Evaluation of Antioxidant Activity and Biotransformation of Opuntia Ficus Fruit: The Effect of In Vitro and Ex Vivo Gut Microbiota Metabolism
Abstract
:1. Introduction
2. Results
2.1. In Vitro Impact of Gut Culture Represented by Microbial Consortium
2.1.1. Flavonoids
Biotransformation of Flavonoids
2.1.2. Phenolics and Organic Acids
Biotransformation of Phenolics and Organic Acids
2.1.3. Fatty Acids
Biotransformation of Fatty Acids
2.2. Impact of Gut Culture Represented by Actual Fecal Matter in Ex Vivo Assay
2.2.1. Biotransformation of Flavonoids
2.2.2. Phenolic and Organic Acids
Biotransformation of Phenolic and Organic Acids
2.2.3. Fatty Acids
Biotransformation of Fatty Acids
2.3. Multivariate Data Analysis of Fermented O. ficus Extracts Using In Vitro and Ex Vivo Cultures
2.3.1. Multivariate Data Analysis of MS Dataset of O. ficus in Response to In Vitro Gut Bacterial Culture
2.3.2. Multivariate Data Analysis of MS Dataset of O. ficus in Response to Ex Vivo Fecal Bacterial Culture
2.4. Antioxidant Effect of Inoculated O. ficus Samples
3. Materials and Methods
3.1. Plant Material
3.2. Gut Microbiota Culture
3.3. In Vitro Incubation of Plant Extract with Gut Bacterial Culture
3.4. Ex Vivo Incubation of Plant Extract with Gut Culture from Donor Fecal Sample
3.5. Metabolites Extraction and UHPLC-QTOF-MS-MS Analysis
3.6. UHPLC-QTOF-MS-MS Multivariate Data Analyses
3.7. Antioxidant Assays of Inocculated O. Ficus Samples
3.7.1. DPPH Antioxidant Assay
3.7.2. FRAP Antioxidant Assay
3.7.3. ORAC Antioxidant Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Farag, M.A.; Sallam, I.E.; Fekry, M.I.; Zaghloul, S.S.; El-Dine, R.S. Metabolite profiling of three Opuntia ficus-indica fruit cultivars using UPLC-QTOF-MS in relation to their antioxidant potential. Food Biosci. 2020, 36, 100673. [Google Scholar] [CrossRef]
- Salehi, E.; Emam-Djomeh, Z.; Askari, G.; Fathi, M. Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties. Carbohydr. Polym. 2019, 206, 565–572. [Google Scholar] [CrossRef]
- Bouyahya, A.; Belmehdi, O.; Benjouad, A.; Ameziane El Hassani, R.; Amzazi, S.; Dakka, N.; Bakri, Y. Pharmacological properties and mechanism insights of Moroccan anticancer medicinal plants: What are the next steps? Ind. Crops Prod. 2020, 147, 112198. [Google Scholar] [CrossRef]
- Abd El-Moaty, H.I.; Sorour, W.A.; Youssef, A.K.; Gouda, H.M. Structural elucidation of phenolic compounds isolated from Opuntia littoralis and their antidiabetic, antimicrobial and cytotoxic activity. South Afr. J. Bot. 2020, 131, 320–327. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, T.B.; Kim, H.W.; Park, S.W.; Kim, H.P.; Sung, S.H. Hepatoprotective Flavonoids in Opuntia ficus-indica Fruits by Reducing Oxidative Stress in Primary Rat Hepatocytes. Pharm. Mag 2017, 13, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Kumar, R.; Ramajayam, R.; Lee Keun, W.; Shin, D.-S. Synthesis, Antioxidant and Molecular Docking Studies of (-)-Catechin Derivatives. J. Korean Chem. Soc. 2021, 65, 106–112. [Google Scholar] [CrossRef]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; De Bellis, L.; Blando, F. Betalains, Phenols and Antioxidant Capacity in Cactus Pear [Opuntia ficus-indica (L.) Mill.] Fruits from Apulia (South Italy) Genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Chauhan, S.P.; Sheth, N.R.; Rathod, I.S.; Suhagia, B.N.; Maradia, R.B. Analysis of betalains from fruits of Opuntia species. Phytochem. Rev. 2013, 12, 35–45. [Google Scholar] [CrossRef]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between Phenolics and Gut Microbiota: Role in Human Health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Aura, A.-M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 2008, 7, 407–429. [Google Scholar] [CrossRef]
- Jiménez, N.; Esteban-Torres, M.; Mancheño, J.M.; de Las Rivas, B.; Muñoz, R. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl Environ. Microbiol 2014, 80, 2991–2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Diaz, L.; Caballero, A.; Segura, A. Pathways for the Degradation of Fatty Acids in Bacteria. In Aerobic Utilization of Hydrocarbons, Oils and Lipids; Handbook of Hydrocarbon and Lipid Microbiology; Springer: Cham, Switzerland, 2017; pp. 1–23. [Google Scholar]
- López de Felipe, F.; de Las Rivas, B.; Muñoz, R. Bioactive compounds produced by gut microbial tannase: Implications for colorectal cancer development. Front. Microbiol 2014, 5, 684. [Google Scholar] [CrossRef] [PubMed]
- Modrackova, N.; Vlkova, E.; Tejnecky, V.; Schwab, C.; Neuzil-Bunesova, V. Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific. Microorganisms 2020, 8, 839. [Google Scholar] [CrossRef] [PubMed]
- Schoefer, L.; Mohan, R.; Schwiertz, A.; Braune, A.; Blaut, M. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ. Microbiol 2003, 69, 5849–5854. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Geng, D.; Liu, S.; Wang, Q.; Liu, S.; Wang, R. A newly isolated human intestinal bacterium strain capable of deglycosylating flavone C-glycosides and its functional properties. Microb. Cell Factories 2019, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A.; Abdelwareth, A.; Sallam, I.E.; el Shorbagi, M.; Jehmlich, N.; Fritz-Wallace, K.; Serena Schäpe, S.; Rolle-Kampczyk, U.; Ehrlich, A.; Wessjohann, L.A.; et al. Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. J. Adv. Res. 2020, 23, 47–59. [Google Scholar] [CrossRef]
- Uhlig, S.; Negård, M.; Heldal, K.K.; Straumfors, A.; Madsø, L.; Bakke, B.; Eduard, W. Profiling of 3-hydroxy fatty acids as environmental markers of endotoxin using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2016, 1434, 119–126. [Google Scholar] [CrossRef]
- Sun, L.; Chen, L.; Jiang, Y.; Zhao, Y.; Wang, F.; Zheng, X.; Li, C.; Zhou, X. Metabolomic profiling of ovary in mice treated with FSH using ultra performance liquid chromatography/mass spectrometry. Biosci Rep. 2018, 38, BSR20180965. [Google Scholar] [CrossRef]
- Das, M.; Saeid, A.; Hossain, M.F.; Jiang, G.-H.; Eun, J.B.; Ahmed, M. Influence of extraction parameters and stability of betacyanins extracted from red amaranth during storage. J. Food Sci Technol 2019, 56, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Zin, M.; Bánvölgyi, S. Conventional extraction of betalain compounds from beetroot peels with aqueous ethanol solvent. Acta Aliment. 2020, 49, 163–169. [Google Scholar] [CrossRef]
- Lazăr, S.; Constantin, O.E.; Stănciuc, N.; Aprodu, I.; Croitoru, C.; Râpeanu, G. Optimization of Betalain Pigments Extraction Using Beetroot by-Products as a Valuable Source. Inventions 2021, 6, 50. [Google Scholar] [CrossRef]
- Zupanets, I.A.; Pidpruzhnykov, Y.V.; Sabko, V.E.; Bezugla, N.P.; Shebeko, S.K. UPLC-MS/MS quantification of quercetin in plasma and urine following parenteral administration. Clin. Phytoscience 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci. 2018, 25, 1622–1631. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, H.-W.; Lee, M.-K.; Kim, Y.J.; Asamenew, G.; Cha, Y.-S.; Kim, J.-B. Phenolic profiling and quantitative determination of common sage (Salvia plebeia R. Br.) by UPLC-DAD-QTOF/MS. Eur. Food Res. Technol. 2018, 244, 1637–1646. [Google Scholar] [CrossRef] [Green Version]
- Byun, D.-H.; Choi, H.-J.; Lee, H.-W.; Jeon, H.-Y.; Choung, W.-J.; Shim, J.-H. Properties and applications of β-glycosidase from Bacteroides thetaiotaomicron that specifically hydrolyses isoflavone glycosides. Int. J. Food Sci. Technol. 2015, 50, 1405–1412. [Google Scholar] [CrossRef]
- Szymanowska-Powałowska, D.; Orczyk, D.; Leja, K. Biotechnological potential of Clostridium butyricum bacteria. Braz J Microbiol 2014, 45, 892–901. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.; Zhang, X.; Pan, Y.; Lu, Y.; Fang, W.; Fang, Z.; Xiao, Y. Light induced expression of β-glucosidase in Escherichia coli with autolysis of cell. BMC Biotechnol. 2017, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gouripur, G.; Kaliwal, B. Screening and optimization of β-glucosidase producing newly isolated Lactobacillus plantarum strain LSP-24 from colostrum milk. Biocatal. Agric. Biotechnol. 2017, 11, 89–96. [Google Scholar] [CrossRef]
- Farag, M.A.; Sharaf El-Din, M.G.; Aboul-Fotouh Selim, M.; Owis, A.I.; Abouzid, S.F. Mass spectrometry-based metabolites profiling of nutrients and anti-nutrients in major legume sprouts. Food Biosci. 2021, 39, 100800. [Google Scholar] [CrossRef]
- Nemeth, K.; Piskula, M.K. Food Content, Processing, Absorption and Metabolism of Onion Flavonoids. Crit. Rev. Food Sci. Nutr. 2007, 47, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Jenner, A.M.; Low, C.S.; Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 2006, 157, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, P.; Polidori, M.C. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2012, 1822, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Yuvakkumar, R.; Vijayakumar, S.; Vaseeharan, B. Cytotoxicity of phloroglucinol engineered silver (Ag) nanoparticles against MCF-7 breast cancer cell lines. Mater. Chem. Phys. 2018, 220, 402–408. [Google Scholar] [CrossRef]
- Wan, J.-X.; Lim, G.; Lee, J.; Sun, X.-B.; Gao, D.-Y.; Si, Y.-X.; Shi, X.-L.; Qian, G.-Y.; Wang, Q.; Park, Y.-D. Inhibitory effect of phloroglucinol on α-glucosidase: Kinetics and molecular dynamics simulation integration study. Int. J. Biol. Macromol. 2019, 124, 771–779. [Google Scholar] [CrossRef]
- Cha, B.K.; Choi, C.H.; Kim, B.J.; Oh, H.-C.; Kim, J.W.; Do, J.H.; Kim, J.G.; Chang, S.K. The Effect of Phloroglucinol in Diarrhea-Dominant Irritable Bowel Syndrome: Randomized, Double-Blind, Placebo-Controlled Trial. Gastroenterology 2011, 140, S-611–S-612. [Google Scholar] [CrossRef]
- Fernández-Fernández, R.; López-Martínez, J.C.; Romero-González, R.; Martínez-Vidal, J.L.; Alarcón Flores, M.I.; Garrido Frenich, A. Simple LC–MS Determination of Citric and Malic Acids in Fruits and Vegetables. Chromatographia 2010, 72, 55–62. [Google Scholar] [CrossRef]
- Al Kadhi, O.; Melchini, A.; Mithen, R.; Saha, S. Development of a LC-MS/MS Method for the Simultaneous Detection of Tricarboxylic Acid Cycle Intermediates in a Range of Biological Matrices. J. Anal. Methods Chem. 2017, 2017, 5391832. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Sun, H.-Y.; Qin, X.-L.; Li, Y.-J.; Liao, S.-G.; Gong, Z.-P.; Lu, Y.; Wang, Y.-L.; Wang, A.-M.; Lan, Y.-Y.; et al. A UPLC-MS/MS Method for Simultaneous Determination of Free and Total Forms of a Phenolic Acid and Two Flavonoids in Rat Plasma and Its Application to Comparative Pharmacokinetic Studies of Polygonum capitatum Extract in Rats. Molecules 2017, 22, 353. [Google Scholar] [CrossRef]
- Zhu, L.-W.; Li, X.-H.; Zhang, L.; Li, H.-M.; Liu, J.-H.; Yuan, Z.-P.; Chen, T.; Tang, Y.-J. Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli. Metab. Eng. 2013, 20, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Burow, L.C.; Mabbett, A.N.; Blackall, L.L. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities. ISME J. 2008, 2, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.; Cross, P.J.; Dobson, R.C.J.; Adams, L.E.; Savka, M.A.; Hudson, A.O. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front. Mol. Biosci. 2018, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Pérez, M.G.; Pérez-Ramírez, I.F.; Paredes-López, O.; Mondragón-Jacobo, C.; Reynoso-Camacho, R. Phytochemical Composition and in Vitro Analysis of Nopal (O. Ficus-Indica) Cladodes at Different Stages of Maturity. Int. J. Food Prop. 2018, 21, 1728–1742. [Google Scholar] [CrossRef] [Green Version]
- Alavi, S.; Sharif, A. Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments: Antioxidant activity of gallic acid and pyrogallol. Eur. J. Lipid Sci. Technol. 2018, 120, 1800319. [Google Scholar] [CrossRef]
- Lima, V.N.; Oliveira-Tintino, C.D.M.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.S.; Cruz, R.P.; Menezes, I.R.A.; et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog. 2016, 99, 56–61. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Da Ros, A.; Masuero, D.; Izquierdo-Cañas, P.M.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Mattivi, F.; Vrhovsek, U. LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars. Food Res. Int. 2019, 125, 108556. [Google Scholar] [CrossRef]
- Yip, L.Y.; Basri, N.; Lim, K.L.; Tan, G.S.; Tan, D.S.W.; Lim, T.K.H.; Ho, Y.S. Targeted LC/MS-Based Quantitative Determination of 8 Endogenous Free Fatty Acids in Human Pleural Effusion Using Surrogate Analytes. FASEB J. 2017, 31, lb229. [Google Scholar] [CrossRef]
- Feng, W.; Ao, H.; Peng, C. Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines. Front. Pharm. 2018, 9, 1354. [Google Scholar] [CrossRef]
- McDonald, J.A.K.; Mullish, B.H.; Pechlivanis, A.; Liu, Z.; Brignardello, J.; Kao, D.; Holmes, E.; Li, J.V.; Clarke, T.B.; Thursz, M.R.; et al. Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota. Gastroenterology 2018, 155, 1495–1507.e1415. [Google Scholar] [CrossRef]
- Luu, M.; Visekruna, A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur. J. Immunol. 2019, 49, 842–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Sadilek, M.; Synovec, R.E.; Lidstrom, M.E. Liquid chromatography–tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. J. Chromatogr. A 2009, 1216, 3280–3289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tang, W.; Chen, J.; Jia, R.; Ma, L.; Wang, S.; Wang, J.; Shen, X.; Chu, Z.; Zhu, C.; et al. Development of Marker-Free Transgenic Potato Tubers Enriched in Caffeoylquinic Acids and Flavonols. J. Agric. Food Chem. 2016, 64, 2932–2940. [Google Scholar] [CrossRef] [PubMed]
- Cabañas-García, E.; Areche, C.; Jáuregui-Rincón, J.; Cruz-Sosa, F.; Pérez-Molphe Balch, E. Phytochemical Profiling of Coryphantha macromeris (Cactaceae) Growing in Greenhouse Conditions Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2019, 24, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yisimayili, Z.; Abdulla, R.; Tian, Q.; Wang, Y.; Chen, M.; Sun, Z.; Li, Z.; Liu, F.; Aisa, H.A.; Huang, C. A comprehensive study of pomegranate flowers polyphenols and metabolites in rat biological samples by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2019, 1604, 460472. [Google Scholar] [CrossRef]
- Missaoui, M.; D’Antuono, I.; D’Imperio, M.; Linsalata, V.; Boukhchina, S.; Logrieco, A.F.; Cardinali, A. Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient. Molecules 2020, 25, 2176. [Google Scholar] [CrossRef]
- Sallam, I.E.; Abdelwareth, A.; Attia, H.; Aziz, R.K.; Homsi, M.N.; von Bergen, M.; Farag, M.A. Effect of Gut Microbiota Biotransformation on Dietary Tannins and Human Health Implications. Microorganisms 2021, 9, 965. [Google Scholar] [CrossRef]
- Ramirez, C.E.; Nouzova, M.; Benigni, P.; Quirke, J.M.E.; Noriega, F.G.; Fernandez-Lima, F. Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry. Talanta 2016, 159, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Lawhon, S.; Maurer, R.; Suyemoto, M.; Altier, C. Intestinal short-chain fatty acids alter Salmonella Typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 2003, 46, 1451–1464. [Google Scholar] [CrossRef]
- Ge, H.; Li, X.; Weiszmann, J.; Wang, P.; Baribault, H.; Chen, J.-L.; Tian, H.; Li, Y. Activation of G Protein-Coupled Receptor 43 in Adipocytes Leads to Inhibition of Lipolysis and Suppression of Plasma Free Fatty Acids. Endocrinology 2008, 149, 4519–4526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munné-Bosch, S.; Pintó-Marijuan, M. Free Radicals, Oxidative Stress and Antioxidants. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; pp. 16–19. [Google Scholar]
- Becker, N.; Kunath, J.; Loh, G.; Blaut, M. Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model. Gut Microbes 2011, 2, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Javdan, B.; Lopez, J.G.; Chankhamjon, P.; Lee, Y.-C.J.; Hull, R.; Wu, Q.; Wang, X.; Chatterjee, S.; Donia, M.S. Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. Cell 2020, 181, 1661–1679.e1622. [Google Scholar] [CrossRef]
- De Leo, M.; Abreu, M.B.D.; Pawlowska, A.M.; Cioni, P.L.; Braca, A. Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses. Phytochem. Lett. 2010, 3, 48–52. [Google Scholar] [CrossRef]
- Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.-W.; De León-Rodríguez, A.; Fomsgaard, I.S.; Barba de la Rosa, A.P. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). J. Food Compos. Anal. 2010, 23, 525–532. [Google Scholar] [CrossRef]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC–DAD–ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Perez de Souza, L.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Cheng, L.; Zhong, G.-Y.; Liu, R.H. Antioxidant and Antiproliferative Activities of Twenty-Four Vitis vinifera Grapes. PLoS ONE 2014, 9, e105146. [Google Scholar] [CrossRef]
- Zhang, H.; Hassan, Y.I.; Liu, R.; Mats, L.; Yang, C.; Liu, C.; Tsao, R. Molecular Mechanisms Underlying the Absorption of Aglycone and Glycosidic Flavonoids in a Caco-2 BBe1 Cell Model. ACS Omega 2020, 5, 10782–10793. [Google Scholar] [CrossRef]
Peak No. | [M-H]− | Rt (sec) | Molecular Formula | Error (ppm) | MS/MS | Name | Class | O. ficus Treated with Gut Microbiota (0.5 h) * | O. ficus Treated with Gut Microbiota (24 h) * |
---|---|---|---|---|---|---|---|---|---|
1 | 133.0160 | 66 | C4H6O5 | −9.08 | 115, 71.01 | Malic acid | Organic acid | + | − |
2 | 169.0158 | 79 | C7H6O5 | −11.61 | 125.02, 107.01, 97.03, 79.02 | Gallic acid | Phenolic acid | + | ++ |
3 | 191.0222 | 81 | C6H8O7 | −9.04 | 173.03, 129.01, 111, 99, 83.01 | (iso)citric acid | Organic acid | + | − |
4 | 207.0159 | 112 | C6H8O8 | −5.73 | 191.05, 127, 115, 99, 87, 73.03 | Hydroxycitric acid | Organic acid | ++ | + |
5 | 125.0256 | 139 | C6H6O3 | −9.21 | 107.01, 97.02, 79.02 | Pyrogallol | Phenolics | − | + |
6 | 117.0205 | 164 | C4H6O4 | −9.94 | 99.01, 73.03 | Succinic acid | Organic acid | + | ++ |
7 | 125.0256 | 171 | C6H6O3 | −9.66 | 107.01, 91.08, 79.01 | Phloroglucinol | Phenolics | − | + |
8 | 205.0368 | 174 | C7H10O7 | −7.28 | 191.05, 127, 111.01 | Homocitric acid | Organic acid | + | − |
9 | 153.0214 | 339 | C7H6O4 | −15.21 | 109.02, 93.03, 82 | Protocatechuic acid | Phenolic acid | + | − |
10 | 199.0265 | 356 | C8H8O6 | −10.21 | 101.38 | Fumarylacetoacetic acid (Maleylacetoacetic acid) | Organic acid | + | ++ |
11 | 117.0566 | 383 | C5H10O3 | −5.15 | 99.02 | Hydroxypentanoic acid (hydroxyvaleric acid) | SCFA | + | ++ |
12 | 541.2307 | 471 | C26H38O12 | 0.92 | 315.13 | Isorhamnetin glycoside | Flavonoids | ++ | + |
13 | 219.0532 | 509 | C8H12O7 | −8.11 | 191.05, 127, 111.01, 87.01 | Dimethyl citrate | Organic acid | ++ | + |
14 | 183.032 | 553 | C8H8O5 | −11.75 | 168, 124.01, 97.02, 78.01 | Methyl gallate | Phenolic acid | ++ | + |
15 | 165.0578 | 589 | C9H10O3 | −15.19 | 147.04, 119.05, 91.01 | 3-(4-Hydroxyphenyl) propanoic acid | Phenolic acid | − | + |
16 | 285.043 | 644 | C15H10O6 | −9.12 | 268.03, 243.03, 195.04, 169.06, 151.03 | Kaempferol | Flavonoids | − | + |
17 | 563.1102 | 691 | C25H24O15 | −10.56 | 447.09, 301.03, 151 | Quercetin glycoside | Flavonoids | ++ | + |
18 | 349.0618 | 713 | C9H18O14 | 2.8 | 197.04, 169.01, 125.05 | Ethyl gallate derivative | Phenolic acid | + | − |
19 | 301.0387 | 788 | C15H10O7 | −10.4 | 179.07, 151 | Quercetin | Flavonoids | + | ++ |
20 | 271.0627 | 803 | C15H12O5 | −5.18 | 253.15, 209.36, 177.37, 151.01, 119.04 | Naringenin | Flavonoids | + | − |
21 | 287.2249 | 835 | C16H32O4 | −8.02 | 271.02, 243.05, 133.01, 115 | Dihydroxyhexadecanoic acid | Fatty acids | + | ++ |
22 | 443.1753 | 844 | C17H32O13 | 2.99 | 329.23, 133.01, 71.01 | Trihydroxyoctadecenoic acid derivative | Fatty acids | ++ | + |
23 | 329.2358 | 860 | C18H34O5 | −7.33 | 133.01, 71.01 | Trihydroxyoctadecenoic acid | Fatty acids | − | + |
24 | 663.2948 | 874 | C41H44O8 | 5.15 | 547.28, 431.26, 287.23, 133.01, 115 | Dihydroxyhexadecanoic acid derivative | Fatty acids | + | − |
25 | 547.2805 | 888 | C26H44O12 | −8.15 | 519.26, 431.26, 287.22, 143.03, 133.01, 115 | Dihydroxyhexadecanoic acid derivative | Fatty acids | ++ | + |
26 | 269.0478 | 893 | C15H10O5 | −6.99 | 251.16, 225.04, 201.06, 151, 117.03 | Apigenin | Flavonoids | + | ++ |
27 | 299.0577 | 902 | C16H12O6 | −11.77 | 284.03, 248.08, 151 | Diosmetin | Flavonoids | + | − |
28 | 283.0643 | 921 | C16H12O5 | −9.88 | 268.04, 239.03, 211.04, 179.03, 151.01, 117.03 | Acacetin | Flavonoids | + | − |
29 | 277.1822 | 997 | C17H26O3 | −4.53 | 253.18, 223.06, 123 | Panaxytriol | Fatty alcohol | − | + |
30 | 483.3161 | 1028 | C23H48O10 | 0.82 | 379.08, 321.39, 255.23, 237.05 | Palmitic acid derivative | Fatty acids | + | − |
31 | 239.0701 | 1033 | C15H12O3 | 6.99 | 207.04, 197.36, 135.03 | Hydroxyflavanone | Flavonoids | + | − |
32 | 295.2301 | 1039 | C18H32O3 | −7.16 | 277.21, 251, 183.13 | Hydroxylinoleic acid | Fatty acids | + | − |
33 | 243.1984 | 1066 | C14H28O3 | −6.11 | 219.01, 171.27, 99.02 | Hydroxytetradecanoic acid | Fatty acids | + | − |
34 | 271.2278 | 1132 | C16H32O3 | −0.76 | 253.19, 225.22 | Hydroxyhexadecanoic acid | Fatty acids | + | ++ |
35 | 471.3509 | 1132 | C30H48O4 | −6.39 | 429.35, 359.09, 306.09 | Hydroxybetulinic acid | Triterpenoid | + | − |
36 | 253.2196 | 1192 | C16H30O2 | −8.38 | 235.23, 209.15 | Palmitoleic acid | Fatty acids | + | − |
37 | 279.2351 | 1222 | C18H32O2 | −7.06 | 237.09, 187.01 | Linoleic acid | Fatty acids | + | − |
38 | 255.2355 | 1247 | C16H32O2 | −10.98 | 237.25, 183.1 | Palmitic acid | Fatty acids | + | ++ |
39 | 281.2521 | 1258 | C18H34O2 | −10.85 | 237.03, 171.1 | Oleic acid | Fatty acids | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sallam, I.E.; Rolle-Kampczyk, U.; Schäpe, S.S.; Zaghloul, S.S.; El-Dine, R.S.; Shao, P.; Bergen, M.v.; Farag, M.A. Evaluation of Antioxidant Activity and Biotransformation of Opuntia Ficus Fruit: The Effect of In Vitro and Ex Vivo Gut Microbiota Metabolism. Molecules 2022, 27, 7568. https://doi.org/10.3390/molecules27217568
Sallam IE, Rolle-Kampczyk U, Schäpe SS, Zaghloul SS, El-Dine RS, Shao P, Bergen Mv, Farag MA. Evaluation of Antioxidant Activity and Biotransformation of Opuntia Ficus Fruit: The Effect of In Vitro and Ex Vivo Gut Microbiota Metabolism. Molecules. 2022; 27(21):7568. https://doi.org/10.3390/molecules27217568
Chicago/Turabian StyleSallam, Ibrahim E., Ulrike Rolle-Kampczyk, Stephanie Serena Schäpe, Soumaya S. Zaghloul, Riham S. El-Dine, Ping Shao, Martin von Bergen, and Mohamed A. Farag. 2022. "Evaluation of Antioxidant Activity and Biotransformation of Opuntia Ficus Fruit: The Effect of In Vitro and Ex Vivo Gut Microbiota Metabolism" Molecules 27, no. 21: 7568. https://doi.org/10.3390/molecules27217568
APA StyleSallam, I. E., Rolle-Kampczyk, U., Schäpe, S. S., Zaghloul, S. S., El-Dine, R. S., Shao, P., Bergen, M. v., & Farag, M. A. (2022). Evaluation of Antioxidant Activity and Biotransformation of Opuntia Ficus Fruit: The Effect of In Vitro and Ex Vivo Gut Microbiota Metabolism. Molecules, 27(21), 7568. https://doi.org/10.3390/molecules27217568