Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Grape sampling and Must Preparation
2.2.1. Grape Sampling
2.2.2. Must for the Laboratory Contamination Model
2.2.3. Must from Grapes Affected by Vineyard Molds
2.2.4. Analysis of Enological Parameters
2.3. Analysis of Glycosidic Precursors
2.3.1. Sample Extraction
2.3.2. Enzymatic Hydrolysis
2.3.3. Gas chromatography–Mass Spectrometry (GC-MS) Analysis
2.4. Analysis of Free C8 Compounds in Grape Must
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Laboratory Contamination Model with Crustomyces subabruptus
3.1.1. Characterization of free C8 Compounds
3.1.2. Characterization of a Glycosylated Fraction Responsible for Fresh Mushroom Off-Flavors in Crustomyces subabruptus
3.2. Influence of Diseases on Glycoside Fractions on Different Musts
3.2.1. Influence of Powdery Mildew on Chardonnay Musts
3.2.2. Influence of Gray Rot on Meunier and Pinot Noir Musts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meistermann, E.; Villaumé, S. Origin of Fresh Mushroom Off-Flavour In Wine. In IVES Technical Reviews Vine and Wine; IVES: Villenave-d’Ornon, France, 2022; pp. 1–2. [Google Scholar]
- Whitfield, F.B.; Freeman, D.J.; Last, J.H.; Bannister, P.A.; Kennett, B.H. Oct-1-en-3-ol and (5Z)-Octa-1, 5-dien-3-ol, Compounds Important in the Flavour of Prawns and Sand-Lobsters. Aust. J. Chem. 1982, 35, 373–383. [Google Scholar] [CrossRef]
- Schieberle, P.; Buettner, A. Influence of the chain length on the aroma properties of homologous epoxy-aldehydes, ketones, and alcohols. ACS Symp. Ser. 2001, 794, 109–118. [Google Scholar] [CrossRef]
- Feng, T.; Shui, M.; Song, S.; Zhuang, H.; Sun, M.; Yao, L. Characterization of the key aroma compounds in three truffle varieties from China by flavoromics approach. Molecules 2019, 24, 3305. [Google Scholar] [CrossRef] [Green Version]
- Sohail, A.; Al-dalali, S.; Wang, J.; Xie, J.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma compounds identified in cooked meat: A review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef]
- Brander, C.F.; Kepner, R.E.; Webb, A.D. Identification of some volatile compouns of wine of Vitis vinifera cultivar Pinot noir. Am. J. Enol. Vitic. 1980, 31, 69–75. [Google Scholar]
- La Guerche, S.; Dauphin, B.; Pons, M.; Blancard, D.; Darriet, P. Characterization of some mushroom and earthy off-odors microbially induced by the development of rot on grapes. J. Agric. Food Chem. 2006, 54, 9193–9200. [Google Scholar] [CrossRef]
- Pons, M.; Dauphin, B.; La Guerche, S.; Pons, A.; Lavigne-Cruege, V.; Shinkaruk, S.; Bunner, D.; Richard, T.; Monti, J.P.; Darriet, P. Identification of impact odorants contributing to fresh mushroom off-flavor in wines: Incidence of their reactivity with nitrogen compounds on the decrease of the olfactory defect. J. Agric. Food Chem. 2011, 59, 3264–3272. [Google Scholar] [CrossRef]
- Pallotta, U.; Castellari, M.; Piva, A.; Baumes, R.; Bayonove, C. Effects of Botrytis cinerea on must composition of three Italian grape varieties. Wein Wiss. 1998, 53, 32–36. [Google Scholar]
- Darriet, P.; Pons, M.; Henry, R.; Dumont, O.; Findeling, V.; Cartolaro, P.; Calonnec, A.; Dubourdieu, D. Impact odorants contributing to the fungus type aroma from grape berries contaminated by powdery mildew (Uncinula necator); incidence of enzymatic activities of the yeast Saccharomyces cerevisiae. J. Agric. Food Chem. 2002, 50, 3277–3282. [Google Scholar] [CrossRef]
- Rusjan, D.; Jug, T.; Bavcon Kralj, M. Impact of varying degrees of powdery mildew infection (Uncinula necator (Schwein.) Burrill) on the volatile compounds of Chardonnay grapes, must and wine. J. Int. Sci. Vigne Vin 2012, 46, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Pinar, A.L.; Rauhut, D.; Ruehl, E.; Buettner, A. Effetcs of Botrytis cinerea and Erysiphe necator fungi on the aroma character of grape must: A comparative approach. Food Chem. 2016, 207, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Simonato, B.; Lorenzini, M.; Cipriani, M.; Finato, F.; Zapparoli, G. Correlating noble rot infection of Garganega withered grapes with key molecules and odorants of botrytized passito wine. Foods 2019, 8, 642. [Google Scholar] [CrossRef] [PubMed]
- Meistermann, E.; Villaumé, S.; Goffette, D.; Trarieux, C.; Coarer, M. A Basidiomycete Fungus Responsible for Fresh Mushroom Off-Flavour in Wines: Crustomyces subabruptus, (Bourdot & Galzin) Jülich 1978. OENO One 2021, 55, 283–298. [Google Scholar] [CrossRef]
- Matsui, K.; Sasahara, S.; Akakabe, Y.; Kajiwara, T. Linoleic acid 10-hydroperoxide as an intermediate during formation of 1-octen-3-ol from linoleic acid in Lentinus decadetes. Biosci. Biotechnol. Biochem. 2003, 67, 2280–2282. [Google Scholar] [CrossRef] [Green Version]
- Wurzenberger, M.; Grosch, W. The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochim. Biophys. Acta BBA Lipids Lipid. Metab. 1984, 794, 25–30. [Google Scholar] [CrossRef]
- Chitarra, G.S.; Abee, T.; Rombouts, F.M.; Posthumus, M.A.; Dijksterhuis, J. Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl. Environ. Microbiol. 2004, 70, 2823–2829. [Google Scholar] [CrossRef] [Green Version]
- Cordonnier, R.; Bayonove, C. Mise en évidence dans la baie de raisin, variété Muscat d’Alexandrie, de monoterpènes liés révélables par une ou plusieurs enzymes de fruits. Comptes Rendus Acad. Sci. Paris 1974, 278, 3387–3390. [Google Scholar]
- Liu, J.; Zhu, X.L.; Ullah, N.; Tao, Y.S. Aroma Glycosides in Grapes and Wine. J. Food Sci. 2017, 82, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ghisalberti, E.; Ridsdill-Smith, J. Bioactive isoflavonols and other components from Trifolium subterraneum. J. Nat. Prod. 1998, 61, 508–510. [Google Scholar] [CrossRef]
- Yamamura, S.; Ozawa, K.; Ohtani, K.; Kasai, R.; Yamasaki, K. Antihistaminic flavones and aliphatic glycosides from Menta spicata. Phytochemistry 1998, 48, 131–136. [Google Scholar] [CrossRef]
- Kirmizibekmez, H.; Altan, H.; Liktor-Busa, E.; Zana, A.; Yesilada, E.; Hohmann, J. Chemical constituents of Salvia dichroantha. Biochem. Syst. Ecol. 2012, 42, 18–20. [Google Scholar] [CrossRef]
- Matsui, K.; Takemoto, H.; Koeduka, T.; Ohnishi, T. 1-Octen-3-ol Is Formed from Its Glycoside during Processing of Soybean [Glycine max (L.) Merr.] Seeds. J. Agric. Food Chem. 2018, 66, 7409–7416. [Google Scholar] [CrossRef]
- Song, J.; Shellie, K.C.; Wang, H.; Qian, M.C. Influence of deficit irrigation and kaolin particle film on grape composition and volatile compounds in Merlot grape (Vitis vinifera L.). Food Chem. 2012, 134, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Lamorte, S.A.; Gambuti, A.; Genovese, A.; Selicato, S.; Moio, L. Free and glycoconjugated volatiles of V. vinifera grape “Falanghina”. Vitis J. Grapevine Res. 2008, 47, 241–243. [Google Scholar] [CrossRef]
- Ugliano, M.; Moio, L. Free and hydrolytically released volatile compounds of Vitis vinifera L. cv. Fiano grapes as odour-active constituents of Fiano wine. Anal. Chim. Acta 2008, 621, 79–85. [Google Scholar] [CrossRef]
- Hampel, D.; Robinson, A.L.; Johnson, A.J.; Ebeler, S.E. Direct hydrolysis and analysis of glycosidically bound aroma compounds in grapes and wines: Comparison of hydrolysis conditions and sample preparation methods. Aust. J. Grape Wine Res. 2014, 20, 361–377. [Google Scholar] [CrossRef]
- Francis, I.L.; Sefton, M.A.; Williams, P.J. Sensory descriptive analysis of the aroma of hydrolysed precursor fractions from semillon, chardonnay and sauvignon blanc grape juices. J. Sci. Food Agric. 1992, 59, 511–520. [Google Scholar] [CrossRef]
- Sefton, M.A.; Francis, I.L.; Williams, P.J. The volatile composition of Chardonnay juices: A study by flavor precursor analysis. Am. J. Enol. Vitic. 1993, 44, 359–370. [Google Scholar]
- Chassagne, D.; Vernizeau, S.; Nedjma, M.; Alexandre, H. Hydrolysis and sorption by Saccharomyces cerevisiae strains of Chardonnay grape must glycosides during fermentation. Enzyme Microb. Technol. 2005, 37, 212–217. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Angenieux, M.; Pardo-García, A.I.; Alonso, G.L.; Ojeda, H.; Rosario Salinas, M. Glycosidic aroma precursors of Syrah and Chardonnay grapes after an oak extract application to the grapevines. Food Chem. 2013, 138, 956–965. [Google Scholar] [CrossRef]
- Tosi, E.; Fedrizzi, B.; Azzolini, M.; Finato, F.; Simonato, B.; Zapparoli, G. Effects of noble rot on must composition and aroma profile of Amarone wine produced by the traditional grape withering protocol. Food Chem. 2012, 130, 370–375. [Google Scholar] [CrossRef]
- Gunata, Y.Z.; Bayonove, C.L.; Baumes, R.L.; Cordonnier, R.E. The aroma of grapes I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J. Chromatogr. A 1985, 331, 83–90. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Flavour Thresholds Compilations Offlavour Threshold Values in Water and Other Media, 2nd ed.; Punter, O., Ed.; Oliemans Punter & Partners B.V.: Utrecht, The Netherlands, 2011. [Google Scholar]
- Hausinger, K.; Lipps, M.; Raddatz, H.; Rosch, A.; Scholten, G.; Schrenk, D. Automated optical grape-sorting of rotten grapes: Effects of rot infections on gluconic acid concentrations and glycerol/gluconic acid ratios in must and wine. J. Wine Res. 2015, 26, 18–28. [Google Scholar] [CrossRef]
- Cravero, M.C. Musty and moldy taint in wines: A review. Beverages 2020, 6, 41. [Google Scholar] [CrossRef]
- Sarry, J.E.; Günata, Z. Review: Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chem. 2004, 87, 509–521. [Google Scholar] [CrossRef]
- Williams, P.J.; Strauss, C.R.; Wilson, B.; Massy-Westropp, R.A. Studies on the Hydrolysis of Vitis vinifera Monoterpene Precursor Compounds and Model Monoterpene β-d-Glucosides Rationalizing the Monoterpene Composition of Grapes. J. Agric. Food Chem. 1982, 30, 1219–1223. [Google Scholar] [CrossRef]
- Sefton, M.A.; Skouroumounis, G.K.; Massy-Westropp, R.A.; Williams, P.J. Norisoprenoids in Vitis vinifera White Wine Grapes and the Identification of a Precursor of Damascenone in These Fruits. Aust. J. Chem. 1989, 42, 2071–2084. [Google Scholar] [CrossRef]
- Loscos, N.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V. Comparison of the Suitability of Different Hydrolytic Strategies To Predict Aroma Potential of Different Grape Varieties. J. Agric. Food Chem. 2009, 57, 2468–2480. [Google Scholar] [CrossRef]
- Kishimoto, K.; Matsui, K.; Ozawa, R.; Takabayashi, J. Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J. Gen. Plant Pathol. 2007, 73, 35–37. [Google Scholar] [CrossRef]
- Gueguen, Y.; Chemardin, P.; Arnaud, A.; Galzy, P. Purification and characterization of an intracellular β-glucosidase from Botrytis cinerea. Enzyme Microb. Technol. 1995, 17, 900–906. [Google Scholar] [CrossRef]
Sample Description (Vintage) | Plot A: Chardonnay with powdery mildew (2019) | Plot B: Chardonnay with powdery mildew (2019) | Plot C: Chardonnay with powdery mildew (2020) | ||||||
Level of mold contamination | Healthy | 1–5% | 10–15% | Healthy | 1–5% | 10–15% | Healthy | 1–5% | 10–15% |
Sugar (g/L) | 173 | 167 | 164 | 176 | 172 | 169 | 176 | 175 | 176 |
Alcohol (% vol.) | 10.3 | 9.9 | 9.7 | 10.5 | 10.2 | 10.0 | 10.5 | 10.4 | 10.5 |
Tot. acidity (g H2SO4/L) | 6.3 | 7.7 | 8.1 | 6.3 | 7.8 | 8.0 | 6.1 | 6.1 | 5.8 |
pH | 3.02 | 2.97 | 2.94 | 2.93 | 2.92 | 2.94 | 3.08 | 3.08 | 3.07 |
Glycerol (g/L) | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Gluconic acid (g/L) | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Sample description (vintage) | Plot D: Meunier with gray rot (2019) | Plot E: Meunier with gray rot (2019) | Plot F: Pinot noir with gray rot (2019) | ||||||
Level of mold contamination | Healthy | 1–5% | 10–15% | Healthy | 1–5% | 10–15% | Healthy | 1–5% | 10–15% |
Sugar (g/L) | 188 | 194 | 198 | 198 | 199 | 202 | 205 | 202 | 201 |
Alcohol (% vol.) | 11.2 | 11.5 | 11.7 | 11.8 | 11.8 | 12.0 | 12.2 | 12.0 | 11.9 |
Tot. acidity (g H2SO4/l) | 7.2 | 7.2 | 6.9 | 6.1 | 5.9 | 6.1 | 7.6 | 7.6 | 7.8 |
pH | 2.94 | 2.96 | 2.98 | 3.09 | 3.10 | 3.11 | 3.08 | 3.08 | 3.07 |
Glycerol (g/L) | <LOD | <LOD | <LOQ | <LOD | <LOQ | 0.4 | <LOD | <LOQ | 0.5 |
Gluconic acid (g/L) | <LOD | 0.05 | 0.14 | <LOD | 0.12 | 0.52 | <LOQ | 0.08 | 0.15 |
Sample description (vintage) | Must of model of contamination: Meunier (2019) | Must of model of contamination: Pinot noir (2020) | |||||||
Level of mold contamination | Healthy | 1% Crustomyces subabruptus | Healthy | 1% Crustomyces subabruptus | |||||
Sugar (g/L) | 199 | 200 | 173 | 173 | |||||
Alcohol (% vol.) | 11.8 | 11.9 | 10.3 | 10.3 | |||||
Tot. acidity (g H2SO4/L) | 7.1 | 7.5 | 9.5 | 7.2 | |||||
pH | 3.10 | 3.04 | 2.97 | 2.91 | |||||
Glycerol (g/L) | <LOQ | 0.4 | <LOD | n.a. | |||||
Gluconic acid (g/L) | 0.04 | 0.10 | <LOD | n.a. |
Compounds | Retention Time (min) | Quantification Ion m/z | Qualifier Ion m/z | Perception Threshold (ng/L) |
---|---|---|---|---|
1-octen-3-one | 15.34 | 55 | 70, 97 | 40 a [8] |
3-octanol | 19.69 | 59 | 83, 101 | 250 b [34] |
1-octen-3-ol | 21.90 | 57 | 72, 85 | 40 000 a [7] |
Concentration of Different Aglycons (µg/L Equivalent 4-nonanol) # | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | 1-octen-3-one | 3-octanol | 1-octen-3-ol | ||||||||||
Healthy | 1–5% | 10–15% | SD|PI | Healthy | 1–5% | 10–15% | SD|PI | Healthy | 1–5% | 10–15% | SD|PI | ||
Powdery mildew | Plot A Chardonnay (2019) | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.04 ± 0.01 | / | 0.21 ± 0.02 | 0.22 ± 0.01 | 0.25 ± 0.01 | / | 0.41 ± 0.12 | 0.21 ± 0.06 | 0.36 ± 0.07 | / |
Plot B Chardonnay (2019) | 0.02 ± 0.02 | 0.04 ± 0.01 | 0.07 ± 0.01 | * | ↑ | 0.27 ± 0.02 | 0.29 ± 0.01 | 0.29 ± 0.01 | / | 0.15 ± 0.03 | 0.10 ± 0.04 | 0.14 ± 0.01 | / | |
Plot C Chardonnay (2020) | 0.03 ± 0.03 | 0.03 ± 0.02 | 0.04 ± 0.03 | / | 0.29 ± 0.01 | 0.30 ± 0.01 | 0.31 ± 0.01 | / | 0.18 ± 0.06 | 0.19 ± 0.02 | 0.21 ± 0.11 | / | |
Gray rot | Plot D Meunier (2019) | 0.04 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | ** | ↓ | 0.28 ± 0.00 | 0.29 ± 0.01 | 0.32 ± 0.01 | ** | ↑ | 0.18 ± 0.04 | 0.20 ± 0.02 | 0.25 ± 0.01 | ** | ↑ |
Plot E Meunier (2019) | 0.03 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.00 | / | 0.30 ± 0.01 | 0.31 ± 0.01 | 0.30 ± 0.00 | / | 0.12 ± 0.01 | 0.15 ± 0.01 | 0.16 ± 0.01 | ** | ↑ | |
Plot F Pinot Noir (2019) | 0.07 ± 0.01 | 0.02 ± 0.00 | ** | ↓ | 0.30 ± 0.00 | 0.30 ± 0.00 | / | 0.24 ± 0.01 | 0.22 ± 0.02 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delcros, L.; Godet, T.; Collas, S.; Hervé, M.; Blondin, B.; Roland, A. Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus. Molecules 2022, 27, 7306. https://doi.org/10.3390/molecules27217306
Delcros L, Godet T, Collas S, Hervé M, Blondin B, Roland A. Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus. Molecules. 2022; 27(21):7306. https://doi.org/10.3390/molecules27217306
Chicago/Turabian StyleDelcros, Léa, Teddy Godet, Sylvie Collas, Marion Hervé, Bruno Blondin, and Aurélie Roland. 2022. "Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus" Molecules 27, no. 21: 7306. https://doi.org/10.3390/molecules27217306
APA StyleDelcros, L., Godet, T., Collas, S., Hervé, M., Blondin, B., & Roland, A. (2022). Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus. Molecules, 27(21), 7306. https://doi.org/10.3390/molecules27217306