Green and Efficient Construction of Chromeno[3,4-c]pyrrole Core via Barton–Zard Reaction from 3-Nitro-2H-chromenes and Ethyl Isocyanoacetate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Synthesis of Compounds 12aa–dg
3.3. Synthesis of Compounds 13–15
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fukuda, T.; Ishibashi, F.; Iwao, M. Lamellarin alkaloids: Isolation, synthesis, and biological activity. In The Alkaloids: Chemistry and Biology, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 83, pp. 1–112. [Google Scholar]
- Seipp, K.; Geske, L.; Opatz, T. Marine Pyrrole Alkaloids. Mar. Drugs 2021, 19, 514. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C. Anticancer Properties of Lamellarins. Mar. Drugs 2015, 13, 1105–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chittchang, M.; Batsomboon, P.; Ruchirawat, S.; Ploypradith, P. Cytotoxicities and structure–activity relationships of natural and unnatural lamellarins toward cancer cell lines. ChemMedChem 2009, 4, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Quesada, A.R.; Grávalos, M.D.G.; Fernandez Puentes, J.L. Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. Cancer 1996, 74, 677–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, C.P.; Reddy, M.V.R.; Rocha, G.; Bushman, F.D.; Faulkner, D.J. Total synthesis and evaluation of lamellarin α 20-sulfate analogues. Bioorg. Med. Chem. 2002, 10, 3285–3290. [Google Scholar] [CrossRef]
- Baral, N.; Mishra, D.R.; Mishra, N.P.; Mohapatra, S.; Raiguru, B.P.; Panda, P.; Nayak, S.; Nayak, M.; Kumar, P.S. Microwave-assisted rapid and efficient synthesis of chromene-fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial activity with molecular docking investigation. J. Heterocycl. Chem. 2020, 57, 575–589. [Google Scholar] [CrossRef]
- Thakur, A.; Thakur, M.; Khadikar, P. Topological modeling of benzodiazepine receptor binding. Bioorg. Med. Chem. 2003, 11, 5203–5207. [Google Scholar] [CrossRef]
- Faty, R.A.M.; Mourad, A.K.; Abd Elmotaleb, R.M.; Radewan, R.M. Synthesis, antibacterial activity, and fluorescence properties of a novel series from [2,4-dioxochromen-3(4H)methyl]amino acid. Res. Chem. Intermed. 2018, 44, 1551–1567. [Google Scholar] [CrossRef]
- Shen, Y.-M.; Grampp, G.; Leesakul, N.; Hu, H.-W.; Xu, J.-H. Synthesis and emitting properties of the blue-light fluorophores indolizino[3,4,5-ab]isoindole derivatives. Eur. J. Org. Chem. 2007, 2007, 3718–3726. [Google Scholar] [CrossRef]
- El-Sawy, E.R.; Abdelwahab, A.B.; Kirsch, G. Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part 1: Five-Membered Aromatic Rings with One Heteroatom. Molecules 2021, 26, 483. [Google Scholar] [CrossRef]
- Cui, H.-L. Recent progress in the synthesis of pyrrolo[2,1-a]isoquinolines. Org. Biomol. Chem. 2022, 20, 2779–2801. [Google Scholar] [CrossRef]
- Samanta, K.; Patra, P.; Kar, G.K.; Dinda, S.K.; Mahanty, D.S. Diverse synthesis of pyrrolo/indolo[3,2-c]coumarins as isolamellarin-A scaffolds: A brief update. New J. Chem. 2021, 45, 7450–7485. [Google Scholar] [CrossRef]
- Sarkar, S.; Samanta, R. Weakly coordinating tert-amide-assisted Ru(II)-catalyzed synthesis of azacoumestans via migratory insertion of quinoid carbene: Application in the total synthesis of isolamellarins. Org. Lett. 2022, 24, 4536–4541. [Google Scholar] [CrossRef]
- Patra, P. A short review on the synthesis of pyrrolo[3,4-c]coumarins an isolamellarin-B scaffolds. Synth. Commun. 2022, 52, 1999–2018. [Google Scholar] [CrossRef]
- Xue, S.; Yao, J.; Liu, J.; Wang, L.; Liu, X.; Wang, C. Three-component reaction between substituted 2-(2-nitrovinyl)phenols, acetylenedicarboxylate and amines: Diversity-oriented synthesis of novel pyrrolo[3,4-c]coumarins. RSC Adv. 2016, 6, 1700–1704. [Google Scholar] [CrossRef]
- Shaabani, A.; Sepahvand, H.; Bazgir, A.; Khavasi, H.R. Tosylmethylisocyanide (TosMIC) [3+2] cycloaddition reactions: A facile Van Leusen protocol for the synthesis of the new class of spirooxazolines, spiropyrrolines and chromeno[3,4-c]pyrrols. Tetrahedron 2018, 74, 7058–7067. [Google Scholar] [CrossRef]
- Alizadeh, A.; Ghanbaripour, R.; Zhu, L.-G. An approach to the synthesis of 2-acylchromeno[3,4-c]pyrrol-4(2H)-one derivatives via a sequential three-component reaction. Synlett 2013, 24, 2124–2126. [Google Scholar] [CrossRef]
- Mondal, S.K.; Mandal, A.; Manna, S.K.; Ali, S.A.; Hossain, M.; Venugopal, V.; Jana, A.; Samanta, S. Intramolecular macrolactonization, photophysical and biological studies of new class of polycyclic pyrrole derivatives. Org. Biomol. Chem. 2017, 15, 2411–2421. [Google Scholar] [CrossRef]
- Jana, A.; Manna, S.K.; Mondal, S.K.; Mandal, A.; Manna, S.K.; Jana, A.; Senapati, B.K.; Jana, M.; Samanta, S. An efficient synthesis of pyrrole and fluorescent isoquinoline derivatives using NaN3/NH4Cl promoted intramolecular aza-annulation. Tetrahedron Lett. 2016, 57, 3722–3726. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Miao, A.-Q.; Zhang, T.-S.; Wang, X.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Nitrative bicyclization of 1,7-diynes for accessing skeletally diverse tricyclic pyrroles. Chem. Commun. 2022, 58, 4376–4379. [Google Scholar] [CrossRef]
- Grigg, R.; Vipond, D. 4-Phenylsulphinyl- and 4-phenylsulphonylcoumarins as 2π-components in cycloaddition reactions. Tetrahedron 1989, 45, 7587–7592. [Google Scholar] [CrossRef]
- Shekarrao, K.; Kaishap, P.P.; Gogoi, S.; Boruaha, R.C. Palladium-catalyzed one-pot Sonogashira coupling, exo-dig cyclization and hydride transfer reaction: Synthesis of pyridine-substituted pyrroles. Adv. Synth. Catal. 2015, 357, 1187–1192. [Google Scholar] [CrossRef]
- Campeau, D.; Pommainville, A.; Gagosz, F. Ynamides as three-atom components in cycloadditions: An unexplored chemical reaction space. J. Am. Chem. Soc. 2021, 143, 9601–9611. [Google Scholar] [CrossRef] [PubMed]
- Gabbutt, C.D.; Hepworth, J.D.; Heron, B.M.; Pugh, S.L. A facile route to pyrroles, isoindoles and hetero fused analogues. J. Chem. Soc. Perkin Trans. 1 2002, 2799–2808. [Google Scholar] [CrossRef]
- Hong, F.-L.; Shi, C.-Y.; Hong, P.; Zhai, T.-Y.; Zhu, X.-Q.; Lu, X.; Ye, L.-W. Copper-catalyzed asymmetric diyne cyclization via [1,2]-Stevens-type rearrangement for the synthesis of chiral chromeno[3,4-c]pyrroles. Angew. Chem. Int. Ed. 2022, 61, e202115554. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Zard, S.Z. A new synthesis of pyrroles from nitroalkenes. J. Chem. Soc. Chem. Commun. 1985, 1098–1100. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Kervagoret, J.; Zard, S.Z. A useful synthesis of pyrroles from nitroolefins. Tetrahedron 1990, 46, 7587–7598. [Google Scholar] [CrossRef]
- Ono, N.; Okujima, T. Synthesis of pyrroles and their derivatives from isocyanides. In Isocyanide Chemistry. Applications in Synthesis and Material Science, 1st ed.; Nenajdenko, V.G., Ed.; Wiley-VCH: Weinheim, Germany, 2012; pp. 385–429. [Google Scholar]
- Motornov, V.A.; Ioffe, S.L.; Tabolin, A.A. [3+2]-Annulation reactions with nitroalkenes in the synthesis of aromatic five-membered nitrogen heterocycles. In Targets Heterocyclic Systems; Attanasi, O.A., Spinelli, D., Eds.; Royal Society of Chemistry: Cambridge, UK, 2019; Volume 23, pp. 237–260. [Google Scholar]
- Silyanova, E.A.; Samet, A.V.; Salamandra, L.K.; Khrustalev, V.N.; Semenov, V.V. Formation of 3,4-diarylpyrrole- and pyrrolocoumarin core of natural marine products via Barton-Zard reaction and selective O-demethylation. Eur. J. Org. Chem. 2020, 2020, 2093–2100. [Google Scholar] [CrossRef]
- Das, S. 3-Nitrochromenes in the synthesis of fused- and spiro scaffolds: Recent progress. Synth. Commun. 2022, 52, 637–666. [Google Scholar] [CrossRef]
- Korotaev, V.Y.; Kutyashev, I.B.; Barkov, A.Y.; Sosnovskikh, V.Y. Recent advances in the chemistry of 3-nitro-2H- and 3-nitro-4H-chromenes. Russ. Chem. Rev. 2019, 88, 27–58. [Google Scholar] [CrossRef]
- Korotaev, V.Y.; Sosnovskikh, V.Y.; Barkov, A.Y. Synthesis and properties of 3-nitro-2H-chromenes. Russ. Chem. Rev. 2013, 82, 1081–1116. [Google Scholar] [CrossRef]
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef]
- Kutyashev, I.B.; Ulitko, M.V.; Barkov, A.Y.; Zimnitskiy, N.S.; Korotaev, V.Y.; Sosnovskikh, V.Y. A regio- and stereocontrolled approach to the synthesis of 4-CF3-substituted spiro[chromeno[3,4-c]pyrrolidine-oxindoles] via reversible [3+2] cycloaddition of azomethine ylides generated from isatins and sarcosine to 3-nitro-2-(trifluoromethyl)-2H-chromenes. New J. Chem. 2019, 43, 18495–18504. [Google Scholar]
- Kutyashev, I.B.; Ulitko, M.V.; Barkov, A.Y.; Zimnitskiy, N.S.; Korotaev, V.Y.; Sosnovskikh, V.Y. Regio- and stereoselective 1,3-dipolar cycloaddition of azomethine ylides based on isatins and (thia)proline to 3-nitro-2-(trifluoro(trichloro)methyl)-2H-chromenes: Synthesis and cytotoxic activity of 6-(trihalomethyl)spiro[chromeno(thia)pyrrolizidine-11,3′-indolin]-2′-ones. Chem. Heterocycl. Compd. 2021, 57, 751–763. [Google Scholar]
- Barkovskii, S.V.; Ulitko, M.V.; Kochnev, I.A.; Zimnitskiy, N.S.; Korotaev, V.Y.; Sosnovskikh, V.Y.; Stepanyuk, R.A.; Madzhidov, T.I. The synthesis and cytotoxic activity of N-unsubstituted 3-aryl-4-(trifluoromethyl)-4H-spiro[chromeno[3,4-c]pyrrolidine-1,11′-indeno[1,2-b]quinoxalines]. Chem. Heterocycl. Compd. 2022, 58, 462–472. [Google Scholar] [CrossRef]
- Korotaev, V.Y.; Kutyashev, I.B.; Barkov, A.Y.; Sosnovskikh, V.Y. 3-Nitro-2-(trihalomethyl)-2H-chromenes in reactions with sodium azide: Synthesis of 4-(trihalomethyl)-2,4-dihydrochromeno[3,4-d][1,2,3]triazoles. Chem. Heterocycl. Compd. 2017, 53, 597–603. [Google Scholar] [CrossRef]
- Korotaev, V.Y.; Kutyashev, I.B.; Sosnovskikh, V.Y. Synthesis of 3-substituted 2-trifluoro(trichloro)methyl-2H-chromenes by reaction of salicylaldehydes with activated trihalomethyl alkenes. Heteroat. Chem. 2005, 16, 492–496. [Google Scholar] [CrossRef]
- Sakakibara, T.; Koezuka, M.; Sudoh, R. A convenient synthesis of 2-substituted 3-nitro-2H-chromene derivatives. Bull. Chem. Soc. Jpn. 1978, 51, 3095–3096. [Google Scholar] [CrossRef] [Green Version]
- Barkov, A.Y.; Korotaev, V.Y.; Kotovich, I.V.; Zimnitskiy, N.S.; Kutyashev, I.B.; Sosnovskikh, V.Y. 3-Nitro-2-phenyl-2-(trifluoromethyl)-2H-chromenes: Synthesis and reactions with nucleophiles. Chem. Heterocycl. Compd. 2016, 52, 814–822. [Google Scholar] [CrossRef]
- Umemoto, H.; Dohshita, M.; Hamamoto, H.; Miki, Y. Simple synthesis of pratosine and hippadine by intramolecular palladium-catalyzed cyclization and decarboxylation. Heterocycles 2011, 83, 1111–1119. [Google Scholar] [CrossRef]
- Lam, P.Y.S.; Clark, C.G.; Saubern, S.; Adams, J.; Winters, M.P.; Chan, D.M.T.; Combs, A. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett. 1998, 39, 2941–2944. [Google Scholar] [CrossRef]
- Kawamata, Y.; Ito, S.; Furuya, M.; Takahashi, K.; Namai, K.; Hashimoto, S.; Roppongi, M.; Oba, T. Synthesis and properties of novel extended BODIPYs with rigid skeletons. Tetrahedron Lett. 2019, 60, 707–712. [Google Scholar] [CrossRef]
Entry | Base | Equiv. | Solvent | Yield b, % | |
---|---|---|---|---|---|
Method A | Method B | ||||
1 | DBU | 1.1 | THF | 86 | 71 |
2 | DABCO | 1.1 | THF | 58 | 44 |
3 | K2CO3 | 1.1 | THF | 61 | 67 |
4 | DBU | 1.1 | MeCN | 57 | 85 |
5 | DABCO | 1.1 | MeCN | 65 | 72 |
6 | K2CO3 | 1.1 | MeCN | 44 | 60 |
7 | DBU | 1.1 | EtOH | 72 | 85 |
8 | DABCO | 1.1 | EtOH | 89 | 83 |
9 | K2CO3 | 1.1 | EtOH | 85 | 86 |
10 | K2CO3 | 1.5 | EtOH | 89 | 94 |
11 | K2CO3 | 2.0 | EtOH | 95 | 94 |
12 | K2CO3 | 3.0 | EtOH | 93 | 95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochnev, I.A.; Barkov, A.Y.; Zimnitskiy, N.S.; Korotaev, V.Y.; Sosnovskikh, V.Y. Green and Efficient Construction of Chromeno[3,4-c]pyrrole Core via Barton–Zard Reaction from 3-Nitro-2H-chromenes and Ethyl Isocyanoacetate. Molecules 2022, 27, 8456. https://doi.org/10.3390/molecules27238456
Kochnev IA, Barkov AY, Zimnitskiy NS, Korotaev VY, Sosnovskikh VY. Green and Efficient Construction of Chromeno[3,4-c]pyrrole Core via Barton–Zard Reaction from 3-Nitro-2H-chromenes and Ethyl Isocyanoacetate. Molecules. 2022; 27(23):8456. https://doi.org/10.3390/molecules27238456
Chicago/Turabian StyleKochnev, Ivan A., Alexey Y. Barkov, Nikolay S. Zimnitskiy, Vladislav Y. Korotaev, and Vyacheslav Y. Sosnovskikh. 2022. "Green and Efficient Construction of Chromeno[3,4-c]pyrrole Core via Barton–Zard Reaction from 3-Nitro-2H-chromenes and Ethyl Isocyanoacetate" Molecules 27, no. 23: 8456. https://doi.org/10.3390/molecules27238456
APA StyleKochnev, I. A., Barkov, A. Y., Zimnitskiy, N. S., Korotaev, V. Y., & Sosnovskikh, V. Y. (2022). Green and Efficient Construction of Chromeno[3,4-c]pyrrole Core via Barton–Zard Reaction from 3-Nitro-2H-chromenes and Ethyl Isocyanoacetate. Molecules, 27(23), 8456. https://doi.org/10.3390/molecules27238456