Assessment of the Properties of Giant Reed Particleboards Agglomerated with Gypsum Plaster and Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Board Manufacture
2.2.2. Experimental Tests
3. Results and Discussion
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Statistical Analysis
3.4. Discussion of the Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO & UNEP: Rome, Italy, 2020; ISBN 978-92-5-132419-6. [Google Scholar] [CrossRef]
- Mantau, U.; Saal, U.; Prins, K.; Steierer, F.; Lindner, M.; Verkerk, H.; Eggers, J.; Leek, N.; Oldenburguer, J.; Asikainen, A.; et al. Real Potential for Changes in Growth and Use of EU Forests; EUwood: Hamburg, Germany, 2010. [Google Scholar]
- Feng, Q.; Deng, Y.; Kim, H.; Lei, W.; Sun, Z.; Jia, Y.; Lin, X.; Kim, S. Observation and analysis of gypsum particleboard using SEM. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2007, 22, 44–47. [Google Scholar] [CrossRef]
- Alfonzo Salinas, J.M.; Alarcón Ramírez, M.M. Paneles de Yeso con Fibra de Banano y Cáscara de Arroz para Cielo Raso de Edificaciones. Bachelor’s Thesis, ULVR, Guayaquil, Ecuador, 2020. [Google Scholar]
- Sinchire Cartuche, D.C. Ecomateriales: Biocompuesto de Aglomerantes de Cemento, Yeso con Partículas de Celulosa de Papel y Fibra de Abacá. Bachelor’s Thesis, UTPL, Loja, Ecuador, 2017. [Google Scholar]
- Iñiguez Rojas, C.M. Ecomateriales Material Compuesto de Matriz de Aglomerantes, Celulosa de Cartón, y Refuerzo de Fibra Vegetal de Abacá. Bachelor’s Thesis, Universidad Técnica Particular de Loja, Loja, Ecuador, 2019. [Google Scholar]
- Medina Alvarado, R.; Burneo Valdivieso, X.; Hernández-Olivares, F.; Zúñiga Suárez, A. Reuse of organic waste type in the development of ecoefficient and sustainable composites. In Congreso Internacional de Construcción Sostenible y Soluciones Ecoeficientes; Universidad de Sevilla, Departamento de Construcciones Arquitectónicas I.: Sevilla, Spain, 2015. [Google Scholar]
- Oteiza San José, I. Estudio del Comportamiento de la Escayola Reforzada con Fibras de Sisal, para Componentes en Viviendas de bajo Coste; CSIC-Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC): Madrid, Spain, 1993. [Google Scholar]
- Guzmán Castillo, W. Comportamiento Mecánico de la Matriz cal-yeso con dos Fibras Vegetales, yute (Corchorus capsularis Linn-Corchorus olitorius Linn) y Cabuya (Furcroya andina trelease) (No. N10 G8-T). Bachelor’s Thesis, Facultad de Ingeniería Agrícola, Universidad Nacional Agraria La Molina, La Molina, Lima, Peru, 1992. [Google Scholar]
- Muñoz Muñoz, D.R.; Narváez Pupiales, J.I. Construcción Sostenible a Partir de Paneles Prefabricados Utilizando yeso y Celulosa Reciclada. Bachelor’s Thesis, UCE, Quito, Ecuador, 2019. [Google Scholar]
- Thongnuanchan, B.; Suwanpetch, S.; Nakason, C. Utilization of Raw Gypsum as Hydrated Filler in Bagasse Particleboard Bonded with a Formaldehyde-free Epoxidized Natural Rubber Adhesive. In Advanced Materials Research; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2013; Volume 626, pp. 44–49. [Google Scholar]
- Espinoza-Herrera, R.; Cloutier, A. Physical and mechanical properties of gypsum particleboard reinforced with Portland cement. Eur. J. Wood Wood Prod. 2011, 69, 247–254. [Google Scholar] [CrossRef]
- Tittelein, P.; Cloutier, A.; Bissonnette, B. Design of a low-density wood–cement particleboard for interior wall finish. Cem. Concr. Compos. 2012, 34, 218–222. [Google Scholar] [CrossRef]
- Ahmad, Z.; Lum, W.C.; Lee, S.H.; Rameli, R. Preliminary study on properties evaluation of cement added gypsum board reinforced with kenaf (Hibiscus cannabinus) bast fibres. J. Indian Acad. Wood Sci. 2017, 14, 46–48. [Google Scholar] [CrossRef]
- Rangavar, H.; Khosro, S.K.; Payan, M.H.; Soltani, A. Study on the possibility of using vine stalk waste (Vitis Vinifera) for producing gypsum particleboards. Mech. Compos. Mater. 2014, 50, 501–508. [Google Scholar] [CrossRef]
- Arruda, L.M.; Del Menezzi, C.H.; Teixeira, D.E.; De Araújo, P.C. Lignocellulosic composites from Brazilian giant bamboo (Guadua magna) Part 1: Properties of resin bonded particleboards. Maderas. Cienc. Tecnol. 2011, 13, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Deltoro Torró, V.; Jiménez Ruiz, J.; Vilán Fragueiro, X.M. Bases para el Manejo y Control de Arundo donax L. (Caña común). Colección Manuales Técnicos de Biodiversidad; Conselleria d’Infraestructures, Territori i Medi Ambient, Generalitat Valenciana: Valencia, Spain, 2012; ISBN 978-84-482-5777-4. [Google Scholar]
- Ferrandez-García, A.A.; Ortuño, T.G.; Ferrandez-Villena, M.; Ferrandez-Garcia, A.; Ferrandez-García, M.T. Evaluation of Particleboards Made from Giant Reed (Arundo donax L.) Bonded with Cement and Potato Starch. Polymers 2021, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Ferrandez-García, M.T.; Ferrandez-Garcia, A.; Garcia-Ortuño, T.; Ferrandez-Garcia, C.E.; Ferrandez-Villena, M. Assessment of the physical, mechanical and acoustic properties of Arundo donax L. biomass in low pressure and temperature particleboards. Polymers 2020, 12, 1361. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, M.T.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Villena, M. Experimental evaluation of a new giant reed (Arundo Donax L.) composite using citric acid as a natural binder. Agronomy 2019, 9, 882. [Google Scholar] [CrossRef]
- Ferrández-García, C.E.; Andreu-Rodríguez, J.; Ferrández-García, M.T.; Ferrández-Villena, M.; García-Ortuño, T. Panels made from giant reed bonded with non-modified starches. BioResources 2012, 7, 5904–5916. [Google Scholar] [CrossRef] [Green Version]
- Copeland, L.; Blazek, J.; Saman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Ferrer García, M.; Marfisi Valladares, S.; Danglad Flores, J.Á.; Cecconello, L.; Rojas de Gáscue, B. Producción de espumas sólidas de celulosa y almidón de yuca. Saber 2013, 25, 439–444. [Google Scholar]
- Whistler, R.L.; BeMiller, J.N.; Paschall, E.F. Starch: Chemistry and Technology; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- EN 326; Wood-Based Panels, Cutting and Inspection. Part 1: Sampling and Cutting of Test Pieces and Expression of Test. European Committee for Standardization: Brussels, Belgium, 1994.
- EN 309; Particleboards. In Definitions and Classification. European Committee for Standardization: Brussels, Belgium, 2005.
- EN 323; Wood-based panels. In Determination of Density. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 317; Particleboards and Fiberboards. In Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 319; Particleboards and Fiberboards. In Determination of Tensile Strength Perpendicular to the Plane of de Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 310; Wood-Based Panels. In Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 12667; Thermal performance of building materials and products. In Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods: Products of High and Medium Thermal Resistance. European Committee for Standardization: Brussels, Belgium, 2001.
- EN 312; In Particleboards—Specifications. European Committee for Standardization: Brussels, Belgium, 2010.
- Hegazy, S.S.; Ahmed, K. Effect of date palm cultivar, particle size, panel density and hot water extraction on particleboards manufactured from date palm fronds. Agriculture 2015, 5, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, J.A.; An, J.Y.; Kim, H.S.; Kim, H.J.; Deng, Y.; Feng, Q.; Luo, J. Physico-Mechanical Properties and the TVOC Emission Factor of Gypsum Particleboards Manufactured with Pinus Massoniana and Eucalyptus sp. Macromol. Mater. Eng. 2007, 292, 1256–1262. [Google Scholar] [CrossRef]
- Kim, S. Incombustibility, physico-mechanical properties and TVOC emission behavior of the gypsum–rice husk boards for wall and ceiling materials for construction. Ind. Crops Prod. 2009, 29, 381–387. [Google Scholar] [CrossRef]
- Anglès, M.N.; Reguant, J.; Montané, D.; Ferrando, F.; Farriol, X.; Salvadó, J. Binderless composites from pretreated residual softwood. J. Appl. Polym. Sci. 1999, 73, 2485–2491. [Google Scholar] [CrossRef]
- Pintiaux, T.; Viet, D.; Vandenbossche, V.; Rigal, L.; Rouilly, A. Binderless materials obtained by thermo-compressive processing of lignocellulosic fibers: A comprehensive review. BioResources 2015, 10, 1915–1963. [Google Scholar]
- Peleteiro, S.; Rivas, S.; Alonso, J.L.; Santos, V.; Parajó, J.C. Furfural production using ionic liquids: A review. Bioresour. Technol. 2016, 202, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Shintani, H.; Park, S.Y.; Saito, K.; Laemsak, N.; Okuma, M.; Iiyama, K. Preparation of binderless boards from steam exploded pulps of oil palm (Elaeis guneensis Jaxq.) fronds and structural characteristics of lignin and wall polysaccharides in steam exploded pulps to be discussed for self-bindings. Holzforschung 1998, 52, 417–426. [Google Scholar] [CrossRef]
- Boon, J.G.; Hashim, R.; Sulaiman, O.; Hiziroglu, S.; Sugimoto, T.; Sato, M. Influence of processing parameters on some properties of oil palm trunk binderless particleboard. Eur. J. Wood Prod. 2013, 71, 583–589. [Google Scholar] [CrossRef]
Panel Type | Ratio Giant Reed/Gypsum Plaster/H2O in Weight | Ratio Giant Reed/Starch in Weight | Particle Size (mm) | Time (h) | Temperature (°C) |
---|---|---|---|---|---|
20:0 | 100:20:10 | 100:0 | <0.25 | 1, 2, and 3 | 110 |
20:5 | 100:5 | ||||
20:10 | 100:10 |
Panel Type | Time (h) | Thickness (mm) | Density (kg/m3) | TS2h (%) | TS24h (%) | WA2h (%) | WA24h (%) | T. Cond. (W/mK) |
---|---|---|---|---|---|---|---|---|
20:0 | 1 | 7.70 (0.57) | 925 (18) | 29.16 (0.63) | 47.60 (0.73) | 75.75 (0.19) | 84.19 (4.88) | 0.072 (0.003) |
2 | 7.72 (0.34) | 984 (28) | 30.64 (1.91) | 44.05 (3.87) | 66.79 (2.84) | 76.71 (0.12) | 0.068 (0.005) | |
3 | 7.11 (0.16) | 994 (18) | 31.32 (1.45) | 39.66 (2.83) | 63.66 (8.53) | 75.11 (2.41) | 0.064 (0.003) | |
20:5 | 1 | 7.36 (0.11) | 929 (12) | 37.06 (4.81) | 44.47 (0.89) | 74.14 (2.88) | 85.53 (1.01) | 0.063 (0.002) |
2 | 7.18 (0.14) | 974. (59) | 29.40 (3.12) | 40.99 (1.45) | 57.50 (7.58) | 71.21 (4.23) | 0.061 (0.002) | |
3 | 6.89 (0.35) | 1052 (11) | 29.34 (0.00) | 35.72 (3.93) | 66.55 (0.35) | 71.07 (5.28) | 0.061 (0.001) | |
20:10 | 1 | 7.50 (0.55) | 1024 (42) | 25.72 (5.91) | 36.16 (6.84) | 48.96 (3.77) | 58.85 (6.83) | 0.066 (0.003) |
2 | 7.27 (0.41) | 1053 (60) | 26.34 (8.17) | 32.19 (8.04) | 43.84 (9.07) | 57.67 (9.31) | 0.063 (0.002) | |
3 | 6.89 (0.14) | 1095 (46) | 23.19 (6.17) | 28.37 (6.09) | 41.47 (8.93) | 52.25 (7.23) | 0.061 (0.002) |
Factor | Properties | Sum of Squares | d.f. | Half Quadratic | F | p-Value |
---|---|---|---|---|---|---|
Panel Type | Density (kg/m3) | 84,534.65 | 2 | 33,660.139 | 12.248 | 0.000 |
TS 24 h (%) | 1551.53 | 2 | 524.107 | 17.039 | 0.000 | |
WA 24 h (%) | 1213.56 | 2 | 2254.850 | 44.949 | 0.000 | |
T. Cond. (W/mK) | 0.001 | 2 | 0.001 | 11.57 | 0.000 | |
MOR (N/mm2) | 15.08 | 2 | 175.442 | 14.294 | 0.000 | |
MOE (N/mm2) | 754,422.53 | 2 | 6,978,605.131 | 23.840 | 0.000 | |
IB (N/mm2) | 0.03 | 2 | 0.491 | 82.366 | 0.000 | |
Pressing Time | Density (kg/m3) | 115,661.14 | 2 | 29,069.446 | 9.781 | 0.000 |
TS 24 h (%) | 7.93 | 2 | 249.800 | 5.647 | 0.007 | |
WA 24 h (%) | 38.76 | 2 | 417.170 | 2.984 | 0.042 | |
T. Cond. (W/mK) | 0.001 | 2 | 0.001 | 5.580 | 0.007 | |
MOR (N/mm2) | 13.36 | 2 | 166.638 | 13.118 | 0.000 | |
MOE (N/mm2) | 130,082.85 | 2 | 3,131,162.189 | 6.518 | 0.000 | |
IB (N/mm2) | 0.083 | 2 | 0.042 | 1.490 | 0.237 |
Panel Type | MOR (N/mm2) | MOE (N/mm2) | IB (N/mm2) | WA 24 h (%) |
---|---|---|---|---|
20:10—1 h | 10.82 | 1573 | 0.39 | 58.85 |
20:10—2 h | 15.40 | 2324 | 0.52 | 57.67 |
20:10—3 h | 17.49 | 3196 | 0.62 | 52.25 |
Grade P1 [32] | 10.50 | - | 0.28 | - |
Grade P2 [32] | 11.00 | 1800 | 0.40 | - |
Grade P3 [32] | 15.00 | 2050 | 0.45 | 17.00 |
Material | Ratio Material/ Gypsum/H2O in Weight | Other Additions | Press. (MPa) | Time (h) | MOR (N/mm2) | MOE (N/mm2) | IB (N/mm2) | WA 24 h (%) |
---|---|---|---|---|---|---|---|---|
This study (type 20:10—2 h) | 100:20:10 | 10% Starch | 2.6 | 2 | 10.82 | 1573 | 0.39 | 58.85 |
Eucalyptus sp. [34] | 30:100:40 | 0.05% CA | 3 | 2 | 6.80 | 2700 | 0.24 | 29.50 |
Pinus massoniata [34] | 30:100:40 | 0.05% CA | 3 | 2 | 5.50 | 2100 | 0.43 | 28.00 |
Rice husk [35] | 40:100:40 | 0.05% CA | 3 | 2 | 6.70- | 3800 | 0.34 | 17.00 |
Commercial GPB [34] | - | - | - | - | 9.20 | 4500 | 0.30 | 28.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrandez-Garcia, M.T.; Ferrandez-Garcia, A.; Garcia-Ortuño, T.; Ferrandez-Villena, M. Assessment of the Properties of Giant Reed Particleboards Agglomerated with Gypsum Plaster and Starch. Molecules 2022, 27, 7305. https://doi.org/10.3390/molecules27217305
Ferrandez-Garcia MT, Ferrandez-Garcia A, Garcia-Ortuño T, Ferrandez-Villena M. Assessment of the Properties of Giant Reed Particleboards Agglomerated with Gypsum Plaster and Starch. Molecules. 2022; 27(21):7305. https://doi.org/10.3390/molecules27217305
Chicago/Turabian StyleFerrandez-Garcia, Maria Teresa, Antonio Ferrandez-Garcia, Teresa Garcia-Ortuño, and Manuel Ferrandez-Villena. 2022. "Assessment of the Properties of Giant Reed Particleboards Agglomerated with Gypsum Plaster and Starch" Molecules 27, no. 21: 7305. https://doi.org/10.3390/molecules27217305
APA StyleFerrandez-Garcia, M. T., Ferrandez-Garcia, A., Garcia-Ortuño, T., & Ferrandez-Villena, M. (2022). Assessment of the Properties of Giant Reed Particleboards Agglomerated with Gypsum Plaster and Starch. Molecules, 27(21), 7305. https://doi.org/10.3390/molecules27217305