HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Screening
2.2. Gas Chromatography-Mass Spectrometry
2.3. Total Phenolic Content
2.4. Total Flavonoid Content
2.5. High-Performance Liquid Chromatography
2.6. Fourier-Transform Infrared Spectroscopy (FTIR)
2.7. Antioxidant Activity (DPPH and ABTS Assays)
2.8. Antidiabetic Activity (Starch Iodine and DNSA Assays)
2.9. Anti-Inflammatory Activity In Vitro
2.10. Anti-Inflammatory Activity In Vivo
2.11. Effect of GC-MS Quantified Phytoconstituents on COX1 and COX2 Genes
Molecular Docking
2.12. Pharmacokinetic Study (ADME)
2.13. Hepatotoxicity
2.14. Effect of HPLC Identified Phytoconstituents on Gastric Cancer Genes
2.14.1. Potential Disease Target Genes
2.14.2. Structural Retrieval of Phytochemicals (PubChem)
2.14.3. Venn Analysis (Bioinformatics and Evolutionary Genomics System)
2.14.4. Protein–Protein Network Construction (STRING)
2.15. Molecular Docking Analysis
2.15.1. Molecular Dynamic Simulation
2.15.2. Cloud 3D-QSAR Modelling (3-D QSAR)
2.15.3. Pharmacokinetic ADME Evaluation
2.15.4. Cytotoxicity Analysis (CLC Pred)
2.16. Hemolytic Activity
2.17. Thrombolytic Potential
2.18. Anti-Pyretic Activity
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Preparation
4.2. Extraction Method
4.3. Phytochemical Screening Tests
4.4. Gas Chromatography-Mass Spectrometry (GC-MS)
4.5. Quantitative Analysis
4.5.1. Total Phenolic Content (TPCs)
4.5.2. Total Flavonoid Content (TFC)
4.6. High-Performance Liquid Chromatography (HPLC)
4.7. Fourier-Transform Infrared Spectroscopy (FTIR)
4.8. Biological Activities
4.8.1. Antioxidant Activity (DPPH)
4.8.2. Antioxidant Activity (ABTS assay)
4.8.3. Antidiabetic Activity (DNSA method)
4.8.4. Antidiabetic Method (Starch Iodine Method)
4.8.5. Anti-Inflammatory Activity In Vitro
4.8.6. Anti-Inflammatory Activity In Vivo
4.9. Effect of GC-MS Quantified Phytoconstituents on COX1 and COX2 Genes
4.9.1. Molecular Docking
4.9.2. Swiss ADME Analysis
4.9.3. Hepatotoxicity
4.9.4. Acute Toxicity
4.10. Effect of HPLC Identified Phytoconstituents on Gastric Cancer Genes
4.10.1. Retrieval of Gastric Cancer Genes
4.10.2. Phytochemical Structure Retrieval (PubChem)
4.10.3. Analysis of Venn Diagrams (Bioinformatics and Evolutionary Genomics System)
4.10.4. STRING: Protein-Protein Network Construction
4.10.5. Analysis of Molecular Docking
4.10.6. Molecular Dynamic Simulation
4.10.7. Cloud 3D-QSAR Modelling (3-D QSAR)
4.10.8. Analyses of Pharmacokinetics and ADME
4.11. Cytotoxicity Analysis
4.12. Hemolytic Activity
4.13. Thrombolytic Activity
4.14. Antipyretic Activity In Vivo
4.15. Statistical Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shakya, A.K. Medicinal plants: Future source of new drugs. Int. J. Herb. Med. 2016, 4, 59–64. [Google Scholar]
- Nguyen-Vo, T.-H.; Nguyen, L.; Do, N.; Nguyen, T.-N.; Trinh, K.; Cao, H.; Le, L.T. Plant Metabolite Databases: From Herbal Medicines to Modern Drug Discovery. J. Chem. Inf. Model. 2019, 60, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.U.; Zhang, W.-D.; Jin, H.-Z.; Basha, S.H.; Priya, S.V.S.S. In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2. J. Biomol. Struct. Dyn. 2022, 40, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, H.; Ayub, M.; Irfan, H.M.; Saleem, M.; Anjum, I.; Haider, I.; Asif, A.; Abbas, S.Q.; Ul Hulassan, S.S. Tumor necrosis factor-alpha, prostaglandin-E2 and interleukin-1β targeted anti-arthritic potential of fluvoxamine: Drug repurposing. Environ. Sci. Pollut. Res. Int. 2022, 24. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Xiao, Y.Z.; Hassan, S.S.U.; Xiao, X.; Yan, S.K.; Guo, Y.Q.; Ma, X.P.; Jin, H.Z. Three new guaiane-type sesquiterpenoids and a monoterpenoid from Litsea lancilimba Merr. Nat. Prod. Res. 2022, 36, 3271–3279. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.U.; Ali, F.; Ishaq, M.; Bano, I.; Hassan, M.; Jin, H.-Z.; Bungau, S. A Comprehensive In Silico Exploration of Pharmacological Properties, Bioactivities, Molecular docking, and Anticancer Potential of Vieloplain F from Xylopia vielana Targeting B-Raf Kinase. Molecules 2022, 27, 917. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Bukhari, B.; Aziz, T.; Zaib, S.; Mansoor, M.A.; Khan, A.A.; Shahzad, M.; Dablool, A.S.; Alruways, M.W.; Almalki, A.A.; et al. Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules 2022, 27, 4226. [Google Scholar] [CrossRef]
- Muhammad, I.; Hassan, S.S.U.; Cheung, S.; Li, X.; Wang, R.; Zhang, W.-D.; Yan, S.-K.; Zhang, Y.; Jin, H.-Z. Phytochemical study of Ligularia subspicata and valuation of its anti-inflammatory activity. Fitoterapia 2021, 148, 104800. [Google Scholar] [CrossRef]
- Hassan, S.S.U.; Abbas, S.Q.; Muhammad, I.; Wu, J.-J.; Yan, S.-K.; Ali, F.; Majid, M.; Jin, H.-Z.; Bungau, S. Metals-triggered compound CDPDP exhibits antiarthritic behavior by downregulating the inflammatory cytokines and modulating the oxidative storm in mice models with extensive ADMET, docking and simulation studies. Front. Pharmacol. 2022, 13, 1053744. [Google Scholar] [CrossRef]
- Naveed, M.; Batool, H.; Rehman, S.U.; Javed, A.; Makhdoom, S.I.; Aziz, T.; Mohamed, A.A.; Sameeh, M.Y.; Alruways, M.W.; Dablool, A.S.; et al. Characterization and Evaluation of the Antioxidant, Antidiabetic, Anti-Inflammatory, and Cytotoxic Activities of Silver Nanoparticles Synthesized Using Brachychiton populneus Leaf Extract. Processes 2022, 10, 1521. [Google Scholar] [CrossRef]
- Epstein, P.R.; Selber, J.; Borasin, S.; Foster, S.; Jobarteh, K.; Link, N.; Miranda, J.; Pomeranse, E.; Rabke-Verani, J.; Reyes, D.; et al. A life cycle analysis of its health and environmental impacts. Oil 2002. Available online: http://oneplanetfellows.pbworks.com/w/file/fetch/11680650/Oil_Impacts_full%20report.pdf (accessed on 11 October 2022).
- El-Saber Batiha, G.; Magdy Beshbishy, A.; GWasef, L.; Elewa, Y.H.A.; AAl-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; MAbd-Elhakim, Y.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 24, 872. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, M.; Pathak, D.; Freedman, J.E.; Chakrabarti, S. CD40–CD40 ligand interactions in oxidative stress, inflammation and vascular disease. Trends Mol. Med. 2008, 14, 530–538. [Google Scholar] [CrossRef]
- Maynard, S.; Schurman, S.H.; Harboe, C.; de Souza-Pinto, N.C.; Bohr, V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009, 30, 2–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses, and inflammation-associated diseases in organs. Oncotarget 2017, 14, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelli, W.; Bahri, F.; Romane, A.; Höferl, M.; Wanner, J.; Schmidt, E.; Jirovetz, L. Chemical Composition and Anti-inflammatory Activity of Algerian Thymus vulgaris Essential Oil. Nat. Prod. Commun. 2017, 12, 611–614. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Liu, S.; Sun, M.-Z. Novel insight into the role of GAPDH playing in tumor. Clin. Transl. Oncol. 2013, 15, 167–172. [Google Scholar] [CrossRef]
- Anker, M.S.; Holcomb, R.; Muscaritoli, M.; Von Haehling, S.; Haverkamp, W.; Jatoi, A.; Morley, J.E.; Strasser, F.; Landmesser, U.; Coats, A.J.; et al. Orphan disease status of cancer cachexia in the USA and in the European Union: A systematic review. J. Cachex Sarcopenia Muscle 2019, 10, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Almanea, A.; El-Aziz GS, A.; Ahmed MM, M. The Potential Gastrointestinal Health Benefits of Thymus Vulgaris Essential Oil: A Review. Biomed. Pharmacol. J. 2019, 12, 1793–1799. [Google Scholar] [CrossRef]
- Prinsloo, G.; Nogemane, N. The effects of season and water availability on chemical composition, secondary metabolites, and biological activity in plants. Phytochem. Rev. 2018, 17, 889–902. [Google Scholar] [CrossRef]
- Boruga, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.; Horhat, F. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56. [Google Scholar]
- Labiad, M.H.; Harhar, H.; Ghanimi, A.; Tabyaoui, M. Phytochemical Screening and Antioxidant Activity of Moroccan Thymus satureioïdes Extracts. J. Mater. Environ. Sci. 2017, 8, 2132–2139. [Google Scholar]
- Ramchoun, M.; Harnafi, H.; Alem, C.; Benlyas, M.; Elrhaffari, L.; Amrani, S. Study on antioxidant and hypolipidemic effects of polyphenol-rich extracts from Thymus vulgaris and Lavendula multifida. Pharmacogn. Res. 2009, 1, 106–112. [Google Scholar]
- Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr. 2019, 7, 1704–1714. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. BioMed Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef]
- Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar]
- Grigore, A.; Paraschiv, I.; Colceru-Mihul, S.; Bubueanu, C.; Draghici, E.; Ichim, M. Chemical composition and antioxidant activity of Thymus vulgaris L. volatile oil obtained by two different methods. Rom. Biotechnol. Lett. 2010, 15, 5436–5443. [Google Scholar]
- Bursal, E.; Aras, A.; Kılıç, Ö.; Taslimi, P.; Gören, A.C.; Gülçin, İ. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes. J. Food Biochem. 2019, 43, 12776. [Google Scholar]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K. Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response. Evid.-Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riella, K.R.; Marinho, R.R.; Santos, J.S.; Pereira-Filho, R.N.; Cardoso, J.C.; Albuquerque-Junior, R.L.C.; Thomazzi, S.M. Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents. J. Ethnopharmacol. 2012, 143, 656–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, P.C.; Sasso, M.D.; Fonti, E.; Culici, M. Antioxidant Activity of Bisabolol: Inhibitory Effects on Chemiluminescence of Human Neutrophil Bursts and Cell-Free Systems. Pharmacology 2009, 83, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Veras, H.N.H.; Araruna, M.K.A.; Costa, J.G.M.; Coutinho, H.D.M.; Kerntopf, M.R.; Botelho, M.A.; Menezes, I.R.A. Topical Antiinflammatory Activity of Essential Oil of Lippia sidoides Cham: Possible Mechanism of Action. Phytother. Res. 2013, 27, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Quintans, J.S.S.; Shanmugam, S.; Heimfarth, L.; Araújo, A.A.S.; Almeida, J.R.G.; Picot, L.; Quintans-Júnior, L.J. Monoterpenes modulating cytokines—A review. Food Chem. Toxicol. 2019, 123, 233–257. [Google Scholar] [CrossRef] [PubMed]
- Rajasree, R.S.; Sibi, P.I.; Francis, F.; William, H. Phytochemicals of Cucurbitaceae family—A review. Int. J. Pharmacogn. Phytoch. Res. 2016, 8, 113–123. [Google Scholar]
- Mukherjee, P.K.; Singha, S.; Kar, A.; Chanda, J.; Banerjee, S.; Dasgupta, B.; Haldar, P.K.; Sharma, N. Therapeutic importance of Cucurbitaceae: A medicinally important family. J. Ethnopharmacol. 2022, 282, 114599. [Google Scholar] [CrossRef]
- Nwafor, E.-O.; Lu, P.; Zhang, Y.; Liu, R.; Peng, H.; Xing, B.; Liu, Y.; Li, Z.; Zhang, K.; Zhang, Y.; et al. Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Transl. Oncol. 2022, 15, 101294. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef]
- Hossain, M.A.; AL-Raqmi, K.A.; AL-Mijizy, Z.H.; Weli, A.M.; Al-Riyami, Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 2013, 3, 705–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahashwan, S.A.; El Shafey, H.M. Antimicrobial Resistance Patterns of Proteus Isolates from Clinical Specimens. Eur. Sci. J. 2013, 9, 122–125. [Google Scholar]
- Alu’Datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Tawaha, A.; Al Tawaha, A.R.; Gammoh, S.; Ereifej, K.I.; Al-Karaki, G.; Hamasha, H.R.; Tranchant, C.C.; et al. Herbal yield, nutritive composition, phenolic contents and antioxidant activity of purslane (Portulaca oleracea L.) grown in different soilless media in a closed system. Ind. Crop. Prod. 2019, 141, 111746. [Google Scholar] [CrossRef]
- Zengin, G.; Nithiyanantham, S.; Locatelli, M.; Ceylan, R.; Uysal, S.; Aktumsek, A.; Selvi, P.K.; Maskovic, P. Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. Eur. J. Integr. Med. 2015, 8, 286–292. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Veklich, T.N. HPLC analysis of phenolic compounds in leaves and inflorescences of Sorbaria pallasii. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 24, p. 00040. [Google Scholar]
- Hemmalakshmi, S.; Priyanga, S.; Devaki, K. Fourier Transform Infra-Red Spectroscopy Analysis of Erythrina variegata L. J. Pharm. Sci. Res. 2017, 9, 2062–2067. [Google Scholar]
- Mahrye; Anwar, F.; Mehmood, T.; Qadir, R.; Riaz, M. Phenolics profiling and biological activities of different solvent extracts from aerial parts of wild thyme (Thymus vulgaris L.). J. Food Meas. Charact. 2022, 16, 610–618. [Google Scholar] [CrossRef]
- Asif, M.; Yehya, A.H.S.; Al-Mansoub, M.A.; Revadigar, V.; Ezzat, M.O.; Ahamed, M.B.K.; Oon, C.E.; Murugaiyah, V.; Majid, A.S.A.; Majid, A.M.S.A. Anticancer attributes of Illicium verum essential oils against colon cancer. South Afr. J. Bot. 2016, 103, 156–161. [Google Scholar] [CrossRef]
- Dessalegn, E.; Bultosa, G.; Haki, G.D.; Rupasinghe, H.P.V. Evaluation of In vitro Antidiabetic Potential of Thymus schimperi R. and Thymus vulgaris L. J. Health Med. Nurs. 2019, 69. [Google Scholar] [CrossRef] [Green Version]
- Perumalsamy, R.; Krishnadhas, L. Anti-Diabetic Activity of Silver Nanoparticles Synthesized from the Hydroethanolic Extract of Myristica fragrans Seeds. Appl. Biochem. Biotechnol. 2022, 194, 1136–1148. [Google Scholar] [CrossRef]
- Williams, L.A.D.; O'Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; A Whittaker, J.; Conrad, J.; Vogler, B.; Rosner, H.; Kraus, W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J. 2008, 57, 327–331. [Google Scholar]
- Adedapo, A.A.; Falayi, O.O.; Oyagbemi, A.A. Evaluation of the analgesic, anti-inflammatory, anti-oxidant, phytochemical and toxicological properties of the methanolic leaf extract of commercially processed Moringa oleifera in some laboratory animals. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. Geometry-based flexible and symmetric protein docking. Proteins 2005, 60, 224–231. [Google Scholar] [CrossRef] [PubMed]
- El-Newary, S.A.; Shaffie, N.M.; Omer, E. The protection of Thymus vulgaris leaves alcoholic extract against hepatotoxicity of alcohol in rats. Asian Pac. J. Trop. Med. 2017, 10, 361–371. [Google Scholar] [CrossRef]
- Perveen, N.; Ahmed, K.Z.; Irshad, T.; Latif, N.; Kaleem, Z.; Naseer, F. Evaluation of acute and sub acute hepatotoxic activity of Trichodesma indicum aqueous methanolic extract in mice. Res. Pharm. Health Sci. 2015, 2, 32–35. [Google Scholar]
- Tang, M.; Xie, X.; Yi, P.; Kang, J.; Liao, J.; Li, W.; Li, F. Integrating Network Pharmacology with Molecular Docking to Unravel the Active Compounds and Potential Mechanism of Simiao Pill Treating Rheumatoid Arthritis. Evid.-Based Complement. Altern. Med. 2020, 2020, 5786053. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Karthik, L.; Rao, K.V.B. Hemolytic activity of Indian medicinal plants towards human erythrocytes: An in vitro study. Elixir. Appl. Botany 2011, 40, e5537. [Google Scholar]
- Ramjan, A.; Hossain, M.; Runa, J.F.; Hasanuzzaman; Mahmodul, I. Evaluation of thrombolytic potential of three medicinal plants available in Bangladesh, as a potent source of thrombolytic compounds. Avicenna J. Phytomedicine 2014, 4, 430. [Google Scholar]
- Alyas, S.; Zahra, N.; Ahmad, M.I.; Zahid, N.; Nisar, A.; Hafeez, M.M.; Alam, R.; Parveen, A.; Malik, A. Anti-inflammatory, antipyretic and analgesic activities of ethanol extract of Carica papaya. J. Wildl. Biodivers. 2020, 4, 18–23. [Google Scholar]
Sr. No | Compound | Molecular Weight | % Area | Compound Nature | Retention Index |
---|---|---|---|---|---|
1 | Mequinol | 124.14 | 1.21 | Methoxyphenol | 1183 |
2 | Isothymol-methyl ether | 164.24 | 1.56 | Alkylbenzene | 1244 |
3 | Eugenol | 165.20 | 4.66 | Phenylpropanoid | 1327.7 |
4 | 2-Methoxy-4-vinylphenol | 150.17 | 1.17 | Phenol | 1315 |
5 | 2-Allyl-4-methylphenol | 148.20 | 3.47 | Phenol | NA |
6 | 9-Octadecyne | 250.5 | 2.16 | NA | |
7 | 3-Methyl-4-isopropylphenol | 150.22 | 2.95 | Phenol | 1334 |
8 | (-)-Spathulenol | 220.351 | 2.03 | Tricyclic sesquiterpenes alcohol | 1576 |
9 | Vanillin | 152.15 | 1.09 | Phenolic aldehyde | NA |
10 | Aromandendrene | 204.35 | 1.82 | Sesquiterpenoid | 1455 |
11 | p-Cymene- | 166.22 | 6.68 | Terpenoid | 1021 |
12 | Phenol,2,6-dimethoxy- | 154.16 | 1.03 | Phenol | 1347 |
13 | Carvacrol | 150.22 | 7.77 | Terpenoid | 1274 |
14 | Benzenepropanol, 4-hydroxy-3-methoxy- | 182.22 | 1.13 | Phenol | 1660.6 |
15 | 7-Hydroxyfarnesen | 220.35 | 1.16 | 2273 | |
16 | Tetradecanoic acid | 228.4 | 1.51 | Saturated fatty acid | 1763 |
17 | Linoleic acid methyl ester | 294.5 | 6.01 | Polyunsaturated omega-6 fatty acid | 2066.9 |
18 | Neophytadiene | 278.524 | 2.50 | Alkene | NA |
19 | Heptadecanal | 254.5 | 0.90 | Long-chain fatty aldehyde | 1897 |
20 | Bis(2-ethylhexyl) phthalate | 390.6 | 1.00 | Plasticizer | 2492.6 |
21 | Adamantane | 136.23 | 2.58 | Polycyclic alkane. | 1121 |
22 | Hexadecanoic acid, methyl ester | 270.4507 | 1.86 | Fatty acid methyl ester | 1904.1 |
23 | Phthalic acid | 320.4232 | 3.40 | Benzenedicarboxylic acid | 1643 |
24 | Isopropyl myristate | 270.5 | 1.02 | Isopropyl alcohol | 1812.8 |
25 | linolenelaidic acid methyl ester | 292.5 | 1.39 | Omega-3-fatty acids | NA |
26 | Phytol | 296.5 | 2.55 | Diterpenoid | 2122 |
27 | Stearic acid | 284.5 | 1.02 | Saturated fatty acid | 2179 |
28 | Borneol | 154.25 | 1.52 | Terpene derivative | NA |
29 | Thymol | 150.22 | 28.88 | Terpenoid | 1265.51 |
30 | Vitamin E | 430.7 | 0.88 | Fat-soluble vitamin | NA |
31 | Gamma-sitosterol | 414.7067 | 3.06 | Phytosterols | NA |
Fractions | Phytochemicals | Concentration mg/g | Retention Time |
---|---|---|---|
Phenolics | |||
Ethyl acetate | Chlorogenic acid | 0.012 | 9.36 |
Caffeic acid | 0.151 | 10.36 | |
Sinapic acid | 0.115 | 11.62 | |
Benzoic acid | 0.343 | 12.98 | |
Vanillic acid | 0.144 | 13.18 | |
n-Butanol | Chlorogenic acid | 0.044 | 9.307 |
Caffeic acid | 0.154 | 10.41 | |
Sinapic acid | 0.046 | 11.52 | |
Flavonoids | |||
Ethyl acetate | Myricetin | 0.204 | 2.78 |
Quercetin | 0.811 | 3.63 | |
n-Butanol | Quercetin | 0.473 | 3.66 |
Kaempferol | 0.109 | 4.23 |
Sr. No | Wave Number cm−1 | Functional Groups | Identified Phytocompounds |
---|---|---|---|
1 | 3339 | O-H stretch | Alcohols, phenols |
2 | 2933 | -CH stretch | Saturated aliphatic compounds |
3 | 2959 | O-H stretch, carboxylic group | Carboxylic acid |
4 | 2874 | O-H stretch, carboxylic group | Carboxylic acid |
5 | 1465 | C=C-C, Aromatic ring | Aromatic compounds |
6 | 1376 | Alcoholic group, O-H bend | Tertiary alcohols or phenols |
7 | 1242 | C-O stretch | Acids |
Sr. No | Fractions | Liver Function Parameters | Control | 200 mg/kg | 400 mg/kg | 600 mg/kg | 800 mg/kg |
---|---|---|---|---|---|---|---|
1 | Ethyl acetate | ALP (U/L) | 166.31 ± 1.94 | 165.7 ± 1.8 | 162 ± 1.7 | 157.9 ± 1.61 | 143.74 ± 1.32 |
AST (U/L) | 66.42 ± 0.7 | 64.6 ± 0.66 | 61.3 ± 0.6 | 57.58 ± 0.55 | 53.83 ± 0.5 | ||
ALT (U/L) | 36.55 ± 0.42 | 34.7 ± 0.39 | 30.95 ± 0.3 | 29.59 ± 0.25 | 27.48 ± 0.27 | ||
Total protein | 8.1 ± 0.04 | 8.6 ± 0.08 | 8.9 ± 0.05 | 9.5 ± 0.1 | 9.8 ± 0.13 | ||
Globulin | 3.9 ± 0.09 | 4.1 ± 0.07 | 4.6 ± 0.05 | 5.1 ± 0.1 | 5.8 ± 0.07 | ||
Albumin | 4.75 ± 0.05 | 4.77 ± 0.04 | 4.68 ± 0.11 | 4.51 ± 0.07 | 4.4 ± 0.02 | ||
2 | n-Butanol | ALP (U/L) | 155 ± 2.3 | 153 ± 0.2 | 146 ± 1.4 | 141 ± 1.4 | 139.34 ± 1.42 |
AST (U/L) | 63.83 ± 0.65 | 60.4 ± 0.6 | 56.2 ± 0.52 | 52.6 ± 0.48 | 49.1 ± 0.55 | ||
ALT (U/L) | 31.63 ± 0.4 | 29.4 ± 0.32 | 24.82 ± 0.21 | 22.1 ± 0.2 | 21.4 ± 0.18 | ||
Total protein | 7.9 ± 0.07 | 8.1 ± 0.05 | 8.4 ± 0.12 | 8.9 ± 0.19 | 9.13 ± 0.11 | ||
Globulin | 4.61 ± 0.1 | 4.41 ± 0.04 | 3.95 ± 0.1 | 3.51 ± 0.11 | 3.23 ± 0.03 | ||
Albumin | 4.95 ± 0.09 | 4.4 ± 0.08 | 3.9 ± 0.11 | 3.3 ± 0.08 | 2.8 ± 0.02 |
Sr. No | Pa | Pi | Cell Line | Cell Line-Full Name | Tissue | Tumor Type |
---|---|---|---|---|---|---|
1 | 0.581 | 0.023 | NCI-H838 | Non-small cell lung cancer, 3rd stage | Lung | Carcinoma |
2 | 0.525 | 0.020 | HepG2 | Hepatoblastoma | Liver | Hepatobloastoma |
3 | 0.459 | 0.023 | MDA-MB-453 | Breast adinocarcinoma | Breast | Carcinoma |
4 | 0.436 | 0.046 | YAPC | Pancreatic carcinoma | Pancreas | Carcinoma |
5 | 0.228 | 0.036 | BGC-823 | Stomach adenocarcinoma | Stomach | Carcinoma |
6 | 0.243 | 0.123 | MKN-7 | Gastric carcinoma | Stomach | Carcinoma |
Non-cancerous cell line | ||||||
7 | 0.545 | 0.018 | WI-38 VA13 | Embryonic lung fibroblast | Lung | |
8 | 0.282 | 0.034 | HEL299 | Fibroblast | Lung | |
9 | 0.156 | 0.057 | IMR-90 | Embryonic lung fibroblast | Lung | |
10 | 0.101 | 0.077 | HUVEC | Umbilical vein endothelial cell | Endothelium | |
11 | 0.070 | 0.066 | HaCaT | Keratinocyte | Skin |
Sr. No | Concentration mg/mL | Ethyl Acetate | n-Butanol | Triton X-100 |
---|---|---|---|---|
1 | 12 | 9.6 | 9.6 | 96.1 |
2 | 6 | 8.3 | 8.3 | |
3 | 3 | 6.8 | 6.8 | |
4 | 1.5 | 4.2 | 4.2 | |
5 | 0.75 | 3.1 | 3.1 | |
6 | 0.37 | 0.7 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, A.; Afzal, M.; Naveed, M.; Makhdoom, S.I.; Mazhar, M.; Aziz, T.; Khan, A.A.; Kamal, Z.; Shahzad, M.; Alharbi, M.; et al. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules 2022, 27, 8512. https://doi.org/10.3390/molecules27238512
Saleem A, Afzal M, Naveed M, Makhdoom SI, Mazhar M, Aziz T, Khan AA, Kamal Z, Shahzad M, Alharbi M, et al. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules. 2022; 27(23):8512. https://doi.org/10.3390/molecules27238512
Chicago/Turabian StyleSaleem, Ayesha, Muhammad Afzal, Muhammad Naveed, Syeda Izma Makhdoom, Modasrah Mazhar, Tariq Aziz, Ayaz Ali Khan, Zul Kamal, Muhammad Shahzad, Metab Alharbi, and et al. 2022. "HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally" Molecules 27, no. 23: 8512. https://doi.org/10.3390/molecules27238512
APA StyleSaleem, A., Afzal, M., Naveed, M., Makhdoom, S. I., Mazhar, M., Aziz, T., Khan, A. A., Kamal, Z., Shahzad, M., Alharbi, M., & Alshammari, A. (2022). HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules, 27(23), 8512. https://doi.org/10.3390/molecules27238512