Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications
Abstract
:1. Introduction
2. Structure, Processing and Properties
2.1. Composition
2.2. Biosynthesis
2.3. Extraction
2.4. Conformation
2.5. Physico-Chemical Properties
2.6. Synergistic Behaviors of LBG Mixtures
3. LBG Derivatives
3.1. Modifications of Functional Groups
3.2. Crosslinking Reactions
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gioxari, A.; Amerikanou, C.; Nestoridi, I.; Gourgari, E.; Pratsinis, H.; Kalogeropoulos, N.; Andrikopoulos, N.K.; Kaliora, A.C. Carob: A Sustainable Opportunity for Metabolic Health. Foods 2022, 11, 2154. [Google Scholar] [CrossRef]
- Frühbauerová, M.; Červenka, L.; Hájek, T.; Pouzar, M.; Palarčík, J. Bioaccessibility of Phenolics from Carob (Ceratonia siliqua L.) Pod Powder Prepared by Cryogenic and Vibratory Grinding. Food Chem. 2022, 377, 131968. [Google Scholar] [CrossRef]
- Gregoriou, G.; Neophytou, C.M.; Vasincu, A.; Gregoriou, Y.; Hadjipakkou, H.; Pinakoulaki, E.; Christodoulou, M.C.; Ioannou, G.D.; Stavrou, I.J.; Christou, A.; et al. Anti-Cancer Activity and Phenolic Content of Extracts Derived from Cypriot Carob (Ceratonia siliqua L.) Pods Using Different Solvents. Molecules 2021, 26, 5017. [Google Scholar] [CrossRef]
- Christou, A.; Martinez-Piernas, A.B.; Stavrou, I.J.; Garcia-Reyes, J.F.; Kapnissi-Christodoulou, C.P. HPLC-ESI-HRMS and Chemometric Analysis of Carobs Polyphenols—Technological and Geographical Parameters Affecting Their Phenolic Composition. J. Food Compos. Anal. 2022, 114, 104744. [Google Scholar] [CrossRef]
- Richane, A.; Ismail, H.B.; Darej, C.; Attia, K.; Moujahed, N. Potential of Tunisian Carob Pulp as Feed for Ruminants: Chemical Composition and In Vitro Assessment. Trop. Anim. Health Prod. 2022, 54, 58. [Google Scholar] [CrossRef]
- Brassesco, M.E.; Brandão, T.R.S.; Silva, C.L.M.; Pintado, M. Carob Bean (Ceratonia siliqua L.): A New Perspective for Functional Food. Trends Food Sci. Technol. 2021, 114, 310–322. [Google Scholar] [CrossRef]
- Zhu, B.J.; Zayed, M.Z.; Zhu, H.X.; Zhao, J.; Li, S.P. Functional Polysaccharides of Carob Fruit: A Review. Chin. Med. 2019, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Deuel, H.; Neukom, H. Some Properties of Locust Bean Gum. In Natural Plant Hydrocolloids; American Chemical Society: Washington, DC, USA, 1954; pp. 51–61. [Google Scholar] [CrossRef]
- Seisun, D.; Zalesny, N. Strides in Food Texture and Hydrocolloids. Food Hydrocoll. 2021, 117, 106575. [Google Scholar] [CrossRef]
- Majee, S.B.; Avlani, D.; Biswas, G.R. Non-Starch Plant Polysaccharides: Physicochemical Modifications and Pharmaceutical Applications. J. Appl. Pharm. Sci. 2016, 6, 231–241. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, M.; Manzoor, K.; Purwar, R.; Ikram, S. A Review on Latest Innovations in Natural Gums Based Hydrogels: Preparations & Applications. Int. J. Biol. Macromol. 2019, 136, 870–890. [Google Scholar] [CrossRef]
- Gillet, S.; Blecker, C.; Paquot, M.; Richel, A. Relationship between Chemical Structure and Physical Properties in Carob Galactomannans. Comptes Rendus Chim. 2014, 17, 386–401. [Google Scholar] [CrossRef]
- Yadav, H.; Maiti, S. Research Progress in Galactomannan-Based Nanomaterials: Synthesis and Application. Int. J. Biol. Macromol. 2020, 163, 2113–2126. [Google Scholar] [CrossRef]
- Dea, I.C.M.; Morrison, A. Chemistry and Interactions of Seed Galactomannans. Adv. Carbohydr. Chem. Biochem. 1975, 31, 241–312. [Google Scholar] [CrossRef]
- Blakeney, A.B.; Harris, P.J.; Henry, R.J.; Stone, B.A. A Simple and Rapid Preparation of Alditol Acetates for Monosaccharide Analysis. Carbohydr. Res. 1983, 113, 291–299. [Google Scholar] [CrossRef]
- McCleary, B.V.; Clark, A.H.; Dea, I.C.M.; Rees, D.A. The Fine Structures of Carob and Guar Galactomannans. Carbohydr. Res. 1985, 139, 237–260. [Google Scholar] [CrossRef]
- Daas, P.J.H.; Schols, H.A.; De Jongh, H.H.J. On the Galactosyl Distribution of Commercial Galactomannans. Carbohydr. Res. 2000, 329, 609–619. [Google Scholar] [CrossRef]
- Wielinga, W.C.; Meyhall, A.G. Galactomannans. In Handbook of Hydrocolloids, 2nd ed.; Woodhead Publishing: Sawston, UK, 2009; pp. 228–251. [Google Scholar] [CrossRef]
- Baker, C.W.; Whistler, R.L. Distribution of D-Galactosyl Groups in Guaran and Locust-Bean Gum. Carbohydr. Res. 1975, 45, 237–243. [Google Scholar] [CrossRef]
- Painter, T.J.; González, J.J.; Hemmer, P.C. The Distribution of D-Galactosyl Groups in Guaran and Locust-Bean Gum: New Evidence from Periodate Oxidation. Carbohydr. Res. 1979, 69, 217–226. [Google Scholar] [CrossRef]
- Gidley, M.J.; McArthur, A.J.; Underwood, D.R. 13C NMR Characterization of Molecular Structures in Powders, Hydrates and Gels of Galactomannans and Glucomannans. Top. Catal. 1991, 5, 129–140. [Google Scholar] [CrossRef]
- Hoffman, J.; Lindberg, B.; Painter, T. The Distribution of the D-Galactose Residues in Guaran and Locust Bean Gum. Acta Chem. Scand. 1976, 30b, 365–376. [Google Scholar] [CrossRef]
- Smith, F. The Constitution of Carob Gum. J. Am. Chem. Soc. 1948, 70, 3249–3253. [Google Scholar] [CrossRef]
- Chudzikowski, R.J. Guar Gum and Its Applications. J. Soc. Cosmet. Chem. 1971, 22, 43–60. [Google Scholar]
- Maier, H.; Anderson, M.; Karl, C.; Magnuson, K.; Whistler, R.L. Guar, Locust Bean, Tara and Fenugreek Gums. In Industrial Gums; Elsevier: Amsterdam, The Netherlands, 1993; pp. 181–226. ISBN 9780127462530. [Google Scholar]
- Mirhosseini, H.; Amid, B.T. A Review Study on Chemical Composition and Molecular Structure of Newly Plant Gum Exudates and Seed Gums. Food Res. Int. 2012, 46, 387–398. [Google Scholar] [CrossRef]
- Ray, P.M.; Shininger, T.L.; Ray, M.M. Isolation of β-Glucan Synthetase Particles From Plant Cells and Identification With Golgi Membranes. Proc. Natl. Acad. Sci. USA 1969, 64, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Sharma, S.; Ramakrishna, G.; Srivastava, H.; Gaikwad, K. A Comprehensive Review on Leguminous Galactomannans: Structural Analysis, Functional Properties, Biosynthesis Process and Industrial Applications. Crit. Rev. Food Sci. Nutr. 2020, 62, 443–465. [Google Scholar] [CrossRef]
- Dhugga, K.S.; Barreiro, R.; Whitten, B.; Stecca, K.; Hazebroek, J.; Randhawa, G.S.; Dolan, M.; Kinney, A.J.; Tomes, D.; Nichols, S.; et al. Guar Seed β-Mannan Synthase Is a Member of the Cellulose Synthase Super Gene Family. Science 2004, 303, 363–366. [Google Scholar] [CrossRef]
- Edwards, M.; Bulpin, P.V.; Dea, I.C.M.; Reid, J.S.G. Biosynthesis of Legume-Seed Galactomannans in Vitro. Planta 1989, 178, 41–51. [Google Scholar] [CrossRef]
- Reid, J.S.G.; Edwards, M.; Dea, I.C.M. Biosynthesis of Galactomannan in the Endosperms of Developing Fenugreek (Trigonella foenum-graecum L.) and Guar (Cyamopsis tetragonoloba [L.] Taub.) Seeds. Top. Catal. 1987, 1, 381–385. [Google Scholar] [CrossRef]
- Edwards, M.; Scott, C.; Gidley, M.; Reid, J.S.G. Control of Mannose/Galactose Ratio during Galactomannan Formation in Developing Legume Seeds. Planta 1992, 187, 67–74. [Google Scholar] [CrossRef]
- Bouzouita, N.; Khaldi, A.; Zgoulli, S.; Chebil, L.; Chekki, R.; Chaabouni, M.M.; Thonart, P. The Analysis of Crude and Purified Locust Bean Gum: A Comparison of Samples from Different Carob Tree Populations in Tunisia. Food Chem. 2007, 101, 1508–1515. [Google Scholar] [CrossRef]
- Haddarah, A.; Bassal, A.; Ismail, A.; Gaiani, C.; Ioannou, I.; Charbonnel, C.; Hamieh, T.; Ghoul, M. The Structural Characteristics and Rheological Properties of Lebanese Locust Bean Gum. J. Food Eng. 2014, 120, 204–214. [Google Scholar] [CrossRef]
- Yousif, A.K.; Alghzawi, H.M. Processing and Characterization of Carob Powder. Food Chem. 2000, 69, 283–287. [Google Scholar] [CrossRef]
- Dakia, P.A.; Blecker, C.; Robert, C.; Wathelet, B.; Paquot, M. Composition and Physicochemical Properties of Locust Bean Gum Extracted from Whole Seeds by Acid or Water Dehulling Pre-Treatment. Food Hydrocoll. 2008, 22, 807–818. [Google Scholar] [CrossRef]
- Biner, B.; Gubbuk, H.; Karhan, M.; Aksu, M.; Pekmezci, M. Sugar Profiles of the Pods of Cultivated and Wild Types of Carob Bean (Ceratonia siliqua L.) in Turkey. Food Chem. 2007, 100, 1453–1455. [Google Scholar] [CrossRef]
- McCleary, B.V.; Matheson, N.K. α-d-Galactosidase Activity and Galactomannan and Galactosylsucrose Oligosaccharide Depletion in Germinating Legume Seeds. Phytochemistry 1974, 13, 1747–1757. [Google Scholar] [CrossRef]
- Anderson, E. Endosperm Mucilages of Legumes. Ind. Eng. Chem. 1949, 41, 2887–2890. [Google Scholar] [CrossRef]
- Rafique, C.M.; Smith, F. The Constitution of Guar Gum. J. Am. Chem. Soc. 1950, 72, 4634–4637. [Google Scholar] [CrossRef]
- McCleary, B.V.; Matheson, N.K.; Small, D.M. Galactomannans and a Galactoglucomannan in Legume Seed Endosperms: Structural Requirements for β-Mannanase Hydrolysis. Phytochemistry 1976, 15, 1111–1117. [Google Scholar] [CrossRef]
- Kapoor, V.P. A Galactomannan from the Seeds of Delonix Regia. Phytochemistry 1972, 11, 1129–1132. [Google Scholar] [CrossRef]
- Azero, E.G.; Andrade, C.T. Testing Procedures for Galactomannan Purification. Polym. Test. 2002, 21, 551–556. [Google Scholar] [CrossRef]
- Grimaud, F.; Pizzut-Serin, S.; Tarquis, L.; Ladevèze, S.; Morel, S.; Putaux, J.L.; Potocki-Veronese, G. In Vitro Synthesis and Crystallization of β-1,4-Mannan. Biomacromolecules 2019, 20, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Petkowicz, C.L.O.; Milas, M.; Mazeau, K.; Bresolin, T.; Reicher, F.; Ganter, J.L.M.S.; Rinaudo, M. Conformation of Galactomannan: Experimental and Modelling Approaches. Food Hydrocoll. 1999, 13, 263–266. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Cui, W.; Eskin, N.A.M.; Goff, H.D. A Molecular Modeling Approach to Understand Conformation-Functionality Relationships of Galactomannans with Different Mannose/Galactose Ratios. Food Hydrocoll. 2012, 26, 359–364. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, L.; Li, P.; Wang, T.; Qin, L.; Xiang, J.; Chang, H. Characterization of Hydrophobic Interaction of Galactomannan in Aqueous Solutions Using Fluorescence-Based Technique. Carbohydr. Polym. 2021, 267, 118183. [Google Scholar] [CrossRef]
- Petkowicz, C.L.O.; Reicher, F.; Mazeau, K. Conformational Analysis of Galactomannans: From Oligomeric Segments to Polymeric Chains. Carbohydr. Polym. 1998, 37, 25–39. [Google Scholar] [CrossRef]
- Mansel, B.W.; Ryan, T.M.; Chen, H.L.; Lundin, L.; Williams, M.A.K. Polysaccharide Conformations Measured by Solution State X-ray Scattering. Chem. Phys. Lett. 2020, 739, 136951. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Yin, J.; Nie, S.; Wan, Y.; Xie, M. Structure and Conformation Characterization of Galactomannan from Seeds of Cassia obtusifolia. Food Hydrocoll. 2018, 76, 67–77. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Y.; Zhang, F.; Lei, F.; Wang, K.; Jiang, J. Physicochemical Characterization of Gleditsia Triacanthos Galactomannan during Deposition and Maturation. Int. J. Biol. Macromol. 2020, 144, 821–828. [Google Scholar] [CrossRef]
- Gaisford, S.E.; Harding, S.E.; Mitchell, J.R.; Bradley, T.D. A Comparison between the Hot and Cold Water Soluble Fractions of Two Locust Bean Gum Samples. Carbohydr. Polym. 1986, 6, 423–442. [Google Scholar] [CrossRef]
- Kök, M.S.; Hill, S.E.; Mitchell, J.R. Viscosity of Galactomannans during High Temperature Processing: Influence of Degradation and Solubilisation. Food Hydrocoll. 1999, 13, 535–542. [Google Scholar] [CrossRef]
- Pollard, M.; Kelly, R.; Illmann, S.; Fischer, P. Improved Rheological Properties of Biopolymers through Innovations in Raw Material Processing. In Proceedings of the 6th Annual European Rheology Conference (AERC 2010), Göteborg, Sweden, 7–9 April 2010. [Google Scholar]
- Pollard, M.A.; Fischer, P. Partial Aqueous Solubility of Low-Galactose-Content Galactomannans—What Is the Quantitative Basis? Curr. Opin. Colloid Interface Sci. 2006, 11, 184–190. [Google Scholar] [CrossRef]
- Brummer, Y.; Cui, W.; Wang, Q. Extraction, Purification and Physicochemical Characterization of Fenugreek Gum. Food Hydrocoll. 2003, 17, 229–236. [Google Scholar] [CrossRef]
- Marguerite, R. Relation between the Molecular Structure of Some Polysaccharides and Original Properties in Sol and Gel States. Food Hydrocoll. 2001, 15, 433–440. [Google Scholar]
- Dea, I.C.M.; Clark, A.H.; McCleary, B.V. Effect of the Molecular Fine Structure of Galactomannans on Their Interaction Properties—The Role of Unsubstituted Sides. Top. Catal. 1986, 1, 129–140. [Google Scholar] [CrossRef]
- Richardson, P.H.; Willmer, J.; Foster, T.J. Dilute Solution Properties of Guar and Locust Bean Gum in Sucrose Solutions. Food Hydrocoll. 1998, 12, 339–348. [Google Scholar] [CrossRef]
- Doublier, J.L.; Launay, B. Rheology of Galactomannan Solutions: Comparative Study of Guar Gum and Locust Bean Gum. J. Texture Stud. 1981, 12, 151–172. [Google Scholar] [CrossRef]
- Morris, E.R.; Cutler, A.N.; Ross-Murphy, S.B.; Rees, D.A.; Price, J. Concentration and Shear Rate Dependence of Viscosity in Random Coil Polysaccharide Solutions. Carbohydr. Polym. 1981, 1, 5–21. [Google Scholar] [CrossRef]
- Clark, A.H.; Ross-Murphy, S.B. Structural and Mechanical Properties of Biopolymer Gels. In Biopolymers; Springer: Berlin/Heidelberg, Germany, 1987; pp. 57–192. [Google Scholar] [CrossRef]
- De Gennes, P.G. Brownian Motions of Flexible Polymer Chains. Nature 1979, 282, 367–370. [Google Scholar] [CrossRef]
- Sittikijyothin, W.; Torres, D.; Gonçalves, M.P. Modelling the Rheological Behaviour of Galactomannan Aqueous Solutions. Carbohydr. Polym. 2005, 59, 339–350. [Google Scholar] [CrossRef]
- Rizzo, V.; Tomaselli, F.; Gentile, A.; La Malfa, S.; Maccarone, E. Rheological Properties and Sugar Composition of Locust Bean Gum from Different Carob Varieties (Ceratonia siliqua L.). J. Agric. Food Chem. 2004, 52, 7925–7930. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Biliaderis, C.G. Gradient Ammonium Sulphate Fractionation of Galactomannans. Food Hydrocoll. 1996, 10, 295–300. [Google Scholar] [CrossRef]
- Andrade, C.T.; Azero, E.G.; Luciano, L.; Gonçalves, M.P. Solution Properties of the Galactomannans Extracted from the Seeds of Caesalpinia Pulcherrima and Cassia Javanica: Comparison with Locust Bean Gum. Int. J. Biol. Macromol. 1999, 26, 181–185. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Casas, J. Viscosity of Locust Bean Gum Solutions. J. Sci. Food Agric. 1992, 59, 97–100. [Google Scholar] [CrossRef]
- Kapoor, V.P.; Milas, M.; Taravel, F.R.; Rinaudo, M. Rheological Properties of Seed Galactomannan from Cassia nodosa Buch.-Hem. Carbohydr. Polym. 1994, 25, 79–84. [Google Scholar] [CrossRef]
- Pollard, M.A.; Kelly, R.; Wahl, C.; Fischer, P.; Windhab, E.; Eder, B.; Amadó, R. Investigation of Equilibrium Solubility of a Carob Galactomannan. Food Hydrocoll. 2007, 21, 683–692. [Google Scholar] [CrossRef]
- Gidley, M.; Grant Reid, J. Galactomannans and Other Cell Wall Storage Polysaccharides in Seeds. In Food Polysaccharides and Their Applications; CRC Press: Boca Raton, FL, USA, 2006; pp. 181–215. [Google Scholar]
- Alves, M.M.; Antonov, Y.A.; Gonçalves, M.P. The Effect of Structural Features of Gelatin on Its Thermodynamic Compatibility with Locust Bean Gum in Aqueous Media. Food Hydrocoll. 1999, 13, 157–166. [Google Scholar] [CrossRef]
- Bahramparvar, M.; Tehrani, M.M. Application and Functions of Stabilizers in Ice Cream. Food Rev. Int. 2011, 27, 389–407. [Google Scholar] [CrossRef]
- Blibech, M.; Maktouf, S.; Chaari, F.; Zouari, S.; Neifar, M.; Besbes, S.; Ellouze-Ghorbel, R. Functionality of Galactomannan Extracted from Tunisian Carob Seed in Bread Dough. J. Food Sci. Technol. 2015, 52, 423–429. [Google Scholar] [CrossRef]
- Rojas-Argudo, C.; del Río, M.A.; Pérez-Gago, M.B. Development and Optimization of Locust Bean Gum (LBG)-Based Edible Coatings for Postharvest Storage of “Fortune” Mandarins. Postharvest Biol. Technol. 2009, 52, 227–234. [Google Scholar] [CrossRef]
- Abulyazid, I.; Abd Elhalim, S.A.; Sharada, H.M.; Aboulthana, W.M.; Abd Elhalim, S.T.A. Hepatoprotective Effect of Carob Pods Extract (Ceratonia siliqua L.) against Cyclophosphamide Induced Alterations in Rats. Int. J. Curr. Pharm. Rev. Res. 2017, 8, 149–162. [Google Scholar] [CrossRef]
- Chait, Y.A.; Gunenc, A.; Bendali, F.; Hosseinian, F. Simulated Gastrointestinal Digestion and In Vitro Colonic Fermentation of Carob Polyphenols: Bioaccessibility and Bioactivity. LWT Food Sci. Technol. 2020, 117, 108623. [Google Scholar] [CrossRef]
- Macho-González, A.; Garcimartín, A.; Naes, F.; López-Oliva, M.E.; Amores-Arrojo, A.; González-Muñoz, M.J.; Bastida, S.; Benedí, J.; Sánchez-Muniz, F.J. Effects of Fiber Purified Extract of Carob Fruit on Fat Digestion and Postprandial Lipemia in Healthy Rats. J. Agric. Food Chem. 2018, 66, 6734–6741. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, Z.; Cui, H.; Nie, H.; Zhang, T.; Gao, X.; Qiao, Y. Effects of Enzymatic Hydrolysate of Locust Bean Gum on Digestibility, Intestinal Morphology and Microflora of Broilers. J. Anim. Physiol. Anim. Nutr. 2020, 104, 230–236. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Nagar, B.J. Locust Bean Gum: A Versatile Biopolymer. Carbohydr. Polym. 2013, 94, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Tiwari, A.; Panda, P.K.; Saraf, S.; Jain, A.; Jain, S.K. Locust Bean Gum in Drug Delivery Application. In Natural Polysaccharides in Drug Delivery and Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 203–222. [Google Scholar]
- Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A.K. Buccal Bioadhesive Drug Delivery—A Promising Option for Orally Less Efficient Drugs. J. Control. Release 2006, 114, 15–40. [Google Scholar] [CrossRef]
- Sujja-Areevath, J.; Munday, D.L.; Cox, P.J.; Khan, K.A. Relationship between Swelling, Erosion and Drug Release in Hydrophillic Natural Gum Mini-Matrix Formulations. Eur. J. Pharm. Sci. 1998, 6, 207–217. [Google Scholar] [CrossRef]
- Alonso, M.J.; Torres, D.; Cun, M. Preparation and in Vivo Evaluation of Mucoadhesive Microparticles Containing Amoxycillin ± Resin Complexes for Drug Delivery to the Gastric Mucosa. Eur. J. Pharm. Biopharm. 2001, 51, 199–205. [Google Scholar]
- Hirsch, S.; Binder, V.; Schehlmann, V.; Kolter, K.; Bauer, K.H. Lauroyldextran and Crosslinked Galactomannan as Coating Materials for Site-Specific Drug Delivery to the Colon. Eur. J. Pharm. Biopharm. 1999, 47, 61–71. [Google Scholar] [CrossRef]
- Suzuki, S.; Lim, J. Mixture in a Multiphase Emulsification Technique for Sustained Drug Release. J. Microencapsul. 1994, 1, 197–203. [Google Scholar] [CrossRef]
- Marianecci, C.; Carafa, M.; di Marzio, L.; Rinaldi, F.; di Meo, C.; Alhaique, F.; Matricardi, P.; Coviello, T. A New Vesicle-Loaded Hydrogel System Suitable for Topical Applications: Preparation and Characterization. J. Pharm. Pharm. Sci. 2011, 14, 336–346. [Google Scholar] [CrossRef]
- Henderson, T.M.A.; Ladewig, K.; Haylock, D.N.; McLean, K.M.; O’Connor, A.J. Cryogels for Biomedical Applications. J. Mater. Chem. B 2013, 1, 2682–2695. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Huang, Y.; Wang, J.; Li, Z.; Yang, G.; Jin, S.; Iranmanesh, E.; Hiralal, P.; Zhou, H. Highly Conductive Locust Bean Gum Bio-Electrolyte for Superior Long-Life Quasi-Solid-State Zinc-Ion Batteries. RSC Adv. 2021, 11, 24862–24871. [Google Scholar] [CrossRef] [PubMed]
- Dionísio, M.; Grenha, A. Locust Bean Gum: Exploring Its Potential for Biopharmaceutical Applications. J. Pharm. Bioallied Sci. 2012, 4, 175–185. [Google Scholar] [CrossRef]
- Rocks, J. Xanthan Gum. Enzym. Food Technol. 1971, 25, 476–483. [Google Scholar]
- Schorsch, C.; Garnier, C.; Doublier, J.L. Microscopy of Xanthan/Galactomannan Mixtures. Carbohydr. Polym. 1995, 28, 319–323. [Google Scholar] [CrossRef]
- Shatwell, K.P.; Sutherland, I.W.; Ross-Murphy, S.B. Influence of Acetyl and Pyruvate Substituents on the Solution Properties of Xanthan Polysaccharide. Int. J. Biol. Macromol. 1990, 12, 71–78. [Google Scholar] [CrossRef]
- Dea, I.C.M.; Morris, E.R.; Rees, D.A.; Welsh, E.J.; Barnes, H.A.; Price, J. Associations of like and Unlike Polysaccharides: Mechanism and Specificity in Galactomannans, Interacting Bacterial Polysaccharides, and Related Systems. Carbohydr. Res. 1977, 57, 249–272. [Google Scholar] [CrossRef]
- Cuvelier, G.; Tonon, C.; Launay, B. Xanthan—Carob Mixtures at Low Concentration: Viscosimetric Study. Top. Catal. 1987, 1, 583–585. [Google Scholar] [CrossRef]
- Morris, E.R.; Rees, D.A.; Young, G.; Walkinshaw, M.D.; Darke, A. Order-Disorder Transition for a Bacterial Polysaccharide in Solution. A Role for Polysaccharide Conformation in Recognition between Xanthomonas Pathogen and Its Plant Host. J. Mol. Biol. 1977, 110, 1–16. [Google Scholar] [CrossRef]
- Cairns, P.; Miles, M.J.; Morris, V.J. Intermolecular Binding of Xanthan Gum and Carob Gum. Nature 1986, 322, 89–90. [Google Scholar] [CrossRef]
- Takemasa, M.; Nishinari, K. Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides: Xanthan/Galactomannan Mixtures. J. Phys. Chem. B 2016, 120, 3027–3037. [Google Scholar] [CrossRef] [PubMed]
- García-Ochoa, F.; Santosa, V.E.; Casas, J.A.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef] [PubMed]
- Grisel, M.; Aguni, Y.; Renou, F.; Malhiac, C. Impact of fine structure of galactomannans on their interactions with xanthan: Two co-existing mechanisms to explain the synergy. Food Hydrocoll. 2015, 51, 449–458. [Google Scholar] [CrossRef]
- Tako, M.; Teruya, T.; Tamaki, Y.; Ohkawa, K. Co-gelation mechanism of xanthan and galactomannan. Colloid Poly. Sci. 2010, 288, 1161–1166. [Google Scholar] [CrossRef]
- Jo, W.; Bak, J.H.; Yoo, B. Rheological Characterizations of Concentrated Binary Gum Mixtures with Xanthan Gum and Galactomannans. Int. J. Biol. Macromol. 2018, 114, 263–269. [Google Scholar] [CrossRef]
- Hayta, M.; Dogan, M.; Aslan Türker, D. Rheology and Microstructure of Galactomannan–Xanthan Gum Systems at Different PH Values. J. Food Process Eng. 2020, 43, e13573. [Google Scholar] [CrossRef]
- Schreiber, C.; Ghebremedhin, M.; Zielbauer, B.; Dietz, N.; Vilgis, T.A. Interaction of Xanthan Gums with Galacto- And Glucomannans. Part I: Molecular Interactions and Synergism in Cold Gelled Systems. J. Phys. Mater. 2020, 3, 034013. [Google Scholar] [CrossRef]
- Craig, D.Q.M.; Kee, A.; Tamburic, S.; Barnes, D. An Investigation into the Temperature Dependence of the Rheological Synergy between Xanthan Gum and Locust Bean Gum Mixtures. J. Biomater. Sci. Polym. Ed. 1997, 8, 377–389. [Google Scholar] [CrossRef]
- Ghebremedhin, M.; Schreiber, C.; Zielbauer, B.; Dietz, N.; Vilgis, T.A. Interaction of Xanthan Gums with Galacto- And Glucomannans. Part II: Heat Induced Synergistic Gelation Mechanism and Their Interaction with Salt. J. Phys. Mater. 2020, 3, 034014. [Google Scholar] [CrossRef]
- Valencia, G.A.; Zare, E.N.; Makvandi, P.; Gutiérrez, T.J. Self-Assembled Carbohydrate Polymers for Food Applications: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2009–2024. [Google Scholar] [CrossRef]
- Dolz, M.; Hernández, M.J.; Delegido, J. Oscillatory Measurements for Salad Dressings Stabilized with Modified Starch, Xanthan Gum, and Locust Bean Gum. J. Appl. Polym. Sci. 2006, 102, 897–903. [Google Scholar] [CrossRef]
- Arocas, A.; Sanz, T.; Fiszman, S.M. Food Hydrocolloids Improving Effect of Xanthan and Locust Bean Gums on the Freeze-Thaw Stability of White Sauces Made with Different Native Starches. Food Hydrocoll. 2009, 23, 2478–2484. [Google Scholar] [CrossRef]
- Kurt, A.; Toker, O.S.; Tornuk, F. Effect of Xanthan and Locust Bean Gum Synergistic Interaction on Characteristics of Biodegradable Edible Film. Int. J. Biol. Macromol. 2017, 102, 1035–1044. [Google Scholar] [CrossRef]
- Yu, H.; Chi, S.; Li, D.; Wang, L.; Wang, Y. Effect of Gums on the Multi-Scale Characteristics and 3D Printing Performance of Potato Starch Gel. Innov. Food Sci. Emerg. Technol. 2022, 80, 103102. [Google Scholar] [CrossRef]
- Sharma, N.; Deshpande, R.D.; Sharma, D.; Sharma, R.K. Development of Locust Bean Gum and Xanthan Gum Based Biodegradable Microparticles of Celecoxib Using a Central Composite Design and Its Evaluation. Ind. Crops Prod. 2016, 82, 161–170. [Google Scholar] [CrossRef]
- Tian, H.; Xiang, D.; Wang, B.; Zhang, W.; Li, C. Using Hydrogels in Dispersed Phase of Water-in-Oil Emulsion for Encapsulating Tea Polyphenols to Sustain Their Release. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 612, 125999. [Google Scholar] [CrossRef]
- Bektas, E.I.; Gurel Pekozer, G.; Kök, F.N.; Torun Kose, G. Evaluation of Natural Gum-Based Cryogels for Soft Tissue Engineering. Carbohydr. Polym. 2021, 271, 118407. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, C.; Wang, Q.; Chen, B.; Zhao, Y.; Guo, B.; Zhang, Z.; Gao, X.; Chowdhury, R.; Wang, H.; et al. Highly Aligned Ultra-Thick Gel-Based Cathodes Unlocking Ultra-High Energy Density Batteries. Energy Environ. Mater. 2022, 5, 1332–1339. [Google Scholar] [CrossRef]
- Turquois, T.; Rochas, C.; Taravel, F.R. Rheological Studies of Synergistic Kappa Carrageenan-Carob Galactomannan Gels. Carbohydr. Polym. 1992, 17, 263–268. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Bourbon, A.I.; Rocha, C.; Ribeiro, C.; Maia, J.M.; Gonalves, M.P.; Teixeira, J.A.; Vicente, A.A. Rheological Characterization of κ-Carrageenan/Galactomannan and Xanthan/Galactomannan Gels: Comparison of Galactomannans from Non-Traditional Sources with Conventional Galactomannans. Carbohydr. Polym. 2011, 83, 392–399. [Google Scholar] [CrossRef]
- Rochas, C.; Taravel, F.R.; Turquois, T.N.m.r. Studies of Synergistic Kappa Carrageenan-Carob Galactomannan Gels. Int. J. Biol. Macromol. 1990, 12, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.B.; Gonçalves, M.P.; Doublier, J.L. Influence of Locust Bean Gum on the Rheological Properties of Kappa-Carrageenan Systems in the Vicinity of the Gel Point. Carbohydr. Polym. 1993, 22, 99–106. [Google Scholar] [CrossRef]
- Fernandes, P.B.; Gonçales, M.P.; Doublier, J.-L. Rheological Behaviour of Kappa-Carrageenan/Galactomannan Mixtures At a Very Low Level of Kappa-Carrageenan. J. Texture Stud. 1994, 25, 267–283. [Google Scholar] [CrossRef]
- Viebke, C. A Light Scattering Study of Carrageenan/Galactomannan Interactions. Carbohydr. Polym. 1995, 28, 101–105. [Google Scholar] [CrossRef]
- Turquois, T.; Rochas, C.; Taravel, F.-R.; Doublier, J.L.; Axelos, M.-A.-V. Small-angle X-ray Scattering of Κ-carrageenan Based Systems: Sols, Gels, and Blends with Carob Galactomannan. Biopolymers 1995, 36, 559–567. [Google Scholar] [CrossRef]
- Pettinelli, N.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Feijoo-Bandín, S.; Lago, F. Carrageenan-Based Physically Crosslinked Injectable Hydrogel for Wound Healing and Tissue Repairing Applications. Int. J. Pharm. 2020, 589, 119828. [Google Scholar] [CrossRef]
- Mendes de Moraes, F.; Trauthman, S.C.; Zimmer, F.; Pacheco, P.P.; Pont Morisso, F.D.; Ziulkoski, A.L.; Κanis, L.A.; Modolon Zepon, K.M. A Polysaccharide-Based Hydrogel as a Green Platform for Enhancing Transdermal Delivery. Sustain. Chem. Pharm. 2022, 25, 100604. [Google Scholar] [CrossRef]
- Pant, A.; Lee, A.Y.; Karyappa, R.; Lee, C.P.; An, J.; Hashimoto, M.; Tan, U.X.; Wong, G.; Chua, C.K.; Zhang, Y. 3D Food Printing of Fresh Vegetables Using Food Hydrocolloids for Dysphagic Patients. Food Hydrocoll. 2021, 114, 106546. [Google Scholar] [CrossRef]
- Wang, W.; Sun, R.; Xia, Q. Influence of Gelation of Internal Aqueous Phase on In Vitro Controlled Release of W1/O/W2 Double Emulsions-Filled Alginate Hydrogel Beads. J. Food Eng. 2022, 337, 111246. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J.; Kan, J.; Liu, J. Active/Intelligent Packaging Films Developed by Immobilizing Anthocyanins from Purple Sweetpotato and Purple Cabbage in Locust Bean Gum, Chitosan and κ-Carrageenan-Based Matrices. Int. J. Biol. Macromol. 2022, 211, 238–248. [Google Scholar] [CrossRef]
- Matar, G.H.; Andac, M.; Elmas, A. Locust Bean Gum-Polyvinyl Alcohol Hydrogels: Synthesis, Characterization, Swelling Behaviors, and Mathematical Models. J. Appl. Polym. Sci. 2022, 139, 51498. [Google Scholar] [CrossRef]
- Yao, X.; Yun, D.; Xu, F.; Chen, D.; Liu, J. Development of Shrimp Freshness Indicating Films by Immobilizing Red Pitaya Betacyanins and Titanium Dioxide Nanoparticles in Polysaccharide-Based Double-Layer Matrix. Food Packag. Shelf Life 2022, 33, 100871. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, C.; Xie, Y.; Mei, J.; Xie, J. Effect of Melissa officinalis L. Essential Oil Nanoemulsions on Structure and Properties of Carboxymethyl Chitosan/Locust Bean Gum Composite Films. Membranes 2022, 12, 568. [Google Scholar] [CrossRef]
- Grala, D.; Biernacki, K.; Freire, C.; Kuźniarska-Biernacka, I.; Souza, H.K.S.; Gonçalves, M.P. Effect of Natural Deep Eutectic Solvent and Chitosan Nanoparticles on Physicochemical Properties of Locust Bean Gum Films. Food Hydrocoll. 2022, 126, 107460. [Google Scholar] [CrossRef]
- Yun, D.; He, Y.; Zhu, H.; Hui, Y.; Li, C.; Chen, D.; Liu, J. Smart Packaging Films Based on Locust Bean Gum, Polyvinyl Alcohol, the Crude Extract of Loropetalum chinense Var. rubrum Petals and Its Purified Fractions. Int. J. Biol. Macromol. 2022, 205, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tang, P.; Quan, S.; Zhang, H.; Wang, K.; Liu, J. Preparation, Characterization and Application of Smart Packaging Films Based on Locust Bean Gum/Polyvinyl Alcohol Blend and Betacyanins from Cockscomb (Celosia cristata L.) Flower. Int. J. Biol. Macromol. 2021, 191, 679–688. [Google Scholar] [CrossRef]
- Upadhyay, M.; Adena, S.K.R.; Vardhan, H.; Yadav, S.K.; Mishra, B. Development of Biopolymers Based Interpenetrating Polymeric Network of Capecitabine: A Drug Delivery Vehicle to Extend the Release of the Model Drug. Int. J. Biol. Macromol. 2018, 115, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Maheriya, P.M.; Nagar, B.J. Locust Bean Gum in the Development of Sustained Release Mucoadhesive Macromolecules of Aceclofenac. Carbohydr. Polym. 2014, 113, 138–148. [Google Scholar] [CrossRef]
- Pawar, H.A.; Lalitha, K.G.; Ruckmani, K. Alginate Beads of Captopril Using Galactomannan Containing Senna Tora Gum, Guar Gum and Locust Bean Gum. Int. J. Biol. Macromol. 2015, 76, 119–131. [Google Scholar] [CrossRef]
- Jana, S.; Gandhi, A.; Sheet, S.; Sen, K.K. Metal Ion-Induced Alginate-Locust Bean Gum IPN Microspheres for Sustained Oral Delivery of Aceclofenac. Int. J. Biol. Macromol. 2015, 72, 47–53. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Jurić, S.; Đorđević, V.; Barišić, L.; Komes, D.; Ježek, D.; Bugarski, B.; Nedović, V. Chemometric Evaluation of Binary Mixtures of Alginate and Polysaccharide Biopolymers as Carriers for Microencapsulation of Green Tea Polyphenols. Int. J. Food Prop. 2017, 20, 1971–1986. [Google Scholar] [CrossRef]
- Liu, W.; Mei, J.; Xie, J. Effect of Locust Bean Gum-Sodium Alginate Coatings Incorporated with Daphnetin Emulsions on the Quality of Scophthalmus Maximus at Refrigerated Condition. Int. J. Biol. Macromol. 2021, 170, 129–139. [Google Scholar] [CrossRef]
- Cao, J.; Liu, W.; Mei, J.; Xie, J. Effect of Locust Bean Gum-Sodium Alginate Coatings Combined with High CO2 Modified Atmosphere Packaging on the Quality of Turbot (Scophthalmus maximus) during Refrigerated Storage. Polymers 2021, 13, 4376. [Google Scholar] [CrossRef] [PubMed]
- Góral, M.; Kozłowicz, K.; Pankiewicz, U.; Góral, D.; Kluza, F.; Wójtowicz, A. Impact of Stabilizers on the Freezing Process, and Physicochemical and Organoleptic Properties of Coconut Milk-Based Ice Cream. LWT 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Khanniri, E.; Yousefi, M.; Khorshidian, N.; Sohrabvandi, S.; Mortazavian, A.M. Development of an Efficient Stabiliser Mixture for Physical Stability of Nonfat Unfizzy Doogh. Int. J. Dairy Technol. 2019, 72, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Lei, Y.; Liao, J.; Zhang, Y. A Facile Synthesis of Graphene Oxide/Locust Bean Gum Hybrid Aerogel for Water Purification. Carbohydr. Polym. 2021, 254, 117318. [Google Scholar] [CrossRef]
- Santos, M.B.; Garcia-Rojas, E.E. Recent Advances in the Encapsulation of Bioactive Ingredients Using Galactomannans-Based as Delivery Systems. Food Hydrocoll. 2021, 118, 106815. [Google Scholar] [CrossRef]
- Braz, L.; Grenha, A.; Corvo, M.C.; Lourenço, J.P.; Ferreira, D.; Sarmento, B.; Rosa da Costa, A.M. Synthesis and Characterization of Locust Bean Gum Derivatives and Their Application in the Production of Nanoparticles. Carbohydr. Polym. 2018, 181, 974–985. [Google Scholar] [CrossRef]
- Braz, L.; Grenha, A.; Ferreira, D.; Rosa da Costa, A.M.; Gamazo, C.; Sarmento, B. Chitosan/Sulfated Locust Bean Gum Nanoparticles: In Vitro and in Vivo Evaluation towards an Application in Oral Immunization. Int. J. Biol. Macromol. 2017, 96, 786–797. [Google Scholar] [CrossRef]
- Kaity, S.; Ghosh, A. Carboxymethylation of Locust Bean Gum: Application in Interpenetrating Polymer Network Microspheres for Controlled Drug Delivery. Ind. Eng. Chem. Res. 2013, 52, 10033–10045. [Google Scholar] [CrossRef]
- Dey, P.; Sa, B.; Maiti, S. Impact of Gelation Period on Modified Locust Bean-Alginate Interpenetrating Beads for Oral Glipizide Delivery. Int. J. Biol. Macromol. 2015, 76, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.S.; Ghosh, A.K.; Banerjee, S.; Chattopadhyay, P.; Ghosh, A. Al3+ Ion Cross-Linked Interpenetrating Polymeric Network Microbeads from Tailored Natural Polysaccharides. Int. J. Biol. Macromol. 2012, 51, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Maiti, S.; Sa, B. Gastrointestinal Delivery of Glipizide from Carboxymethyl Locust Bean Gum-Al3+-Alginate Hydrogel Network: In Vitro and in Vivo Performance. J. Appl. Polym. Sci. 2013, 128, 2063–2072. [Google Scholar] [CrossRef]
- Ben Romdhane, R.; Atoui, D.; Ketata, N.; Dali, S.; Moussaoui, Y.; Ben Salem, R. Pd Supported on Locust Bean Gum as Reusable Green Catalyst for Heck and Sonogashira Coupling Reactions and 4-nitroaniline Reduction under Ultrasound Irradiation. Appl. Organomet. Chem. 2022, 36, e6870. [Google Scholar] [CrossRef]
- Tagad, C.K.; Rajdeo, K.S.; Kulkarni, A.; More, P.; Aiyer, R.C.; Sabharwal, S. Green Synthesis of Polysaccharide Stabilized Gold Nanoparticles: Chemo Catalytic and Room Temperature Operable Vapor Sensing Application. RSC Adv. 2014, 4, 24014–24019. [Google Scholar] [CrossRef]
- Singh, I.; Rani, P.; Gazali, B.S.P.; Kaur, S. Microwave Assisted Synthesis of Acrylamide Grafted Locust Bean Gum for Colon Specific Drug Delivery. Curr. Microw. Chem. 2018, 5, 46–53. [Google Scholar] [CrossRef]
- Jin, E.; Wang, S.; Song, C.; Li, M. Influences of Monomer Compatibility on Sizing Performance of Locust Bean Gum-g-P(MA-Co-AA). J. Text. Inst. 2022, 113, 1083–1092. [Google Scholar] [CrossRef]
- Sagbas, S.; Sahiner, N. Modifiable Natural Gum Based Microgel Capsules as Sustainable Drug Delivery Systems. Carbohydr. Polym. 2018, 200, 128–136. [Google Scholar] [CrossRef]
- Şen, M.; Hayrabolulu, H. Radiation Synthesis and Characterisation of the Network Structure of Natural/Synthetic Double-Network Superabsorbent Polymers. Radiat. Phys. Chem. 2012, 81, 1378–1382. [Google Scholar] [CrossRef]
- Nayak, A.K.; Hasnain, M.S.; Aminabhavi, T.M. Drug Delivery Using Interpenetrating Polymeric Networks of Natural Polymers: A Recent Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102915. [Google Scholar] [CrossRef]
- Jana, S.; Sen, K.K. Chitosan—Locust Bean Gum Interpenetrating Polymeric Network Nanocomposites for Delivery of Aceclofenac. Int. J. Biol. Macromol. 2017, 102, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Coviello, T.; Alhaique, F.; Dorigo, A.; Matricardi, P.; Grassi, M. Two Galactomannans and Scleroglucan as Matrices for Drug Delivery: Preparation and Release Studies. Eur. J. Pharm. Biopharm. 2007, 66, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, M.; Aussant, F.; Vergara, A.; Isasi, J.R. Solventless Crosslinking of Chitosan, Xanthan, and Locust Bean Gum Networks Functionalized with β-Cyclodextrin. Gels 2020, 6, 51. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, M.; Isasi, J.R. Chitosan, Xanthan and Locust Bean Gum Matrices Crosslinked with β-Cyclodextrin as Green Sorbents of Aromatic Compounds. Int. J. Biol. Macromol. 2021, 180, 570–577. [Google Scholar] [CrossRef]
- Petitjean, M.; Lamberto, N.; Zornoza, A.; Isasi, J.R. Green Synthesis and Chemometric Characterization of Hydrophobic Xanthan Matrices: Interactions with Phenolic Compounds. Carbohydr. Polym. 2022, 288, 119387. [Google Scholar] [CrossRef]
- Hadinugroho, W.; Martodihardjo, S.; Fudholi, A.; Riyanto, S. Study of a Catalyst of Citric Acid Crosslinking on Locust Bean Gum. J. Chem. Technol. Metall. 2017, 52, 1086–1091. [Google Scholar]
- Hadinugroho, W.; Martodihardjo, S.; Fudholi, A.; Riyanto, S. Esterification of Citric Acid with Locust Bean Gum. Heliyon 2019, 5, e02337. [Google Scholar] [CrossRef] [Green Version]
- Hadinugroho, W.; Martodihardjo, S.; Fudholi, A.; Riyanto, S. Preparation of Citric Acid-Locust Bean Gum (CA-LBG) for the Disintegrating Agent of Tablet Dosage Forms. J. Pharm. Innov. 2021. [Google Scholar] [CrossRef]
Biobased Polymer Coupled | Preparation Method | Use | Reference |
---|---|---|---|
XG | Mixture | Food industry | [107,108,109] |
XG, Glycerol | Mixture | Edible film | [110] |
XG, potato starch | Mixture | 3D printing | [111] |
XG | Emulsion w/o | Drug delivery | [112] |
XG | Emulsion w/o | Encapsulation | [113] |
XG, mastic gum | Freeze dried from Mix | Tissue engineering | [114] |
XG | Mixture | Binder in green battery | [115] |
ι-, κ-Carrageenan, Gelatin | Mixture | Wound healing, Tissue repairing | [123] |
κ-Carrageenan | Mixture | Transdermal delivery | [124] |
κ-Carrageenan, XG | Mixture | Food 3D printing | [125] |
κ-Carrageenan, alginate | Double emulsion w1/o/w2 | Delivery device | [126] |
κ-C: Chitosan: PVA | Mixture | Film packaging | [127] |
PVA + agar: PVA | Mixture and double layer | Film packaging | [129] |
Carboxymethyl Chitosan | Mixture | Film packaging | [130] |
Chitosan | Mixture | Biobased films | [131] |
PVA | Mixture | Smart packaging | [132,133] |
Alginate | Mixture + ionic gelation | Drug delivery | [134,135,136,137] |
Alginate | Mixture + ionic gelation | Encapsulation | [138] |
Alginate | Mixture | Edible packaging | [139,140] |
Carboxymethyl Cellulose | Mixture | Food | [142] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petitjean, M.; Isasi, J.R. Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications. Molecules 2022, 27, 8265. https://doi.org/10.3390/molecules27238265
Petitjean M, Isasi JR. Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications. Molecules. 2022; 27(23):8265. https://doi.org/10.3390/molecules27238265
Chicago/Turabian StylePetitjean, Max, and José Ramón Isasi. 2022. "Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications" Molecules 27, no. 23: 8265. https://doi.org/10.3390/molecules27238265
APA StylePetitjean, M., & Isasi, J. R. (2022). Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications. Molecules, 27(23), 8265. https://doi.org/10.3390/molecules27238265