Design Two Novel Tetrahydroquinoline Derivatives against Anticancer Target LSD1 with 3D-QSAR Model and Molecular Simulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. CoMFA and CoMSIA Models
2.2. CoMFA and CoMSIA Contour Maps
2.3. Design of New Derivatives
2.4. MD Simulations Analyses
2.5. Binding Free Energy Calculation
2.6. ADME and Bioavailability Analysis
3. Materials and Methods
3.1. Data Sets and Structure Alignment
3.2. 3D-QSAR Models and Statistical Analysis
3.3. Molecular Docking
3.4. Molecular Dynamics Simulation
3.5. Binding Free Energy Calculation
3.6. ADME Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J.R.; Cole, P.A.; Casero, R.A.; Shi, Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004, 119, 941–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamo, A.; Sesé, B.; Boue, S.; Castaño, J.; Paramonov, I.; Barrero, M.J.; Belmonte, J.C.I. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat. Cell Biol. 2011, 13, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Lokken, A.A.; Zeleznik-Le, N.J. Breaking the LSD1/KDM1A addiction: Therapeutic targeting of the epigenetic modifier in AML. Cancer Cell 2012, 21, 451–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klose, R.J.; Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 2007, 8, 307–318. [Google Scholar] [CrossRef]
- Nicholson, T.B.; Chen, T. LSD1 demethylates histone and non-histone proteins. Epigenetics 2009, 4, 129–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamamoto, R.; Saloura, V.; Nakamura, Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat. Rev. Cancer 2015, 15, 110–124. [Google Scholar]
- Jin, L.; Hanigan, C.L.; Wu, Y.; Wang, W.; Park, B.H.; Woster, P.M.; Casero, R.A., Jr. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53-and DNMT1 (DNA methyltransferase 1)-independent manner. Biochem. J. 2013, 449, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.-X.; Tian, S.; Zhang, Z.-D.; Feng, T.; Li, H.-Q. LSD1 inhibitors for anticancer therapy: A patent review (2017-present). Expert Opin. Ther. Pat. 2022, 32, 1027–1042. [Google Scholar] [CrossRef]
- Yuan, C.; Li, Z.; Qi, B.; Zhang, W.; Cheng, J.; Wang, Y. High expression of the histone demethylase LSD 1 associates with cancer cell proliferation and unfavorable prognosis in tongue cancer. J. Oral Pathol. Med. 2015, 44, 159–165. [Google Scholar] [CrossRef]
- Derr, R.S.; van Hoesel, A.Q.; Benard, A.; Goossens-Beumer, I.J.; Sajet, A.; Dekker-Ensink, N.G.; de Kruijf, E.M.; Bastiaannet, E.; Smit, V.T.; van de Velde, C.J. High nuclear expression levels of histone-modifying enzymes LSD1, HDAC2 and SIRT1 in tumor cells correlate with decreased survival and increased relapse in breast cancer patients. BMC Cancer 2014, 14, 604. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liu, X.; Jiang, G.; Chen, H.; Guo, J.; Weng, X. Relationship between LSD1 expression and E-cadherin expression in prostate cancer. Int. Urol. Nephrol. 2015, 47, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, B.; Zhang, K.; Lei, Z.; Guo, Y.; Xiao, H.; Wang, J.; Fan, L.; Lan, C.; Wei, Y. High expression of lysine-specific demethylase 1 correlates with poor prognosis of patients with esophageal squamous cell carcinoma. Biochem. Biophys. Res. Commun. 2013, 437, 192–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Ge, J.; Lu, Q.; Ping, G.; Yang, C.; Fang, X. Expression of Lysine-specific demethylase 1 in human epithelial ovarian cancer. J. Ovarian Res. 2015, 8, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beilner, D.; Kuhn, C.; Kost, B.P.; Jückstock, J.; Mayr, D.; Schmoeckel, E.; Dannecker, C.; Mahner, S.; Jeschke, U.; Heidegger, H.H. Lysine-specific histone demethylase 1A (LSD1) in cervical cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 2843–2850. [Google Scholar] [CrossRef]
- Kahl, P.; Gullotti, L.; Heukamp, L.C.; Wolf, S.; Friedrichs, N.; Vorreuther, R.; Solleder, G.; Bastian, P.J.; Ellinger, J.r.; Metzger, E. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 2006, 66, 11341–11347. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, H.; Chen, Y.; Sun, Y.; Yang, F.; Yu, W.; Liang, J.; Sun, L.; Yang, X.; Shi, L. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009, 138, 660–672. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liu, L.; Chen, X.; Cheng, J.; Zhang, H.; Zhang, C.; Shan, J.; Shen, J.; Qian, C. LSD1 Stimulates Cancer-Associated Fibroblasts to Drive Notch3-Dependent Self-Renewal of Liver Cancer Stem-like CellsLSD1 Regulates Liver CSC Self-Renewal via Notch3 Signaling. Cancer Res. 2018, 78, 938–949. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Zhang, S.; Wang, L.; Wu, W.; Zhao, H. LINC00511 promotes the progression of non-small cell lung cancer through downregulating LATS2 and KLF2 by binding to EZH2 and LSD1. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8377–8390. [Google Scholar]
- Pan, H.-M.; Lang, W.-Y.; Yao, L.-J.; Wang, Y.; Li, X.-L. shRNA-interfering LSD1 inhibits proliferation and invasion of gastric cancer cells via VEGF-C/PI3K/AKT signaling pathway. World J. Gastrointest. Oncol. 2019, 11, 622. [Google Scholar] [CrossRef]
- Metzger, E.; Wissmann, M.; Yin, N.; Müller, J.M.; Schneider, R.; Peters, A.H.; Günther, T.; Buettner, R.; Schüle, R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005, 437, 436–439. [Google Scholar] [CrossRef]
- Dhanak, D. Drugging the cancer epigenome. In Proceedings of the 104th Annual Meeting of the American Association for Cancer Research, Washington, DC, USA, 6–10 April 2013. [Google Scholar]
- Hitchin, J.R.; Blagg, J.; Burke, R.; Burns, S.; Cockerill, M.J.; Fairweather, E.E.; Hutton, C.; Jordan, A.M.; McAndrew, C.; Mirza, A. Development and evaluation of selective, reversible LSD1 inhibitors derived from fragments. Med. Chem. Commun. 2013, 4, 1513–1522. [Google Scholar] [CrossRef]
- Ma, L.-Y.; Zheng, Y.-C.; Wang, S.-Q.; Wang, B.; Wang, Z.-R.; Pang, L.-P.; Zhang, M.; Wang, J.-W.; Ding, L.; Li, J. Design, synthesis, and structure–activity relationship of novel LSD1 inhibitors based on pyrimidine–thiourea hybrids as potent, orally active antitumor agents. J. Med. Chem. 2015, 58, 1705–1716. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.; Wang, W.-J.; Xiang, P.; Luo, X.-M.; Yang, L.; Yang, S.-Y.; Zhao, Y.-L. Synthesis and biological evaluation of novel (E)-N′-(2, 3-dihydro-1H-inden-1-ylidene) benzohydrazides as potent LSD1 inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 4552–4557. [Google Scholar] [CrossRef]
- Mohammad, H.P.; Smitheman, K.N.; Kamat, C.D.; Soong, D.; Federowicz, K.E.; Van Aller, G.S.; Schneck, J.L.; Carson, J.D.; Liu, Y.; Butticello, M. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 2015, 28, 57–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Stubbs, M.; Liu, X.M.; Diamond, M.; Dostalik, V.; Ye, M.; Lo, Y.; Favata, M.; Yang, G.; Gallagher, K. Discovery of INCB059872, a novel FAD-directed LSD1 inhibitor that is effective in preclinical models of human and murine AML. Cancer Res. 2016, 76, 4712. [Google Scholar] [CrossRef]
- Xu, Y.; He, Z.; Yang, M.; Gao, Y.; Jin, L.; Wang, M.; Zheng, Y.; Lu, X.; Zhang, S.; Wang, C. Investigating the binding mode of reversible LSD1 inhibitors derived from stilbene derivatives by 3D-QSAR, molecular docking, and molecular dynamics simulation. Molecules 2019, 24, 4479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Gao, Y.; Yang, M.; Wang, M.; Lu, J.; Wu, Z.; Zhao, J.; Yu, Y.; Wang, C.; Zhao, Z. Design and identification of two novel resveratrol derivatives as potential LSD1 inhibitors. Future Med. Chem. 2021, 13, 1415–1433. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhang, X.; Yan, J.; Wang, J.; Jiang, Q.; Zhao, L.; Zhao, D.; Cheng, M. Design, synthesis and biological evaluation of tetrahydroquinoline-based reversible LSD1 inhibitors. Eur. J. Med. Chem. 2020, 194, 112243. [Google Scholar] [CrossRef]
- Mohammad, H.; Smitheman, K.; Van Aller, G.; Cusan, M.; Kamat, S.; Liu, Y.; Johnson, N.; Hann, C.; Armstrong, S.; Kruger, R. 212 Novel anti-tumor activity of targeted LSD1 inhibition by GSK2879552. Eur. J. Cancer 2014, 72. [Google Scholar] [CrossRef]
- Lee, S.H.; Liu, X.M.; Diamond, M.; Dostalik, V.; Favata, M.; He, C.; Wu, L.; Wynn, R.; Yao, W.; Hollis, G. The evaluation of INCB059872, an FAD-directed inhibitor of LSD1, in preclinical models of human small cell lung cancer. Cancer Res. 2016, 76, 4704. [Google Scholar] [CrossRef]
- Wang, S.; Gan, X.; Wang, Y.; Li, S.; Yi, C.; Chen, J.; He, F.; Yang, Y.; Hu, D.; Song, B. Novel 1, 3, 4-oxadiazole derivatives containing a cinnamic acid moiety as potential bactericide for rice bacterial diseases. Int. J. Mol. Sci. 2019, 20, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.-z.; Liu, M. A double-activity (green algae toxicity and bacterial genotoxicity) 3D-QSAR model based on the comprehensive index method and its application in fluoroquinolones’ modification. Int. J. Environ. Res. Public Health 2020, 17, 942. [Google Scholar] [CrossRef]
- Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inf. 2010, 29, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wang, J.; Wang, R.; Lin, Y.; Hu, Y.; Wang, Y.; Shu, M.; Lin, Z. Combined pharmacophore modeling, 3D-QSAR, homology modeling and docking studies on CYP11B1 inhibitors. Molecules 2015, 20, 1014–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Clark, M.; Cramer, R.D., III; Van Opdenbosch, N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982–1012. [Google Scholar] [CrossRef]
- Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228. [Google Scholar] [CrossRef]
- Qian, P.P.; Wang, S.; Feng, K.R.; Ren, Y.J. Molecular modeling studies of 1, 2, 4-triazine derivatives as novel h-DAAO inhibitors by 3D-QSAR, docking and dynamics simulations. RSC Adv. 2018, 8, 14311–14327. [Google Scholar] [CrossRef] [Green Version]
- Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967. [Google Scholar] [CrossRef]
- Cramer, R.D., III; Bunce, J.D.; Patterson, D.E.; Frank, I.E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct.-Act. Relat. 1988, 7, 18–25. [Google Scholar] [CrossRef]
- Klebe, G. Comparative molecular similarity indices analysis: CoMSIA. In 3D QSAR in Drug Design; Springer: Dordrecht, The Netherlands, 1998; pp. 87–104. [Google Scholar]
- Balasubramanian, P.K.; Balupuri, A.; Gadhe, C.G.; Cho, S.J. 3D QSAR modeling study on 7-aminofuro [2, 3-c] pyridine derivatives as TAK1 inhibitors using CoMFA and COMSIA. Med. Chem. Res. 2015, 24, 2347–2365. [Google Scholar] [CrossRef]
- Hellberg, S.; Sjoestroem, M.; Skagerberg, B.; Wold, S. Peptide quantitative structure-activity relationships, a multivariate approach. J. Med. Chem. 1987, 30, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-Q.; Lei, M.; Lu, A.-J.; Zhao, X.; Yin, X.-J.; Gao, Q.-Z. 3D-QSAR studies of boron-containing dipeptides as proteasome inhibitors with CoMFA and CoMSIA methods. Eur. J. Med. Chem. 2009, 44, 1486–1499. [Google Scholar] [CrossRef] [PubMed]
- Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the definition of the Q 2 parameter for QSAR validation. J. Chem. Inf. Model. 2009, 49, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem. 2010, 10, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P.K.; Kar, S.; Das, R.N. Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data. J. Comput. Chem. 2013, 34, 1071–1082. [Google Scholar] [CrossRef]
- Rücker, C.; Rücker, G.; Meringer, M. y-Randomization and its variants in QSPR/QSAR. J. Chem. Inf. Model. 2007, 47, 2345–2357. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein− ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [Green Version]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.D.W.; Darden, T.A.; Duke, D.G.; Gilson, M.K.; Gohlke, H. AMBER 18. University of California: San Francisco, CA, USA, 2018. Available online: https://ambermd.org/doc12/Amber18.pdf (accessed on 1 December 2021).
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Hub, J.S.; de Groot, B.L.; Grubmüler, H.; Groenhof, G. Quantifying artifacts in Ewald simulations of inhomogeneous systems with a net charge. J. Chem. Theory Comput. 2014, 10, 381–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Gunsteren, W.; Berendsen, H.J. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 1977, 34, 1311–1327. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Ma, C.Y.; Yang, J.; Gao, Q.B.; Sun, X.D.; Ding, L.; Liu, H.M. Investigating the binding mechanism of (4-Cyanophenyl) glycine derivatives as reversible LSD1 by 3D-QSAR, molecular docking and molecular dynamics simulations. J. Mol. Struct. 2019, 1175, 698–707. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Yang, J.; Sun, X.D.; Ma, C.Y.; Gao, Q.B.; Ding, L.; Liu, H.M. Probing the binding mechanism of substituted pyridine derivatives as effective and selective lysine-specific demethylase 1 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2018, 37, 3482–3495. [Google Scholar] [CrossRef]
- Miller, B.R., III; McGee Jr, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA. py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef]
- Delaney, J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, N.; Righetti, L.; Generotti, S.; Cavanna, D.; Ferrer, E.; Dall’Asta, C.; Suman, M. Investigating the in vitro catabolic fate of Enniatin B in a human gastrointestinal and colonic model. Food Chem. Toxicol. 2020, 137, 111166. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, C.R.; Smith, G.; Smith, R.L. Science, medicine, and the future-Pharmacogenetics. Br. Med. J. 2000, 320, 987–990. [Google Scholar] [CrossRef]
- Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol. 2014, 10, 379–393. [Google Scholar] [CrossRef]
- Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef]
q2 | ONC | r2 | R2pred | SEE | F-Value | Contributions | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
S | E | H | A | D | |||||||
CoMFA- S | 0.778 | 2 | 0.877 | 0.709 | 0.336 | 96.151 | 1 | ||||
CoMFA- E | 0.417 | 3 | 0.873 | 0.037 | 0.347 | 59.619 | 1 | ||||
CoMFA- SE | 0.709 | 3 | 0.914 | 0.600 | 0.287 | 91.530 | 0.601 | 0.399 | |||
CoMSIA- EHDA | 0.666 | 6 | 0.966 | 0.322 | 0.190 | 110.135 | 0.359 | 0.222 | 0.155 | 0.264 | |
CoMSIA- SHDA | 0.764 | 7 | 0.965 | 0.713 | 0.198 | 86.831 | 0.150 | 0.343 | 0.201 | 0.307 | |
CoMSIA- SEDA | 0.661 | 6 | 0.959 | 0.281 | 0.209 | 90.663 | 0.134 | 0.419 | 0.176 | 0.271 | |
CoMSIA- SEHD | 0.719 | 4 | 0.960 | 0.498 | 0.198 | 151.613 | 0.127 | 0.393 | 0.237 | 0.243 | |
CoMSIA- SEHA | 0.722 | 6 | 0.967 | 0.451 | 0.190 | 110.811 | 0.147 | 0.425 | 0.267 | 0.162 | |
CoMSIA- ALL | 0.705 | 6 | 0.970 | 0.423 | 0.179 | 124.592 | 0.102 | 0.331 | 0.195 | 0.144 | 0.228 |
Condition | Parameters | Threshold Value | CoMFA | CoMSIA |
---|---|---|---|---|
1 | >0.6 | 0.754 | 0.749 | |
2a | 0.752 | 0.745 | ||
2b | 0.650 | 0.706 | ||
3a | 0.85 < k < 1.15 | 0.971 | 0.975 | |
3b | < 1.15 | 1.025 | 1.021 | |
4a | <0.1 | 0.003 | 0.005 | |
4b | <0.1 | 0.138 | 0.057 | |
5 | <0.3 | 0.102 | 0.039 | |
6 | >0.5 | 0.720 | 0.702 |
CoMFA | CoMSIA | |||
---|---|---|---|---|
Iteration | q2 | r2 | q2 | r2 |
Random_1 | −0.116 | 0.111 | −0.117 | 0.161 |
Random_2 | −0.098 | 0.118 | −0.097 | 0.424 |
Random_3 | −0.174 | 0.326 | −0.159 | 0.173 |
Random_4 | −0.094 | 0.120 | −0.018 | 0.248 |
Random_5 | −0.026 | 0.149 | −0.007 | 0.156 |
Random_6 | −0.046 | 0.181 | −0.03 | 0.471 |
Random_7 | −0.113 | 0.129 | −0.142 | 0.247 |
Random_8 | −0.209 | 0.478 | 0.007 | 0.613 |
Random_9 | −0.34 | 0.281 | −0.207 | 0.095 |
Random_10 | −0.18 | 0.144 | −0.071 | 0.279 |
No. | R1 | R2 | Predicted pIC50 | Glide Score (kcal/mol) | |
---|---|---|---|---|---|
CoMFA | CoMSIA | ||||
18x | 6.40 | 6.37 | −6.23 | ||
D1 | 6.74 | 8.21 | −10.20 | ||
D2 | 6.94 | 8.09 | −8.51 | ||
D4 | 6.41 | 8.39 | −9.32 | ||
Z5 | 6.79 | 7.19 | −8.58 | ||
Z17 | 6.58 | 7.29 | −8.09 | ||
P8 | 6.56 | 7.78 | −8.71 | ||
P56 | 6.51 | 7.91 | −7.49 |
Complex | Docking | MD | |||||
---|---|---|---|---|---|---|---|
H-Bond | Length (Å) | Energy (kcal/mol) | H-Bond | Length (Å) | Energy (kcal/mol) | Hydrogen Bond Occupancy | |
LSD1–18x | Asp555=O⋯HN | 1.7 | −9.0 | Asp555=O⋯HN | 1.9 | −13.3 | 50% |
Asp555–HO⋯HN | 2.2 | −5.5 | 80% | ||||
LSD1–D1 | Asp555–HO⋯HN | 1.5 | −6.7 | Asp555=O⋯HN | 2.0 | −13.2 | 45% |
Glu559=O⋯HN | 1.7 | −20.1 | 100% | ||||
Pro808=O⋯HN | 1.8 | −13.3 | 100% | ||||
Phe538=O⋯HN | 2.2 | −1.1 | 20% | ||||
LSD1–D4 | Asp555–HO⋯HN | 1.8 | −5.0 | Asp555=O⋯HN | 1.9 | −13.7 | 100% |
Glu559=O⋯HN | 1.7 | −18.2 | 100% | ||||
Pro808=O⋯HN | 1.8 | −5.8 | 100% | ||||
Phe538=O⋯HN | 1.8 | −5.7 | 65% | ||||
LSD1–Z17 | Asp555=O⋯HN | 1.9 | −2.8 | Asp555–HO⋯HN | 1.7 | −13.1 | 80% |
Glu559=O⋯HN | 1.9 | −12.5 |
Contribution | LSD1–D1 | LSD1–D4 | LSD1–Z17 | LSD1–18x |
---|---|---|---|---|
−44.19 | −56.09 | −56.49 | −46.43 | |
−500.90 | −280.71 | −164.01 | −161.03 | |
459.32 | 298.54 | 195.77 | 183.03 | |
−5.52 | −5.67 | −5.35 | −5.03 | |
−55.29 | −43.93 | −30.09 | −29.45 | |
pIC50 a | 8.21 | 8.09 | 7.29 | 6.37 |
6.27 b |
No. | MW (g mol−1) | Fraction Csp3 | N | TPSA (Å2) | Log P | Log S | HIA | BBB | CYP3A4 Inhibition | Log Kp (cm s−1) | Drug-Likeness Lipinski |
---|---|---|---|---|---|---|---|---|---|---|---|
18x | 512.62 | 0.32 | 7 | 58.53 | 4.83 | −6.35 | High | Yes | No | −5.61 | Yes |
D1 | 588.69 | 0.36 | 10 | 101.78 | 4.11 | −6.03 | High | No | Yes | −6.70 | Yes |
D2 | 616.74 | 0.40 | 11 | 79.00 | 4.75 | −6.74 | High | No | Yes | −6.17 | Yes |
D4 | 604.16 | 0.38 | 10 | 98.54 | 4.9 | −6.52 | High | No | Yes | −6.34 | Yes |
Z5 | 542.64 | 0.34 | 8 | 78.76 | 3.78 | −6.27 | High | No | No | −6.00 | Yes |
Z17 | 550.63 | 0.32 | 8 | 78.76 | 3.59 | −6.15 | High | No | No | −6.24 | Yes |
P8 | 615.74 | 0.40 | 13 | 100.02 | 4.68 | −5.63 | High | No | No | −7.26 | Yes |
P56 | 619.76 | 0.40 | 13 | 100.02 | 4.64 | −5.65 | High | No | No | −7.28 | Yes |
Optimal range | <800 | 0.25–1 | ≤10 | 20–130 | −0.7–5 | −10–6 | - | - | - | - | - |
No. | Chemical Structures | Inhibitory Activity | ||
---|---|---|---|---|
R1 | R2 | IC50 (μM) | pIC50 | |
1 | 0.00825 | 8.08355 | ||
2 b | 0.01726 | 7.76296 | ||
3 | 0.03126 | 7.50501 | ||
4 | 0.03626 | 7.44057 | ||
5 | 0.03637 | 7.43926 | ||
6 | 0.03658 | 7.43676 | ||
7 | 0.03768 | 7.42389 | ||
8 b | 0.03825 | 7.41737 | ||
9 | 0.03834 | 7.41635 | ||
10 | 0.04678 | 7.32994 | ||
11 b | 0.04736 | 7.32459 | ||
12 | 0.05349 | 7.27173 | ||
13 | 0.06000 | 7.22185 | ||
14 b | 0.08035 | 7.09501 | ||
15 | 0.14856 | 6.82810 | ||
16 | 0.15000 | 6.82391 | ||
17 b | 0.15000 | 6.82391 | ||
18 | 0.18000 | 6.74473 | ||
19 | 0.39000 | 6.40894 | ||
20 | 0.53000 | 6.27572 | ||
21 | 0.54000 | 6.26761 | ||
22 a | 0.54000 | 6.26761 | ||
23 b | 0.73232 | 6.13530 | ||
24 b | 0.78000 | 6.10791 | ||
25 | 0.92000 | 6.03621 | ||
26 | 0.93000 | 6.03152 | ||
27 | 0.97000 | 6.01323 | ||
28 | 1.13000 | 5.94692 | ||
29 b | 1.56000 | 5.80688 | ||
30 | 1.82000 | 5.73993 | ||
31 | 2.31000 | 5.63639 | ||
32 | 2.81000 | 5.55129 | ||
33 b | 3.92000 | 5.40671 | ||
34 | 4.44000 | 5.35262 | ||
35 | 4.55000 | 5.34199 | ||
36 | 4.58000 | 5.33914 | ||
37 | 5.12000 | 5.29073 | ||
38 | 13.0900 | 4.88306 | ||
39 b | 18.8000 | 4.72584 | ||
40 | 25.6400 | 4.59108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Fan, B.; Gao, Y.; Chen, Y.; Han, D.; Lu, J.; Liu, T.; Gao, Q.; Zhang, J.Z.; Wang, M. Design Two Novel Tetrahydroquinoline Derivatives against Anticancer Target LSD1 with 3D-QSAR Model and Molecular Simulation. Molecules 2022, 27, 8358. https://doi.org/10.3390/molecules27238358
Xu Y, Fan B, Gao Y, Chen Y, Han D, Lu J, Liu T, Gao Q, Zhang JZ, Wang M. Design Two Novel Tetrahydroquinoline Derivatives against Anticancer Target LSD1 with 3D-QSAR Model and Molecular Simulation. Molecules. 2022; 27(23):8358. https://doi.org/10.3390/molecules27238358
Chicago/Turabian StyleXu, Yongtao, Baoyi Fan, Yunlong Gao, Yifan Chen, Di Han, Jiarui Lu, Taigang Liu, Qinghe Gao, John Zenghui Zhang, and Meiting Wang. 2022. "Design Two Novel Tetrahydroquinoline Derivatives against Anticancer Target LSD1 with 3D-QSAR Model and Molecular Simulation" Molecules 27, no. 23: 8358. https://doi.org/10.3390/molecules27238358
APA StyleXu, Y., Fan, B., Gao, Y., Chen, Y., Han, D., Lu, J., Liu, T., Gao, Q., Zhang, J. Z., & Wang, M. (2022). Design Two Novel Tetrahydroquinoline Derivatives against Anticancer Target LSD1 with 3D-QSAR Model and Molecular Simulation. Molecules, 27(23), 8358. https://doi.org/10.3390/molecules27238358