. Health Sci. 2019, 3, 33–37. [Google Scholar] [CrossRef]
- Michel, T. Nouvelles Méthodologies d’Extraction, de Fractionnement et d’Identification: Application Aux Molécules Bioactives de l’Argousier (Hippophae Rhamnoides). Ph.D. Thesis, Université d’Orléans, Orléans, France, 2011. [Google Scholar]
- Mssillou, I.; Agour, A.; El Ghouizi, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition, Antioxidant Activity, and Antifungal Effects of Essential Oil from Laurus Nobilis, L. Flowers Growing in Morocco. J. Food Qual. 2020, 2020. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H. Flora Europaea: Plantaginaceae to Compositae (and Rubiaceae); Cambridge University Press: Cambridge, UK, 1964; Volume 4. [Google Scholar]
- Al-Mussawy, A.H. Plant Taxonomy, Ministry of Higher Education and Scientific Research, 1st ed.; Baghdad University: Baghdad, Iraq, 1987. [Google Scholar]
- Chiej, R. The Macdonald Encyclopedia of Medicinal Plants; Macdonald & Co (Publishers) Ltd.: Granville, OH, USA, 1984. [Google Scholar]
- Aikemu, A.; Amat, N.; Yusup, A.; Shan, L.; Qi, X.; Upur, H. Attenuation Effect of Abnormal Savda Munziq on Liver and Heart Toxicity Caused by Chemotherapy in Mice. Exp. Ther. Med. 2016, 12, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Upur, H.; Yusup, A.; Umar, A.; Moore, N. Uighur Traditional Medicine Syndrome of Abnormal Savda in Men Is Associated with Oxidative Stress, Which Can Be Improved by Munziq and Mushil of Abnormal Savda. Therapie 2004, 59, 483–484. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The Pharmacology of Anchusa Italica and Anchusa Strigosa—A Review. Int. J. Pharm. Pharm. Sci. 2014, 6, 7–10. [Google Scholar]
- Kočevar Glavač, N.; Lunder, M. Preservative Efficacy of Selected Antimicrobials of Natural Origin in a Cosmetic Emulsion. Int. J. Cosmet. Sci. 2018, 40, 276–284. [Google Scholar] [CrossRef]
- Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M.; Imtara, H.; Mechchate, H.; Es-Safi, I.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; et al. Anacyclus pyrethrum (L.): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules 2020, 25, 5469. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, K.; Deng, X.; Fu, Z.; Chen, D.; Wang, Q. Anti-Complementary Constituents of Anchusa italica. Nat. Prod. Res. 2017, 31, 2572–2574. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-K.; Xie, Z.-J.; Dai, W.; Wang, Q. A New Oleanolic-Type Triterpene Glycoside from Anchusa italica. Nat. Prod. Res. 2017, 31, 959–965. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Song, J.; Wang, R.; Gao, L.; Zhang, L.; Fang, L.; Lu, Y.; Du, G. Total Flavonoids from Anchusa italica Retz. Improve Cardiac Function and Attenuate Cardiac Remodeling Post Myocardial Infarction in Mice. J. Ethnopharmacol. 2020, 257, 112887. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.H.S. Inductively Coupled Plasma-Optical Emission Spectrometric Determination of Some Elements from Anchusa azurea Mill. Collected in Iraqi Kurdistan Region. Eurasian J. Sci. Eng. 2020, 6, 21–30. [Google Scholar]
- López-Martínez, J.C.; Campra-Madrid, P.; Rincón-Cervera, M.Á.; Guil-Guerrero, J.L. Ecological and Simultaneous Seed Oil Extraction/Saponification/γ-Linolenic Acid Concentration. Eur. J. Lipid Sci. Technol. 2005, 107, 180–186. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Maroto, F.F.G.; Giménez, A.G. Fatty Acid Profiles from Forty-Nine Plant Species That Are Potential New Sources of γ-Linolenic Acid. J. Am. Oil Chem. Soc. 2001, 78, 677–684. [Google Scholar] [CrossRef]
- Conforti, F.; Marrelli, M.; Carmela, C.; Menichini, F.; Valentina, P.; Uzunov, D.; Statti, G.A.; Duez, P.; Menichini, F. Bioactive Phytonutrients (Omega Fatty Acids, Tocopherols, Polyphenols), in Vitro Inhibition of Nitric Oxide Production and Free Radical Scavenging Activity of Non-Cultivated Mediterranean Vegetables. Food Chem. 2011, 129, 1413–1419. [Google Scholar] [CrossRef]
- Alali, F.Q.; Tawaha, K.; El-Elimat, T.; Syouf, M.; El-Fayad, M.; Abulaila, K.; Nielsen, S.J.; Wheaton, W.D.; Iii, J.O.F.; Oberlies, N.H. Antioxidant Activity and Total Phenolic Content of Aqueous and Methanolic Extracts of Jordanian Plants: An ICBG Project. Nat. Prod. Res. 2007, 21, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Ce, L.; Ch, P. Effects of Developmental Acclimation on Adult Salinity Tolerance in the Freshwater-Invading Copepod Eurytemora affinis. Physiol. Biochem. Zool. PBZ 2003, 76, 296–301. [Google Scholar] [CrossRef] [Green Version]
- Sakanaka, S.; Tachibana, Y.; Okada, Y. Preparation and Antioxidant Properties of Extracts of Japanese Persimmon Leaf Tea (Kakinoha-Cha). Food Chem. 2005, 89, 569–575. [Google Scholar] [CrossRef]
- Jawhari, F.Z.; Moussaoui, A.E.L.; Bourhia, M.; Imtara, H.; Saghrouchni, H.; Ammor, K.; Ouassou, H.; Elamine, Y.; Ullah, R.; Ezzeldin, E.; et al. Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts. Plants 2021, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, M.; Aydoğmuş-Öztürk, F.; Duru, M.E.; Topçu, G. Antioxidant Activity of Stem and Root Extracts of Rhubarb (Rheum ribes): An Edible Medicinal Plant. Food Chem. 2007, 103, 623–630. [Google Scholar] [CrossRef]
- Touzani, S.; Imtara, H.; Katekhaye, S.; Mechchate, H.; Ouassou, H.; Alqahtani, A.S.; Noman, O.M.; Nasr, F.A.; Fearnley, H.; Fearnley, J.; et al. Determination of Phenolic Compounds in Various Propolis Samples Collected from an African and an Asian Region and Their Impact on Antioxidant and Antibacterial Activities. Molecules 2021, 26, 4589. [Google Scholar] [CrossRef] [PubMed]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols as Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Kuruuzum-Uz, A.; Güvenalp, Z.; Kazaz, C.; Salih, B.; Demirezer, L. Four New Triterpenes from Anchusa azurea Var. Azurea. Helv. Chim. Acta 2010, 93. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J.; Marin, F.R.; Ortuño, A.; Del Río, J.A. Uses and Properties of Citrus Flavonoids. J. Agric. Food Chem. 1997, 45, 4505–4515. [Google Scholar] [CrossRef]
- Trueba, G.P.; Sanchez, G.M. Los Flavonoides Como Antioxidantes Naturales. Acta Farm Bonaer. 2001, 20, 297–306. [Google Scholar]
- Yang, J.; Guo, J.; Yuan, J. In Vitro Antioxidant Properties of Rutin. LWT-Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Nehir El, S.; Karakaya, S. Radical Scavenging and Iron-Chelating Activities of Some Greens Used as Traditional Dishes in Mediterranean Diet. Int. J. Food Sci. Nutr. 2004, 55, 67–74. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Albu, C.; Savin, S.; Radu, G.L. In Vitro Evaluation of Antidiabetic and Anti-Inflammatory Activities of Polyphenolic-Rich Extracts from Anchusa officinalis and Melilotus officinalis. ACS Omega 2020, 5, 13014–13022. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.; Hernandez, L.; Pereda-Miranda, R.; Mata, R. Screening for Antimicrobial Activity of Crude Drug Extracts and Pure Natural Products from Mexican medicinal Plants. J. Ethnopharmacol. 1992, 35, 275–283. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Liang, T.; QiZhen, W.; GuiZhi, M. Simultaneous determination of 3 constituents in Anchusa italica Retz. by HPLC under double-wavelength. Northwest Pharm. J. 2018, 33, 28–32. [Google Scholar]
- Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal Catechins Damage the Lipid Bilayer. Biochim. Biophys. Acta BBA-Biomembr. 1993, 1147, 132–136. [Google Scholar] [CrossRef]
- Baghiani, A.; Boussoualim, N.; Trabsa, H.; Aouachria, S.; Arrar, L. In Vivo Free Radical Scavenging, Antihemolytic Activity and Antibacterial Effects of Anchusa Azurea Extracts. Int. J. Med. Med. Sci. 2013, 46, 1113–1118. [Google Scholar]
- Bakour, M.; Campos, M.D.G.; Imtara, H.; Lyoussi, B. Antioxidant Content and Identification of Phenolic/Flavonoid Compounds in the Pollen of Fourteen Plants Using HPLC-DAD. J. Apic. Res. 2020, 59, 35–41. [Google Scholar] [CrossRef]
- Yang, J.-F.; Yang, C.-H.; Wu, C.-C.; Chuang, L.-Y. Antioxidant and Antimicrobial Activities of the Extracts from Sophora flavescens. J. Pharmacogn. Phytochem. 2015, 3, 26–31. [Google Scholar]
- Daraghmeh, J.; Imtara, H. In Vitro Evaluation of Palestinian Propolis as a Natural Product with Antioxidant Properties and Antimicrobial Activity against Multidrug-Resistant Clinical Isolates. J. Food Qual. 2020, 2020, e8861395. [Google Scholar] [CrossRef]
- Sadeq, O.; Mechchate, H.; Es-safi, I.; Bouhrim, M.; Jawhari, F.Z.; Ouassou, H.; Kharchoufa, L.; Al Zain, M.N.; Alzamel, N.M.; Al kamaly, O.M.; et al. Phytochemical Screening, Antioxidant and Antibacterial Activities of Pollen Extracts from Micromeria fruticosa, Achillea fragrantissima, and Phoenix dactylifera. Plants 2021, 10, 676. [Google Scholar] [CrossRef]
- Maskovic, P.; Manojlovic, N.; Mandic, A.; Misan, A.; Milovanovic, I.; Radojkovic, M.; Cvijovic, M.; Solujic, S. Phytochemical Screening and Biological Activity of Extracts of Plant Species Halacsya sendtneri (Boiss.) Dörfl. Hem. Ind. 2012, 66, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Kara, M.; Assouguem, A.; Kamaly, O.M.A.; Benmessaoud, S.; Imtara, H.; Mechchate, H.; Hano, C.; Zerhouni, A.R.; Bahhou, J. The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples. Molecules 2021, 26, 5437. [Google Scholar] [CrossRef] [PubMed]
- El Moussaoui, A.; Jawhari, F.Z.; Almehdi, A.M.; Elmsellem, H.; Fikri Benbrahim, K.; Bousta, D.; Bari, A. Antibacterial, Antifungal and Antioxidant Activity of Total Polyphenols of Withania frutescens L. Bioorganic Chem. 2019, 93, 103337. [Google Scholar] [CrossRef] [PubMed]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and Antioxidant Properties of the Essential Oils and Methanol Extract from Mentha longifolia, L. ssp. longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
Extract | IC50 (µg/mL) |
---|---|
Roots | 0.11 bc ± 0.01 |
Leaves | 1.44 a ± 0.06 |
Ascorbic acid | 0.12 b ± 0.01 |
BHT | 0.03 c ± 0.00 |
Extract | IC50 (µg/mL) |
---|---|
Roots | 0.11 d ± 0.00 |
Leaves | 0.14 c ± 0.01 |
Ascorbic acid | 0.16 b ± 0.01 |
BHT | 0.20 a ± 0.00 |
Quercetin | 0.05 e ± 0.00 |
Extract | TAC (mg AAE/g Extract) |
---|---|
Roots | 0.98 a ± 0.28 |
Leaves | 0.51 b ± 0.01 |
Bacteria Strains | Diameter of Inhibition Zones (mm) | |
---|---|---|
Root Extract | Leaf Extract | |
E. coli (ATB: 57) B6N | 13.67 a ± 0.58 | 11.67 b ± 0.58 |
E. coli (ATB: 97) BGM | 15.00 a ± 1.00 | 12.33 b ± 1.15 |
K. pnemonia (ESBL-KP) | 11.33 b ± 0.58 | 12.67 a ± 0.58 |
Klebsiella pneumoniae sensible | 11.00 b ± 1.00 | 13.67 a ± 0.58 |
coagulase-negative staphylococci | 16.00 a ± 1.00 | 13.67 a ± 1.15 |
C. albicans | 12.67 a ± 0.58 | 13.67 a ± 1.15 |
E. coli (ESBL) | 12.67 a ± 0.58 | 13.33 a ± 0.58 |
E. coli sensible | 13.67 a ± 0.58 | 14.33 a ± 0.58 |
Bacteria Strains | Concentration mg/mL | |
---|---|---|
Root Extract | Leaf Extract | |
E.coli (ATP: 57) B6N | 10.00 | 05.00 |
E. coli (ATP: 97) BGM | 10.00 | 10.00 |
K. pnemoniae (ESBL-KP) | 20.00 | 20.00 |
Klebsiella pneumoniae sensible | 20.00 | 20.00 |
coagulase-negative staphylococci | 10.00 | 10.00 |
C. albicans | 20.00 | 20.00 |
E. coli (ESBL) | 10.00 | 10.00 |
E. coli sensible | 10.00 | 10.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomsi, M.E.; Imtara, H.; Kara, M.; Hmamou, A.; Assouguem, A.; Bourkhiss, B.; Tarayrah, M.; AlZain, M.N.; Alzamel, N.M.; Noman, O.; et al. Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa italica Retz. Molecules 2022, 27, 416. https://doi.org/10.3390/molecules27020416
Khomsi ME, Imtara H, Kara M, Hmamou A, Assouguem A, Bourkhiss B, Tarayrah M, AlZain MN, Alzamel NM, Noman O, et al. Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa italica Retz. Molecules. 2022; 27(2):416. https://doi.org/10.3390/molecules27020416
Chicago/Turabian StyleKhomsi, Mostafa El, Hamada Imtara, Mohammed Kara, Anouar Hmamou, Amine Assouguem, Brahim Bourkhiss, Mahmoud Tarayrah, Mashail N. AlZain, Nurah M. Alzamel, Omar Noman, and et al. 2022. "Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa italica Retz" Molecules 27, no. 2: 416. https://doi.org/10.3390/molecules27020416
APA StyleKhomsi, M. E., Imtara, H., Kara, M., Hmamou, A., Assouguem, A., Bourkhiss, B., Tarayrah, M., AlZain, M. N., Alzamel, N. M., Noman, O., & Hmouni, D. (2022). Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa italica Retz. Molecules, 27(2), 416. https://doi.org/10.3390/molecules27020416