Radical-Induced Cascade Annulation/Hydrocarbonylation for Construction of 2-Aryl-4H-chromen-4-ones
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A. Experimental Section
References
- Wu, M.-C.; Peng, C.-F.; Chen, I.-S.; Tsai, I.-L. Antitubercular chromones and flavonoids from Pisonia aculeate. J. Nat. Prod. 2011, 74, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Meragelman, T.L.; Tucker, K.D.; McCloud, T.G.; Cardellina, J.H.; Shoemaker, R.H. Antifungal Flavonoids from Hildegardia Barteri. J. Nat. Prod. 2005, 68, 1790–1792. [Google Scholar] [CrossRef]
- Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chem. Rev. 2014, 114, 4960–4992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Wang, Y.; Luo, S.; Wang, J. Kinetic Resolution and Dynamic Kinetic Resolution of Chromene by Rhodium-Catalyzed Asymmetric Hydroarylation. Angew. Chem. Int. Ed. 2019, 58, 5343–5347. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Yang, W.S.; Shimada, K.; Delva, D.; Patel, M.; Ode, E.; Skouta, R.; Stockwell, B.R. Identification of Simple Compounds with Microtubule-Binding Activity That Inhibit Cancer Cell Growth with High Potency. ACS Med. Chem. Lett. 2012, 3, 35–38. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Meng, L.; Chang, X.; Lin, Z.; Wang, J. Metal-free access to 3-allyl-2-alkoxychromanones via phosphine-catalyzed alkoxy allylation of chromones with MBH carbonates and alcohols. Org. Biomol. Chem. 2021, 19, 2663–2667. [Google Scholar] [CrossRef]
- Oyama, K.; Yoshida, K.; Kondo, T. Recent Progress in the Synthesis of Flavonoids: From Monomers to Supra-Complex Molecules. Curr. Org. Chem. 2011, 15, 2567–2607. [Google Scholar] [CrossRef]
- Verma, A.K.; Pratap, R. Chemistry of biologically important flavones. Tetrahedron 2012, 68, 8523–8538. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. Baicalein as a potent neuroprotective agent: A review. Biomed. Pharmacother. 2017, 95, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, Z.; Hor, C.H.H.; Xiao, H.; Bian, Z.; Wang, J. Asymmetric Synthesis of Flavanols via Cu-catalyzed Kinetic Resolution of Chromenes and Their Anti-inflammatory Activity. Sci. Adv. 2022, 8, eabm9603. [Google Scholar] [CrossRef] [PubMed]
- Banerji, A.; Goomer, N.C. A New Synthesis of Flavones. Synthesis 1980, 11, 874. [Google Scholar] [CrossRef]
- Hirao, I.; Yamaguchi, M.; Hamada, M. A Convenient Synthesis of 2- and 2,3-Substituted 4H-Chromen-4-ones. Synthesis 1984, 12, 1076–1078. [Google Scholar] [CrossRef]
- Müller, É.; Kálai, T.; Jekö, J.; Hideg, K. Synthesis of Spin Labelled Chromones. Synthesis 2000, 10, 1415–1420. [Google Scholar] [CrossRef]
- Okumura, K.; Kondo, K.; Oine, T.; Inoue, I. The Synthesis of Chromone-3-carboxanilides. Chem. Pharm. Bull. 1974, 22, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Becket, G.J.P.; Ellis, G.P. Benzopyrones. Part XII. Novel synthesis of some 3-substituted chromones. Tetrahedron Lett. 1976, 17, 719–720. [Google Scholar] [CrossRef]
- Jaen, J.C.; Wise, L.D.; Heffner, T.G.; Pugsley, T.A.; Meltzer, L.T. Dopamine autoreceptor agonists as potential antipsychotics. (Aminoalkoxy)-4H-1-benzopyran-4-ones. J. Med. Chem. 1991, 34, 248–256. [Google Scholar] [CrossRef]
- Bolós, J.; Gubert, S.; Anglada, L.; Planas, J.M.; Burgarolas, C.; Castelló, J.M.; Sacristán, A.; Ortiz, J.A. 7-[3-(1-Piperidinyl)propoxy]chromenones as Potential Atypical Antipsychotics. J. Med. Chem. 1996, 39, 2962–2970. [Google Scholar] [CrossRef]
- Lubbe, M.; Appel, B.; Flemming, A.; Fischer, C.; Langer, P. Synthesis of 7-hydroxy-2-(2-hydroxybenzoyl)benzo[c]chromen-6-ones by sequential application of domino reactions of 1,3-bis(silyl enol ethers) with benzopyrylium triflates. Tetrahedron 2006, 62, 11755–11759. [Google Scholar] [CrossRef]
- Nohara, A.; Umetani, T.; Sanno, Y. A facile synthesis of chromone-3-carboxaldehyde, chromone-3-carboxylic acid and 3-hydroxymethylchromone. Tetrahedron Lett. 1973, 14, 1995–1998. [Google Scholar] [CrossRef]
- Nohara, A.; Umetani, T.; Sanno, Y. Studies on antianaphylactic agents—I: A facile synthesis of 4-oxo-4H-1-benzopyran-3-carboxaldehydes by Vilsmeier reagents. Tetrahedron 1974, 30, 3553–3561. [Google Scholar] [CrossRef]
- Costantino, L.; Rastelli, G.; Gamberini, M.C.; Vinson, J.A.; Bose, P.; Iannone, A.; Staffieri, M.; Antolini, L.; Del Corso, A.; Mura, U.; et al. 1-Benzopyran-4-one Antioxidants as Aldose Reductase Inhibitors. J. Med. Chem. 1999, 42, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Fillion, E.; Dumas, A.M.; Kuropatwa, B.A.; Malhotra, N.R.; Sitler, T.C. Yb(OTf)3-Catalyzed Reactions of 5-Alkylidene Meldrum’s Acids with Phenols: One-Pot Assembly of 3,4-Dihydrocoumarins, 4-Chromanones, Coumarins, and Chromones. J. Org. Chem. 2006, 71, 409–412. [Google Scholar] [CrossRef]
- Ellis, G.P.; Barker, G. Chromone-2- and -3-carboxylic Acids and their Derivatives. Prog. Med. Chem. 1973, 9, 65–116. [Google Scholar]
- Nixon, N.S.; Scheinmann, F.; Suschitzky, J.L. Heterocyclic syntheses with allene-1,3-dicarboxylic esters and acids: New chromene, chromone, quinolone, α-pyrone and coumarin syntheses. Tetrahedron Lett. 1983, 24, 597–600. [Google Scholar] [CrossRef]
- Pochat, F.; L’Haridon, P. New Substituted Derivatives of Benzopyran and Chromone. Synth. Commun. 1998, 28, 957–962. [Google Scholar] [CrossRef]
- Kumar, P.; Bodas, M.S. A Novel Synthesis of 4H-Chromen-4-ones via Intramolecular Wittig Reaction. Org. Lett. 2000, 2, 3821–3823. [Google Scholar] [CrossRef]
- Jung, J.-C.; Min, J.-P.; Park, O.-S. A Highly Practical Route to 2-Methylchromones from 2-Acetoxybenzoic Acids. Synth. Commun. 2001, 31, 1837–1845. [Google Scholar] [CrossRef]
- Athanasellis, G.; Melagraki, G.; Afantitis, A.; Makridima, K.; Igglessi-Markopoulou, O. A simple synthesis of functionalized 2-amino-3-cyano-4-chromones by application of the N-hydroxybenzotriazole methodology. Arkivoc 2006, 10, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Baruah, S.; Kaishap, P.P.; Gogoi, S. Ru(II)-Catalyzed C–H activation and annulation of salicylaldehydes with monosubstituted and disubstituted alkynes. Chem. Commun. 2016, 52, 13004–13007. [Google Scholar] [CrossRef] [PubMed]
- Benny, A.T.; Radhakrishnan, E.K. Advances in the site-selective C-5, C-3 and C-2 functionalization of chromones via sp2 C–H activation. RSC Adv. 2022, 12, 3343–3358. [Google Scholar] [CrossRef]
- Liu, J.; Song, W.; Yue, Y.; Liu, R.; Yi, H.; Zhuo, K.; Lei, A. Pd(OAc)2/S=PPh3 accelerated activation of gem-dichloroalkenes for the construction of 3-arylchromones. Chem. Commun. 2015, 51, 17576–17579. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.L.N.; Ramakrishna, B.S. Rh-Catalyzed aldehydic C–H alkynylation and annulation. Org. Biomol. Chem. 2020, 18, 1402–1411. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yu, J.; Son, S.H.; Heo, J.; Kim, T.; An, J.-Y.; Inn, K.-S.; Kim, N.-J. A versatile approach to flavones via a one-pot Pd(II)-catalyzed dehydrogenation/oxidative boron-Heck coupling sequence of chromanones. Org. Biomol. Chem. 2016, 14, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Khoobi, M.; Alipour, M.; Zarei, S.; Jafarpour, F.; Shafiee, A. A facile route to flavone and neoflavone backbones via a regioselective palladium catalyzed oxidative Heck reaction. Chem. Commun. 2012, 48, 2985–2987. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ham, K.; Hong, S. Synthetic approach to flavanones and flavones via ligand-free palladium(II)-catalyzed conjugate addition of arylboronic acids to chromones. Org. Biomol. Chem. 2012, 10, 7305–7312. [Google Scholar] [CrossRef]
- Xue, L.; Shi, L.; Han, Y.; Xia, C.; Huynh, H.V.; Li, F. Pd–carbene catalyzed carbonylation reactions of aryl iodides. Dalton Trans. 2011, 40, 7632–7638. [Google Scholar] [CrossRef]
- Zhu, F.; Li, Y.; Wang, Z.; Wu, X.-F. Highly efficient synthesis of flavones via Pd/Ccatalyzed cyclocarbonylation of 2-iodophenol with terminal acetylenes. Catal. Sci. Technol. 2016, 6, 2905–2909. [Google Scholar] [CrossRef]
- Wu, X.-F.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylation Reaction of Aryl Bromides with 2-Hydroxyacetophenones to Form Flavones. Chem. Eur. J. 2012, 18, 12595–12598. [Google Scholar] [CrossRef]
- Miao, H.; Yang, Z. Regiospecific Carbonylative Annulation of Iodophenol Acetates and Acetylenes to Construct the Flavones by a New Catalyst of Palladium-Thiourea-dppp Complex. Org. Lett. 2000, 2, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Rauch, K.K. Aldehyde-Assisted Ruthenium(II)-Catalyzed C-H Oxygenations. Angew. Chem. Int. Ed. 2014, 53, 11285–11288. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, J.; Lin, S.; Jin, X.; Liu, R. C–H Functionalization via Remote Hydride Elimination: Palladium Catalyzed Dehydrogenation of ortho-Acyl Phenols to Flavonoids. Org. Lett. 2017, 19, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Song, E.; Oh, K. Unified Approach to (Thio)chromenones via One-Pot Friedel–Crafts Acylation/Cyclization: Distinctive Mechanistic Pathways of β-Chlorovinyl Ketones. Org. Lett. 2017, 19, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Peng, J.; Wang, D.; Bian, Y.; Sun, P.; Chen, C. Synthesis of 4H-Chromen-4-one Derivatives by Intramolecular Palladium-Catalyzed Acylation of Alkenyl Bromides with Aldehydes. J. Org. Chem. 2017, 82, 5481–5486. [Google Scholar] [CrossRef]
- Son, S.H.; Cho, Y.Y.; Yoo, H.-S.; Lee, S.J.; Kim, Y.M.; Jang, H.J.; Kim, D.H.; Shin, J.-W.; Kim, N.-J. Divergent synthesis of flavones and flavanones from 20-hydroxydihydrochalcones via palladium(II)-catalyzed oxidative cyclization. RSC Adv. 2021, 11, 14000–14006. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Fu, H. K2CO3-Catalyzed Synthesis of Chromones and 4-Quinolones through the Cleavage of Aromatic C-O Bonds. Org. Lett. 2017, 14, 2710–2713. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Yang, W.-W.; Chen, L.-L.; Chen, P.; Wang, Y.-B.; Chen, D.-Y. An efficient tandem synthesis of chromones from o-bromoaryl ynones and benzaldehyde oxime. Org. Biomol. Chem. 2019, 17, 7461–7467. [Google Scholar] [CrossRef]
- Rao, Y.K.; Fang, S.-H.; Tzeng, Y.-M. Synthesis, growth inhibition, and cell cycle evaluations of novel flavonoid derivatives. Bioorg. Med. Chem. 2005, 13, 6850–6855. [Google Scholar] [CrossRef]
- Du, Z.; Ng, H.; Zhang, K.; Zeng, H.; Wang, J. Ionic liquid mediated Cu-catalyzed cascade oxa-Michael-oxidation: Efficient synthesis of flavones under mild reaction conditions. Org. Biomol. Chem. 2011, 9, 6930–6933. [Google Scholar] [CrossRef]
- Yatabe, T.; Jin, X.; Yamaguchi, K.; Mizuno, N. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones. Angew. Chem. Int. Ed. 2015, 54, 13302–13306. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Liu, Y.; Cao, X.; Wan, J. KIO3-Catalyzed Domino C(sp2)−H Bond Sulfenylation and C−N Bond Oxygenation of Enaminones toward the Synthesis of 3-Sulfenylated Chromones. ChemCatChem 2017, 9, 465–468. [Google Scholar] [CrossRef]
- Yoshida, M.; Fujino, Y.; Saito, K.; Doi, T. Regioselective synthesis of flavone derivatives via DMAP-catalyzed cyclization of o-alkynoylphenols. Tetrahedron 2011, 67, 9993–9997. [Google Scholar] [CrossRef]
- Taylor, C.; Bolshan, Y. Metal-free methodology for the preparation of sterically hindered alkynoylphenols and its application to the synthesis of flavones and aurones. Tetrahedron Lett. 2015, 56, 4392–4396. [Google Scholar] [CrossRef]
- Zhang, S.; Wan, C.; Wang, Q.; Zhang, B.; Gao, L.; Zha, Z.; Wang, Z. Synthesis of Chromones through LiOtBu/Air-Mediated Oxidation and Regioselective Cyclization of o-Hydroxyphenyl Propargyl Carbinols. Eur. J. Org. Chem. 2013, 2013, 2080–2083. [Google Scholar] [CrossRef]
- Zhai, D.; Chen, L.; Jia, M.; Ma, S. One Pot Synthesis of g-Benzopyranones via Iron-Catalyzed Aerobic Oxidation and Subsequent 4-Dimethylaminopyridine Catalyzed 6-endo Cyclization. Adv. Synth. Catal. 2018, 360, 153–160. [Google Scholar] [CrossRef]
- Jung, C.; Li, S.; Lee, K.; Viji, M.; Lee, H.; Hyun, S.; Lee, K.; Kang, Y.K.; Chaudhary, C.L.; Jung, J.-K. Reagent-free intramolecular hydrofunctionalization: A regioselective 6-endo-dig cyclization of o-alkynoylphenols. Green Chem. 2022, 24, 2376–2384. [Google Scholar] [CrossRef]
- Li, Q.; He, X.; Tao, J.; Xie, M.; Wang, H.; Li, R.; Shang, Y. Base-mediated 1,4-Conjugate Addition/Intramolecular 5-exo-dig Annulation of Propargylamines with Benzoylacetonitriles and β-Keto Esters for Polysubstituted Furans and Furo[3,4-c]coumarins Formation. Adv. Synth. Catal. 2019, 361, 1874–1886. [Google Scholar] [CrossRef]
- He, X.; Li, R.; Choy, P.Y.; Xie, M.; Duan, J.; Tang, Q.; Shang, Y.; Kwong, F.Y. A Cascade Double 1,4-Addition/Intramolecular Annulation Strategy for Expditious Assembly of Unsymmetrical Dibenzofurans. Commun. Chem. 2021, 4, 42. [Google Scholar] [CrossRef]
- He, X.; Xie, M.; Li, R.; Choy, P.Y.; Tang, Q.; Shang, Y.; Kwong, F.Y. Organocatalytic Approach for Assembling Flavanones via a Cascade 1,4-Conjugate Addition/oxa-Michael Addition between Propargylamines with Water. Org. Lett. 2020, 22, 4306–4310. [Google Scholar] [CrossRef]
- He, X.; Li, R.; Choy, P.Y.; Liu, T.; Yuen, O.Y.; Leung, M.P.; Shang, Y.; Kwong, F.Y. Rapid Access of Alkynyl and Alkenyl Coumarins via a Dipyridinium Methylide and Propargylamine Cascade Reaction. Org. Lett. 2020, 22, 7348–7352. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, R.; Choy, P.Y.; Liu, T.; Wang, J.; Yuen, O.Y.; Leung, M.P.; Shang, Y.; Kwong, F.Y. DMAP-Catalyzed Annulation Approach for Modular Assembly of Furan-Fused Chromenes. Org. Lett. 2020, 22, 9444–9449. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; He, X.; Choy, P.Y.; Wang, Q.; Xie, M.; Li, R.; Xu, K.; Shang, Y.; Kwong, F.Y. Cascade Lactonization/Benzannulation of Propargylamines with Dimethyl 3-Oxoglutarate for Modular Assembly of Hydroxylated/Arene-Functionalized Benzo[c]chromen-6-ones. Org. Lett. 2021, 23, 6455–6460. [Google Scholar] [CrossRef]
- Zhou, T.; He, X.; Zuo, Y.; Wu, Y.; Hu, W.; Zhang, S.; Duan, J.; Shang, Y. Rh-catalyzed formal [3+2] cyclization for synthesis of 5-aryl-2-(quinolin-2-yl)oxazoles and its applications in metal ions probes. Chin. J. Chem. 2021, 39, 621–626. [Google Scholar] [CrossRef]
- Wang, X.; Lei, J.; Guo, S.; Zhang, Y.; Ye, Y.; Tang, S.; Sun, K. Radical selenation of C(sp3)–H bonds to asymmetric selenides and mechanistic study. Chem. Commun. 2022, 58, 1526–1529. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.B.; Prasanth, K.; Anandhan, R. Controlled Photochemical Synthesis of Substituted Isoquinoline-1,3,4(2H)-triones, 3-Hydroxyisoindolin-1-ones, and Phthalimides via Amidyl Radical Cyclization Cascade. Org. Lett. 2022, 24, 3674–3679. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.-L.; Gao, H.; Luo, M.; Zhao, L.; Yang, C.; Guo, L.; Xia, W. Iron-catalyzed ring-opening of cyclic carboxylic acids enabled by photoinduced ligand-to-metal charge transfer. Green Chem. 2022, 24, 5553–5558. [Google Scholar] [CrossRef]
Entry | Variation from the Standard Conditions | Yield (%) b |
---|---|---|
1 | none | 63 |
2 | MeCN instead of DCE | 40 |
3 | toluene instead of DCE | 45 |
4 | DMSO instead of DCE | 42 |
5 | DMF instead of DCE | 35 |
6 | acetone instead of DCE | 0 |
7 | 0.2 equiv. of (PhSe)2 was used | 55 |
8 | 0.5 equiv. of (PhSe)2 was used | 71 |
9 | 1.5 equiv. of (PhSe)2 was used | 59 |
10 | 2.0 equiv. of (PhSe)2 was used | 64 |
11 c | 2.0 equiv. of AIBME was used | 44 |
12 c | 4.0 equiv. of AIBME was used | 52 |
13 c | AIBN instead of AIBME | 37 |
14 c | solvent-free | 85 |
15 c,d | proceeded under blue LED light | 78 |
16 c,d | At 60 °C | 36 |
17 c,d | At 100 °C | 54 |
18 c,d | For 8 h | 59 |
19 c,d | For 18 h | 83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Xu, K.; Liu, Y.; Wang, D.; Tang, Q.; Hui, W.; Chen, H.; Shang, Y. Radical-Induced Cascade Annulation/Hydrocarbonylation for Construction of 2-Aryl-4H-chromen-4-ones. Molecules 2022, 27, 7412. https://doi.org/10.3390/molecules27217412
He X, Xu K, Liu Y, Wang D, Tang Q, Hui W, Chen H, Shang Y. Radical-Induced Cascade Annulation/Hydrocarbonylation for Construction of 2-Aryl-4H-chromen-4-ones. Molecules. 2022; 27(21):7412. https://doi.org/10.3390/molecules27217412
Chicago/Turabian StyleHe, Xinwei, Keke Xu, Yanan Liu, Demao Wang, Qiang Tang, Wenjie Hui, Haoyu Chen, and Yongjia Shang. 2022. "Radical-Induced Cascade Annulation/Hydrocarbonylation for Construction of 2-Aryl-4H-chromen-4-ones" Molecules 27, no. 21: 7412. https://doi.org/10.3390/molecules27217412
APA StyleHe, X., Xu, K., Liu, Y., Wang, D., Tang, Q., Hui, W., Chen, H., & Shang, Y. (2022). Radical-Induced Cascade Annulation/Hydrocarbonylation for Construction of 2-Aryl-4H-chromen-4-ones. Molecules, 27(21), 7412. https://doi.org/10.3390/molecules27217412