Changes in Chemical Composition of Flaxseed Oil during Thermal-Induced Oxidation and Resultant Effect on DSC Thermal Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oxidation of Flaxseed Oil
2.2. Fatty Acid Composition
2.3. Triacylglycerol Composition
2.4. Thermal Properties
2.4.1. Cooling Profiles
2.4.2. Melting Profiles
2.5. Statistical Correlation between Chemical Composition and Thermal Properties
3. Materials and Methods
3.1. Materials
3.2. Oil Extraction by Cold Pressing
3.3. Oxidation of Flaxseed Oil
3.4. Peroxide Value
3.5. Specific Extinction
3.6. Total Polar Compounds (TPC)
3.7. Fatty Acid Composition
3.8. Triacylglycerol Composition
3.9. Thermal Analysis
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Xiao, T.; Ni, X.; Wei, T.; Liu, X.; Deng, Z.Y.; Li, J. The comparative analysis of different oil extraction methods based on the quality of flaxseed oil. J. Food Compost. Anal. 2022, 107, 104373. [Google Scholar] [CrossRef]
- Kouamé, K.J.E.P.; Bora, A.F.M.; Li, X.; Sun, Y.; Liu, L. Novel trends and opportunities for microencapsulation of flaxseed oil in foods: A review. J. Funct. Foods 2021, 87, 104812. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Siger, A.; Rudzińska, M.; Bamber, W. Effect of roasting on flaxseed oil quality and stability. J. Am. Oil Chem. Soc. 2020, 97, 637–649. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Weng, W.; Yang, H.; Li, B. Effect of roasting on flaxseed oil quality and stability Characteristics and application of fish oil-in-water pickering emulsions structured with tea water-insoluble proteins/κ-carrageenan complexes. Food Hydrocoll. 2021, 114, 106562. [Google Scholar] [CrossRef]
- Nasrabadi, M.N.; Doost, A.S.; Goli, S.A.H.; Van der Meeren, P. Effect of thymol and Pickering stabilization on in-vitro digestion fate and oxidation stability of plant-derived flaxseed oil emulsions. Food Chem. 2020, 311, 125872. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, X.; Qu, Z.; Gao, Y.; Li, Q.; Yu, X. Mechanism, indexes, methods, challenges, and perspectives of edible oil oxidation analysis. Crit. Rev. Food Sci. Nutr. 2021, 1–15. [Google Scholar] [CrossRef]
- Choo, W.S.; Birch, E.J.; Dufour, J.P. Physicochemical and stability characteristics of flaxseed oils during pan-heating. J. Am. Oil Chem. Soc. 2007, 84, 735–740. [Google Scholar] [CrossRef]
- Yuan, J.; Kerr, B.J.; Curry, S.M.; Chen, C. Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil. J. Anim. Sci. Biotechnol. 2020, 11, 49. [Google Scholar] [CrossRef]
- Ciprioti, S.V.; Paciulli, M.; Chiavaro, E. Application of different thermal analysis techniques to characterize oxidized olive oils. Eur. J. Lipid Sci. Technol. 2017, 119, 1600074. [Google Scholar] [CrossRef]
- Li, B.-Z.; Truong, T.; Bhandari, B. Crystallization and melting properties of mixtures of milk fat stearin and omega-3 rich oils. Food Chem. 2017, 218, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosratpour, M.; Wang, Y.; Woo, M.W.; Selomulya, C. Characterisation of thermal and structural behaviour of lipid blends composed of fish oil and milkfat. Food Res. Int. 2020, 137, 109377. [Google Scholar] [CrossRef] [PubMed]
- Vittadini, E.; Lee, J.H.; Frega, N.G.; Min, D.B.; Vodovotz, Y. DSC determination of thermally oxidized olive oil. J. Am. Oil Chem. Soc. 2003, 80, 533–537. [Google Scholar] [CrossRef]
- Chiavaro, E.; Rodriguez-Estrada, M.T.; Vittadini, E.; Pellegrini, N. Microwave heating of different vegetable oils: Relation between chemical and thermal parameters. LWT-Food Sci. Technol. 2010, 43, 1104–1112. [Google Scholar] [CrossRef]
- Tan, C.P.; Che Man, Y.B. Recent developments in differential scanning calorimetry for assessing oxidative deterioration of vegetable oils. Trends Food Sci. Technol. 2002, 13, 312–318. [Google Scholar] [CrossRef]
- Maggio, R.M.; Cerretani, L.; Barnaba, C.; Chiavaro, E. Application of differential scanning calorimetry-chemometric coupled procedure to the evaluation of thermo-oxidation on extra virgin olive oil. Food Biophys. 2012, 7, 114–123. [Google Scholar] [CrossRef]
- Qi, B.; Zhang, Q.; Sui, X.; Wang, Z.; Li, Y.; Jiang, L. Differential scanning calorimetry study--Assessing the influence of composition of vegetable oils on oxidation. Food Chem. 2016, 194, 601–607. [Google Scholar] [CrossRef]
- Al-Khusaibi, M.; Al-Habsi, N.A.; Al-Yamani, S.A.; Al-Khamis, A.S.; Al-Shuhaimi, I.; Rahman, M.S. Possibility of using low-field nuclear magnetic resonance (LF-NMR) and differential scanning calorimetry (DSC) to monitor frying oil degradation. J. Food Sci. Tech. Mys. 2022. [Google Scholar] [CrossRef]
- Nosratpour, M.; Kochan, K.; Ma, J.; Wang, Y.; Wood, B.R.; Haritos, V.S.; Selomulya, C. Fatty acid distribution and polymorphism in solid lipid particles of milkfat and long chain omega-3 fatty acids. Food Chem. 2022, 381, 132245. [Google Scholar] [CrossRef]
- Shao, D.; Venkitasamy, C.; Li, X.; Pan, Z.; Shi, J.; Wang, B.; Teh, H.E.; McHugh, T.H. Thermal and storage characteristics of tomato seed oil. LWT-Food Sci. Technol. 2015, 63, 191–197. [Google Scholar] [CrossRef]
- Condori, M.A.V.; Chagman, G.J.P.; Barriga-Sanchez, M.; Vilchez, L.F.V.; Ursetta, S.; Perez, A.G.; Hidalgo, A. Effect of tomato (Solanum lycopersicum L.) lycopene-rich extract on the kinetics of rancidity and shelf-life of linseed (Linum usitatissimum L.) oil. Food Chem. 2020, 302, 125327. [Google Scholar] [CrossRef] [PubMed]
- Gloria, H.; Aguilera, J.M. Assessment of the quality of heated oils by differential scanning calorimetry. J. Agric. Food Chem. 1998, 46, 1363–1368. [Google Scholar] [CrossRef]
- Multari, S.; Marsol-Vall, A.; Heponiemi, P.; Suomela, J.P.; Yang, B. Changes in the volatile profile, fatty acid composition and other markers of lipid oxidation of six different vegetable oils during short-term deep-frying. Food Res. Int. 2019, 122, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-S.; Li, D.; Zhang, L.X. Effect of heating on the fatty acid composition and oxidation products of flaxseed oil. Asian J. Chem. 2013, 25, 10082–10086. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Liu, Y.L.; Che, L.M. Effects of different drying methods on the extraction rate and qualities of oils from demucilaged flaxseed. Dry Technol. 2018, 36, 1642–1652. [Google Scholar] [CrossRef]
- Choo, W.S.; Birch, J.; Dufour, J.P. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J. Food Compost. Anal. 2007, 20, 202–211. [Google Scholar] [CrossRef]
- Feng, X.; Tjia, J.Y.Y.; Zhou, Y.; Liu, Q.; Fu, C.; Yang, H. Effects of tocopherol nanoemulsion addition on fish sausage properties and fatty acid oxidation. LWT-Food Sci. Technol. 2020, 118, 108737. [Google Scholar] [CrossRef]
- Cheong, A.M.; Tan, C.P.; Nyam, K.L. Physicochemical, oxidative and anti-oxidant stabilities of kenaf seed oil-in-water nanoemulsions under different storage temperatures. Ind. Crops Prod. 2017, 95, 374–382. [Google Scholar] [CrossRef]
- Ali, M.A.; Islam, M.A.; Othman, N.H.; Noor, A.M. Effect of heating on oxidation stability and fatty acid composition of microwave roasted groundnut seed oil. J. Food Sci. Technol. 2017, 54, 4335–4343. [Google Scholar]
- Affes, M.; Fakhfakh, J.; Ayadi, M.; Allouche, N. Characterization of Linum usitatissimum L. used in Tunisia as food crop. J. Food Meas. Charact. 2016, 11, 781–791. [Google Scholar] [CrossRef]
- Yoshida, H.; Tomiyama, Y.; Hirakawa, Y.; Mizushina, Y. Microwave roasting effects on the oxidative stability of oils and molecular species of triacylglycerols in the kernels of pumpkin (Cucurbita spp.) seeds. J. Food Compost. Anal. 2006, 19, 330–339. [Google Scholar] [CrossRef]
- Teh, S.S.; Birch, J. Physicochemical and quality characteristics of cold-pressed hemp, flax and canola seed oils. J. Food Compost. Anal. 2013, 30, 26–31. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Nolasco, S.M.; Tomás, M.C. Oxidative stability of chia (Salvia hispanica L.) seed oil: Effect of antioxidants and storage conditions. J. Am. Oil Chem. Soc. 2012, 89, 1077–1090. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Li, Y.; Zhang, N.; Gao, Y.; Yu, X. The formation, determination and health implications of polar compounds in edible oils: Current status, challenges and perspectives. Food Chem. 2021, 364, 130451. [Google Scholar] [CrossRef] [PubMed]
- Arturo-Perdomo, D.; Mora, J.P.J.; Ibáñez, E.; Cifuentes, A.; Hurtado-Benavides, A.; Montero, L. Extraction and characterization of the polar lipid fraction of blackberry and passion fruit seeds oils using supercritical fluid extraction. Food Anal. Methods 2021, 14, 2026–2037. [Google Scholar] [CrossRef]
- Chiavaro, E.; Rodriguez-Estrada, M.T.; Bendini, A.; Rinaldi, M.; Cerretani, L. Differential scanning calorimetry thermal properties and oxidative stability indices of microwave heated extra virgin olive oils. J. Sci. Food Agric. 2021, 91, 198–206. [Google Scholar] [CrossRef]
- Nicholson, R.A.; Mazzanti, G.; Marangoni, A.G. Crystallization and Melting Behavior of Mixtures of Pure Monoacylglycerols and Diacylglycerols. Cryst. Growth Des. 2021, 22, 414–427. [Google Scholar] [CrossRef]
- Ferraris, Q.; Qian, M.C. Direct ethanolic extraction of polar lipids and fractional crystallization from whey protein phospholipid concentrate. JDS Commun. 2021, 2, 177–181. [Google Scholar] [CrossRef]
- Akil, E.; Castelo-Branco, V.N.; Costa, A.M.M.; do Amaral Vendramini, A.L.; Calado, V.; Torres, A.G. Oxidative stability and changes in chemical composition of extra virgin olive oils after short-term deep-frying of french fries. J. Am. Oil Chem. Soc. 2015, 92, 409–421. [Google Scholar] [CrossRef]
- Tolstorebrov, I.; Eikevik, T.M.; Bantle, M. A DSC determination of phase transitions and liquid fraction in fish oils and mixtures of triacylglycerides. Food Res. Int. 2014, 58, 132–140. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- ISO:3656; Animal and Vegetable Fats and Oils: Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction. International Organization for Standardization: Geneva, Switzerland, 2011.
- An, K.J.; Liu, Y.L.; Liu, H.L. Relationship between total polar components and polycyclic aromatic hydrocarbons in fried edible oil. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-S.; Liu, Y.L.; Che, L.M. Characterization of a new α-linolenic acid-rich oil: Eucommia ulmoides seed oil. J. Food Sci. 2018, 83, 617–623. [Google Scholar] [CrossRef] [PubMed]
Indices | Heating Time (h) | ||
---|---|---|---|
0 | 2 | 4 | |
Peroxide value (meq O2/kg) | 6.64 ± 0.76 c | 67.24 ± 0.88 b | 76.80 ± 1.42 a |
K232 | 2.43 ± 0.15 c | 24.55 ± 0.08 b | 35.95 ± 0.11 a |
K268 | 0.45 ± 0.03 c | 4.90 ± 0.03 b | 14.68 ± 0.07 a |
TPC (%) | 5.04 ± 1.15 c | 30.78 ± 2.30 b | 52.45 ± 1.78 a |
Fatty acids (relative content, %) | |||
C16:0 (palmitic acid) | 5.21 ± 0.02 c | 5.65 ± 0.01 b | 6.35 ± 0.10 a |
C18:0 (stearic acid) | 3.80 ± 0.13 c | 4.27 ± 0.05 b | 4.82 ± 0.04 a |
C18:1 (oleic acid) | 15.56 ± 0.14 c | 16.73 ± 0.04 b | 18.42 ± 0.17 a |
C18:2 (linoleic acid) | 17.48 ± 0.04 b | 17.78 ± 0.05 ab | 18.05 ± 0.15 a |
C18:3 (linolenic acid) | 57.96 ± 0.34 a | 55.58 ± 0.04 b | 52.37 ± 0.45 c |
SFA | 9.00 ± 0.16 c | 9.92 ± 0.04 b | 11.17 ± 0.13 a |
MUFA | 15.56 ± 0.14 c | 16.73 ± 0.04 b | 18.42 ± 0.17 a |
PUFA | 75.44 ± 0.30 a | 73.36 ± 0.01 b | 70.42 ± 0.30 c |
P/S | 8.38 ± 0.18 a | 7.40 ± 0.03 b | 6.31 ± 0.10 c |
TAG Composition (Relative Content, %) | Heating Time (h) | ||
---|---|---|---|
0 | 2 | 4 | |
LnLnLn | 32.24 ± 0.35 a | 27.59 ± 0.70 b | 24.43 ± 0.91 c |
LnLnL | 20.49 ± 0.13 a | 19.39 ± 0.21 b | 16.85 ± 0.43 c |
LnLL | 5.06 ± 0.09 a | 4.48 ± 0.04 b | 5.05 ± 0.18 a |
LnLnO | 14.38 ± 0.11 a | 13.44 ± 0.15 b | 13.22 ± 0.44 b |
LnLnP | 6.76 ± 0.07 b | 5.96 ± 0.03 c | 7.14 ± 0.15 a |
LLL | 0.73 ± 0.00 a | 0.71 ± 0.04 a | 0.76 ± 0.06 a |
LnOL | 5.65 ± 0.01 c | 7.56 ± 0.08 b | 8.05 ± 0.18 a |
LnPL | 2.19 ± 0.01 c | 2.80 ± 0.05 b | 2.94 ± 0.06 a |
LnLnS | 3.60 ± 0.03 b | 3.72 ± 0.04 b | 4.44 ± 0.10 a |
OLL | 0.80 ± 0.02 b | 1.38 ± 0.01 a | 1.36 ± 0.04 a |
OOLn | 3.39 ± 0.05 c | 5.47 ± 0.10 b | 6.11 ± 0.13 a |
POLn | 2.83 ± 0.08 c | 4.28 ± 0.01 b | 4.70 ± 0.10 a |
OOL | 0.49 ± 0.01 c | 0.77 ± 0.03 b | 1.25 ± 0.03 a |
SLL | 0.29 ± 0.04 c | 0.72 ± 0.03 b | 0.94 ± 0.02 a |
POL | 0.71 ± 0.05 b | 0.76 ± 0.04 b | 1.25 ± 0.03 a |
OOO | 0.20 ± 0.02 c | 0.55 ± 0.03 b | 0.76 ± 0.01 a |
POO + SSLn | 0.18 ± 0.02 c | 0.43 ± 0.03 b | 0.75 ± 0.01 a |
TUTAG | 83.43 ± 0.17 a | 81.34 ± 0.13 b | 77.84 ± 0.48 c |
DUTAG | 16.56 ± 0.28 c | 18.67 ± 0.14 b | 22.16 ± 0.47 a |
Parameters | Heating Time (h) | ||
---|---|---|---|
0 | 2 | 4 | |
Cooling curves | |||
Tpeak 1 (°C) | −15.30 ± 0.11 a | −16.50 ± 0.06 b | −17.70 ± 0.35 c |
Tpeak 2 (°C) | −40.45 ± 0.47 a | −41.55 ± 0.68 a | −40.90 ± 0.26 a |
Tpeak 3 (°C) | −63.66 ± 0.17 | - | - |
Ton (°C) | −12.39 ± 0.01 a | −13.63 ± 0.30 b | −14.46 ± 0.07 c |
Toff (°C) | −69.15 ± 0.17 b | −61.13 ± 2.21 a | −60.40 ± 2.33 a |
ΔT (°C) | 56.77 ± 0.18 a | 47.50 ± 2.52 b | 45.94 ± 2.40 b |
ΔH (J/g) | 42.22 ± 0.38 a | 9.50 ± 0.02 b | 8.84 ± 1.03 b |
Melting curves | |||
Tpeak 1 (°C) | −38.39 ± 0.04 a | −54.47 ± 0.07 b | −54.33 ± 0.11 b |
Tpeak 2 (°C) | −32.43 ± 0.01 a | −30.94 ± 0.05 a | −34.77 ± 1.15 b |
Tpeak 3 (°C) | −24.81 ± 0.30 a | −25.38 ± 0.50 a | −25.41 ± 0.01 a |
Tpeak 4 (°C) | −12.67 ± 0.81 a | −12.06 ± 0.24 a | −12.94 ± 0.33 a |
Ton (°C) | −48.02 ± 0.52 a | −62.77 ± 0.01 b | −64.30 ± 0.62 c |
Toff (°C) | −6.93 ± 0.04 a | −6.27 ± 0.13 a | −5.35 ± 0.88 a |
ΔT (°C) | 41.09 ± 0.48 b | 56.50 ± 0.14 a | 58.95 ± 1.50 a |
ΔH (J/g) | 55.97 ± 0.45 a | 19.80 ± 0.57 b | 12.42 ± 0.13 c |
Cooling Thermogram | Heating Thermogram | |||||||
---|---|---|---|---|---|---|---|---|
Ton (°C) | Toff (°C) | ΔT (°C) | ΔH (J/g) | Ton (°C) | Toff (°C) | ΔT (°C) | ΔH (J/g) | |
Oxidation indices | ||||||||
PV (meq O2/kg) | −0.960 | 0.999 * | −1.000 ** | −0.994 | −0.999 * | 0.881 | 1.000 ** | −0.999 * |
TPC (%) | −0.998 * | 0.922 | −0.943 | −0.897 | −0.925 | 0.990 | 0.940 | −0.951 |
K232 | −0.998 * | 0.965 | −0.979 | −0.948 | −0.967 | 0.962 | 0.977 | −0.983 |
K268 | −0.947 | 0.789 | −0.824 | −0.752 | −0.795 | 0.993 | 0.820 | −0.838 |
Fatty acid composition (relative content, %) | ||||||||
C18:3 | 0.980 | −0.861 | 0.889 | 0.830 | 0.866 | −1.000 ** | −0.886 | 0.900 |
C18:2 | −0.997 | 0.914 | −0.936 | −0.889 | −0.918 | 0.992 | 0.934 | −0.945 |
C18:1 | −0.976 | 0.851 | −0.880 | −0.819 | −0.856 | 1.000 ** | 0.877 | −0.892 |
C18:0 | −0.987 | 0.881 | −0.907 | −0.852 | −0.885 | 0.999 * | 0.904 | −0.917 |
C16:0 | −0.970 | 0.837 | −0.867 | −0.804 | −0.842 | 0.999 * | 0.864 | −0.880 |
SFA | −0.980 | 0.860 | −0.888 | −0.829 | −0.865 | 1.000 ** | 0.885 | −0.899 |
PUFA | 0.978 | −0.854 | 0.883 | 0.823 | 0.859 | −1.000 ** | −0.880 | 0.895 |
TAG composition (relative content, %) | ||||||||
LnLnLn | 1.000 ** | −0.943 | 0.961 | 0.922 | 0.946 | −0.979 | −0.959 | 0.968 |
LnLnL | 0.943 | −0.782 | 0.817 | 0.745 | 0.788 | −0.992 | −0.813 | 0.831 |
LnLL | 0.129 | −0.447 | 0.394 | 0.498 | 0.438 | 0.080 | −0.400 | 0.371 |
LnLnO | 0.974 | −0.995 | 0.999 * | 0.987 | 0.996 | −0.905 | −0.999 * | 1.000 * |
LnLnP | −0.206 | −0.127 | 0.069 | 0.184 | 0.117 | 0.404 | −0.076 | 0.044 |
LnOL | −0.977 | 0.993 | −0.998 * | −0.984 | −0.994 | 0.911 | 0.998 * | −0.999 * |
TUTAG | 0.967 | −0.829 | 0.860 | 0.796 | 0.835 | −0.999 * | −0.857 | 0.873 |
DUTAG | −0.968 | 0.831 | −0.862 | −0.798 | −0.837 | 0.999 * | 0.859 | −0.875 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wei, Y.; Guan, N.; Li, B.; Wang, Y. Changes in Chemical Composition of Flaxseed Oil during Thermal-Induced Oxidation and Resultant Effect on DSC Thermal Properties. Molecules 2022, 27, 7135. https://doi.org/10.3390/molecules27207135
Zhang Z, Wei Y, Guan N, Li B, Wang Y. Changes in Chemical Composition of Flaxseed Oil during Thermal-Induced Oxidation and Resultant Effect on DSC Thermal Properties. Molecules. 2022; 27(20):7135. https://doi.org/10.3390/molecules27207135
Chicago/Turabian StyleZhang, Zhenshan, Yunyi Wei, Ni Guan, Bingzheng Li, and Yong Wang. 2022. "Changes in Chemical Composition of Flaxseed Oil during Thermal-Induced Oxidation and Resultant Effect on DSC Thermal Properties" Molecules 27, no. 20: 7135. https://doi.org/10.3390/molecules27207135
APA StyleZhang, Z., Wei, Y., Guan, N., Li, B., & Wang, Y. (2022). Changes in Chemical Composition of Flaxseed Oil during Thermal-Induced Oxidation and Resultant Effect on DSC Thermal Properties. Molecules, 27(20), 7135. https://doi.org/10.3390/molecules27207135