Authentication of Iranian Saffron (Crocus sativus) Using Stable Isotopes δ13C and δ2H and Metabolites Quantification
Abstract
:1. Introduction
2. Results
2.1. Naturality of Safranal
2.2. Comparison of Stable Isotope Ratios from Safranal and Saffron Metabolites between Countries
2.3. Explorative PCA before Geographical Discrimination
2.4. Linear and Quadratic Discriminant Analyses
2.4.1. Iran Versus Other Origins
2.4.2. Iran and Spain Versus Other Origins
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Saffron Samples
4.3. Adultered Saffron Samples
4.4. UHPLC-DAD Analysis
4.5. Isotopic Analysis
4.5.1. EA-IRMS Analysis
4.5.2. Extraction Procedure
4.5.3. GC-C/P-IRMS Analysis
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dewan, R. Bronze Age Flower Power: The Minoan Use and Social Significance of Saffron and Crocus Flowers. Chron. Vol. V 2015, 42, 42–55. [Google Scholar]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus Sativus L.), the King of Spices: An Overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- Shahnoushi, N.; Abolhassani, L.; Kavakebi, V.; Reed, M.; Saghaian, S. Chapter 21-Economic Analysis of Saffron Production. In Saffron; Koocheki, A., Khajeh-Hosseini, M., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 337–356. ISBN 978-0-12-818638-1. [Google Scholar]
- Mohammadi, H.; Reed, M. Saffron Marketing: Challenges and Opportunities; INC: Mashhad, Iran, 2020; ISBN 9780128186381. [Google Scholar]
- Jafari, S.-M.; Tsimidou, M.Z.; Rajabi, H.; Kyriakoudi, A. Chapter 16-Bioactive Ingredients of Saffron: Extraction, Analysis, Applications. In Saffron; Koocheki, A., Khajeh-Hosseini, M., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 261–290. ISBN 978-0-12-818638-1. [Google Scholar]
- Kashani, L.; Raisi, F.; Saroukhani, S.; Sohrabi, H.; Modabbernia, A.; Nasehi, A.A.; Jamshidi, A.; Ashrafi, M.; Mansouri, P.; Ghaeli, P.; et al. Saffron for Treatment of Fluoxetine-Induced Sexual Dysfunction in Women: Randomized Double-Blind Placebo-Controlled Study. Hum. Psychopharmacol. Clin. Exp. 2013, 28, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Modabbernia, A.; Sohrabi, H.; Nasehi, A.A.; Raisi, F.; Saroukhani, S.; Jamshidi, A.; Tabrizi, M.; Ashrafi, M.; Akhondzadeh, S. Effect of Saffron on Fluoxetine-Induced Sexual Impairment in Men: Randomized Double-Blind Placebo-Controlled Trial. Psychopharmacology 2012, 223, 381–388. [Google Scholar] [CrossRef]
- Noorbala, A.A.; Akhondzadeh, S.; Tahmacebi-Pour, N.; Jamshidi, A.H. Hydro-Alcoholic Extract of Crocus Sativus L. versus Fluoxetine in the Treatment of Mild to Moderate Depression: A Double-Blind, Randomized Pilot Trial. J. Ethnopharmacol. 2005, 97, 281–284. [Google Scholar] [CrossRef]
- Agha-Hosseini, M.; Kashani, L.; Aleyaseen, A.; Ghoreishi, A.; Rahmanpour, H.; Zarrinara, A.R.; Akhondzadeh, S. Crocus Sativus L. (Saffron) in the Treatment of Premenstrual Syndrome: A Double-Blind, Randomised and Placebo-Controlled Trial. BJOG 2008, 115, 515–519. [Google Scholar] [CrossRef]
- Maggi, M.A.; Bisti, S.; Picco, C. Saffron: Chemical Composition and Neuroprotective Activity. Molecules 2020, 25, 5618. [Google Scholar] [CrossRef]
- Safarinejad, M.R.; Shafiei, N.; Safarinejad, S. An Open Label, Randomized, Fixed-Dose, Crossover Study Comparing Efficacy and Safety of Sildenafil Citrate and Saffron (Crocus Sativus Linn. ) for Treating Erectile Dysfunction in Men Naive to Treatment. Int. J. Impot. Res. 2010, 22, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Akhondzadeh, S.; Sabet, M.S.; Harirchian, M.H.; Togha, M.; Cheraghmakani, H.; Razeghi, S.; Hejazi, S.S.; Yousefi, M.H.; Alimardani, R.; Jamshidi, A.; et al. Saffron in the Treatment of Patients with Mild to Moderate Alzheimer’s Disease: A 16-Week, Randomized and Placebo-Controlled Trial. J. Clin. Pharm. Ther. 2010, 35, 581–588. [Google Scholar] [CrossRef]
- Papandreou, M.A.; Tsachaki, M.; Efthimiopoulos, S.; Cordopatis, P.; Lamari, F.N.; Margarity, M. Memory Enhancing Effects of Saffron in Aged Mice Are Correlated with Antioxidant Protection. Behav. Brain Res. 2011, 219, 197–204. [Google Scholar] [CrossRef]
- Jackson, P.A.; Forster, J.; Khan, J.; Pouchieu, C.; Dubreuil, S.; Gaudout, D.; Moras, B.; Pourtau, L.; Joffre, F.; Vaysse, C.; et al. Effects of Saffron Extract Supplementation on Mood, Well-Being, and Response to a Psychosocial Stressor in Healthy Adults: A Randomized, Double-Blind, Parallel Group, Clinical Trial. Front. Nutr. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- De Oliveira, C.M.; Pourtau, L.; Vancassel, S.; Pouchieu, C.; Capuron, L.; Gaudout, D.; Castanon, N. Saffron Extract-Induced Improvement of Depressive-like Behavior in Mice Is Associated with Modulation of Monoaminergic Neurotransmission. Nutrients 2021, 13, 904. [Google Scholar] [CrossRef]
- Gregory, M.J.; Menary, R.C.; Davies, N.W. Effect of Drying Temperature and Air Flow on the Production and Retention of Secondary Metabolites in Saffron. J. Agric. Food Chem. 2005, 53, 5969–5975. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Karimi, G.; Niapoor, M. Antidepressant Effect of Crocus Sativus L. Stigma Extracts and Their Constituents, Crocin and Safranal, in Mice. In Proceedings of the 1st International Symposium on Saffron Biology and Biotechnolgy, Albacete, Spain, 22–25 October 2003; Fernandez, J.A., Abdullaev, F., Eds.; International Society Horticultural Science: Leuven, Belgium, 2004; pp. 435–445. [Google Scholar]
- Nazari, S.H.; Keifi, N. Saffron and Various Fraud Manners in Its Production and Trades. Acta Hortic. 2007, 739, 411–416. [Google Scholar] [CrossRef]
- Marieschi, M.; Torelli, A.; Bruni, R. Quality Control of Saffron (Crocus Sativus L. ): Development of SCAR Markers for the Detection of Plant Adulterants Used as Bulking Agents. J. Agric. Food Chem. 2012, 60, 10998–11004. [Google Scholar] [CrossRef]
- Currais, A.; Prior, M.; Dargusch, R.; Armando, A.; Ehren, J.; Schubert, D.; Quehenberger, O.; Maher, P. Modulation of P25 and Inflammatory Pathways by Fisetin Maintains Cognitive Function in Alzheimer’s Disease Transgenic Mice. Aging Cell 2014, 13, 379–390. [Google Scholar] [CrossRef]
- Koocheki, A.; Milani, E. Chapter 20-Saffron Adulteration. In Saffron; Koocheki, A., Khajeh-Hosseini, M., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 321–334. ISBN 978-0-12-818638-1. [Google Scholar]
- Petrakis, E.A.; Cagliani, L.R.; Polissiou, M.G.; Consonni, R. Evaluation of Saffron (Crocus Sativus L.) Adulteration with Plant Adulterants by 1H NMR Metabolite Fingerprinting. Food Chem. 2015, 173, 890–896. [Google Scholar] [CrossRef]
- Carmona, M.; Zalacain, A.; Sánchez, A.M.; Novella, J.L.; Alonso, G.L. Crocetin Esters, Picrocrocin and Its Related Compounds Present in Crocus Sativus Stigmas and Gardenia Jasminoides Fruits. Tentative Identification of Seven New Compounds by LC-ESI-MS. J. Agric. Food Chem. 2006, 54, 973–979. [Google Scholar] [CrossRef]
- Moras, B.; Loffredo, L.; Rey, S. Quality Assessment of Saffron (Crocus Sativus L.) Extracts via UHPLC-DAD-MS Analysis and Detection of Adulteration Using Gardenia Fruit Extract (Gardenia Jasminoides Ellis). Food Chem. 2018, 257, 325–332. [Google Scholar] [CrossRef]
- García-Rodríguez, M.V.; López-Córcoles, H.; Alonso, G.L.; Pappas, C.S.; Polissiou, M.G.; Tarantilis, P.A. Comparative Evaluation of an ISO 3632 Method and an HPLC-DAD Method for Safranal Quantity Determination in Saffron. Food Chem. 2017, 221, 838–843. [Google Scholar] [CrossRef]
- Wakefield, J.; McComb, K.; Ehtesham, E.; Van Hale, R.; Barr, D.; Hoogewerff, J.; Frew, R. Chemical Profiling of Saffron for Authentication of Origin. Food Control 2019, 106, 106699. [Google Scholar] [CrossRef]
- Perini, M.; Pianezze, S.; Strojnik, L.; Camin, F. C and H Stable Isotope Ratio Analysis Using Solid-Phase Microextraction and Gas Chromatography-Isotope Ratio Mass Spectrometry for Vanillin Authentication. J. Chromatogr. A 2019, 1595, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Semiond, D.; Dautraix, S.; Desage, M.; Majdalani, R.; Casabianca, H.; Brazier, J.L. Identification and Isotopic Analysis of Safranal from Supercritical Fluid Extraction and Alcoholic Extracts of Saffron. Anal. Lett. 1996, 29, 1027–1039. [Google Scholar] [CrossRef]
- Maggi, L.; Carmona, M.; Kelly, S.D.; Marigheto, N.; Alonso, G.L. Geographical Origin Differentiation of Saffron Spice (Crocus Sativus L.Stigmas)-Preliminary Investigation Using Chemical and Multi-Element (H, C, N) Stable Isotope Analysis. Food Chem. 2011, 128, 543–548. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Giannitto, A.; Maggi, M.A.; Ruggieri, F. Geographical Classification of Italian Saffron (Crocus Sativus L.) Based on Chemical Constituents Determined by High-Performance Liquid-Chromatography and by Using Linear Discriminant Analysis. Food Chem. 2016, 212, 110–116. [Google Scholar] [CrossRef]
- Butzenlechner, M.; Rossmann, A.; Schmidt, H.L. Assignment of Bitter Almond Oil to Natural and Synthetic Sources by Stable Isotope Ratio Analysis. J. Agric. Food Chem. 1989, 37, 410–412. [Google Scholar] [CrossRef]
- Cuchet, A.; Anchisi, A.; Telouk, P.; Yao, Y.; Schiets, F.; Fourel, F.; Clément, Y.; Lantéri, P.; Carénini, E.; Jame, P.; et al. Multi-Element (13C, 2H and 34S) Bulk and Compound-Specific Stable Isotope Analysis for Authentication of Allium Species Essential Oils. Food Control 2021, 126, 108086. [Google Scholar] [CrossRef]
- Avula, B.; Katragunta, K.; Wang, Y.-H.; Upton, R.; Khan, I.A. Analysis of Crocetins and Safranal Variations in Saffron (Crocus Sativus) Stigma Samples and Dietary Supplements Using HPLC/UHPLC-PDA-MS: Chemical Profiling and Chemometric Analysis Using LC-QToF. Food Anal. Methods 2022, 15, 2238–2259. [Google Scholar] [CrossRef]
Synthetic/Natural Safranal | 0 | 0.25% | 0.5% | 0.75% | 1% |
---|---|---|---|---|---|
δ2H ratio | −221 ± 3 | −172 ± 4 | −126 ± 4 | −110 ± 3 | −89 ± 5 |
δ13C ratio | −26.19 ± 0.11 | −25.98 ± 0.12 | −25.79 ± 0.08 | −25.69 ± 0.10 | −25.52 ± 0.09 |
Iran (N = 20) | Spain (N = 9) | Other Area (N = 12) | |||||
---|---|---|---|---|---|---|---|
Median | IQ Range | Median | IQ Range | Median | IQ Range | p Value * | |
δ13C | −28.62 a,b | 0.90 | −30.12 a | 2.74 | −30.70 b | 2.80 | 0.0002 |
δ2H | −227.75 | 25.25 | −236.50 | 9.0 | −236.50 | 31.50 | 0.8 |
Total crocin | 20.61 a,b | 2.61 | 15.60 a | 0.98 | 16.28 b | 7.91 | 0.0004 |
Crocin C3 * | 11.31 a,b | 1.07 | 8.13 a | 0.87 | 9.21 b | 4.73 | 0.0001 |
Picrocrocin derivative | 8.10 a | 1.10 | 10.80 a | 1.82 | 7.81 | 4.27 | 0.001 |
Picrocrocin | 7.84 a | 1.05 | 10.66 a | 1.83 | 7.73 | 4.34 | 0.0009 |
Crocin C5 * | 4.98 a | 0.75 | 4.18 a | 0.73 | 4.55 | 2.52 | 0.006 |
Crocin C8 * | 1.82 a,b | 0.18 | 1.29 a | 0.22 | 1.28 b | 0.62 | 0.002 |
Crocin C7 * | 1.01 | 0.21 | 1.12 | 0.41 | 0.77 | 0.40 | 0.02 |
Kaempferol derivative | 0.97 | 0.12 | 0.93 | 0.12 | 0.88 | 0.09 | 0.1 |
Flavonoid F5 * | 0.67 a | 0.06 | 0.56 | 0.18 | 0.49 a | 0.13 | 0.02 |
Flavonoid F1 * | 0.29 a,b | 0.06 | 0.33 a | 0.07 | 0.36 b | 0.11 | 0.0005 |
HTCC | 0.31 a,b | 0.08 | 0.13 a | 0.07 | 0.17 b | 0.15 | 0.001 |
Crocin C1 * | 0.22 | 0.05 | 0.21 | 0.04 | 0.19 | 0.09 | 0.7 |
Safranal | 0.17 | 0.08 | 0.18 | 0.03 | 0.14 | 0.11 | 0.6 |
Crocin C6 * | 0.23 | 0.08 | 0.23 | 0.15 | 0.12 | 0.15 | 0.04 |
Crocin C11 * | 0.17 a,b | 0.07 | 0.10 a | 0.03 | 0.12 b | 0.04 | 0.007 |
Crocin C10 * | 0.03 | 0.04 | 0.01 | 0.01 | 0.02 | 0.01 | 0.2 |
Crocin C4 * | 0.11 | 0.14 | 0.13 | 0.02 | 0.10 | 0.09 | 0.3 |
Crocin C2 * | 0.10 a | 0.03 | 0.02 a,b | 0.01 | 0.07 b | 0.06 | <0.0001 |
Crocin C13 * | 0.05 | 0.02 | 0.05 | 0.02 | 0.05 | 0.04 | 0.4 |
Crocin C9 * | 0.02 | 0.06 | 0.01 | 0.01 | 0.01 | 0.04 | 0.4 |
Crocin C12 * | 0.04 a,b | 0.08 | 0.01 a | 0.01 | 0.02 b | 0.02 | 0.0001 |
Crocin C14 * | 0.04 | 0.02 | 0.04 | 0.02 | 0.03 | 0.03 | 0.3 |
Picrocrocin P1 * | 0.03 a | 0.01 | 0.01 a,b | 0.00 | 0.02 b | 0.04 | 0.001 |
trans-Crocetin | 0.03 a,b | 0.00 | 0.01 a | 0.00 | 0.01 b | 0.01 | <0.0001 |
Classification Matrix | Prediction Matrix | ||||
---|---|---|---|---|---|
Assigned Class | Assigned Class | ||||
True class | Iran | Other area | Iran | Other area | |
Iran | 20 | 0 | 17 | 3 | |
Other area | 0 | 21 | 1 | 20 | |
% of correct classification | 100 | 100 | 85 | 95 | |
Total ability 90.24% |
Classification Matrix | ||||
---|---|---|---|---|
Assigned Class | ||||
True class | Iran | Spain | Other area | |
Iran | 20 | 0 | 0 | |
Spain | 0 | 8 | 0 | |
Other area | 0 | 0 | 12 | |
% of correct classification Total ability: 100% | 100 | 100 | 100 | |
Prediction matrix | ||||
Assigned class | ||||
True class | Iran | Spain | Other area | |
Iran | 17 | 0 | 3 | |
Spain | 0 | 4 | 4 | |
Other area | 0 | 0 | 12 | |
% of correct classification | 85 | 100 | 50 | |
Total ability: 82.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moras, B.; Pouchieu, C.; Gaudout, D.; Rey, S.; Anchisi, A.; Saupin, X.; Jame, P. Authentication of Iranian Saffron (Crocus sativus) Using Stable Isotopes δ13C and δ2H and Metabolites Quantification. Molecules 2022, 27, 6801. https://doi.org/10.3390/molecules27206801
Moras B, Pouchieu C, Gaudout D, Rey S, Anchisi A, Saupin X, Jame P. Authentication of Iranian Saffron (Crocus sativus) Using Stable Isotopes δ13C and δ2H and Metabolites Quantification. Molecules. 2022; 27(20):6801. https://doi.org/10.3390/molecules27206801
Chicago/Turabian StyleMoras, Benjamin, Camille Pouchieu, David Gaudout, Stéphane Rey, Anthony Anchisi, Xavier Saupin, and Patrick Jame. 2022. "Authentication of Iranian Saffron (Crocus sativus) Using Stable Isotopes δ13C and δ2H and Metabolites Quantification" Molecules 27, no. 20: 6801. https://doi.org/10.3390/molecules27206801
APA StyleMoras, B., Pouchieu, C., Gaudout, D., Rey, S., Anchisi, A., Saupin, X., & Jame, P. (2022). Authentication of Iranian Saffron (Crocus sativus) Using Stable Isotopes δ13C and δ2H and Metabolites Quantification. Molecules, 27(20), 6801. https://doi.org/10.3390/molecules27206801