Polyoxygenated Terpenoids and Polyketides from the Roots of Flueggea virosa and Their Inhibitory Effect against SARS-CoV-2-Induced Inflammation
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. ECD Calculations
3.5. NMR Calculations and DP4+ Analysis
3.6. Generation of SARS-CoV-2 Spike Pseudotyped Viruses
3.7. MTS Assay
3.8. Compound Screening to Inhibit SARS-CoV-2 Induced-Inflammation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H.; Li, M.; Zhang, L.; Xie, M. The prevalence, risk factors and outcome of cardiac dysfunction in hospitalized patients with COVID-19. Intensive Care Med. 2020, 46, 2096–2098. [Google Scholar] [CrossRef] [PubMed]
- Editorial Committee of Flora of China. Flora of China; Science Press: Beijing, China, 1997; pp. 69–71. [Google Scholar]
- Kamatenesi-Mugisha, M.; Oryem-Origa, H. Traditional herbal remedies used in the management of sexual impotence and erectile dysfunction in western Uganda. Afr. Health Sci. 2005, 5, 40–49. [Google Scholar] [PubMed]
- Chao, C.H.; Cheng, J.C.; Shen, D.Y.; Wu, T.S. Anti-hepatitis C virus dinorditerpenes from the roots of Flueggea virosa. J. Nat. Prod. 2014, 77, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.H.; Cheng, J.C.; Shen, D.Y.; Huang, H.C.; Wu, Y.C.; Wu, T.S. Terpenoids from Flueggea virosa and their anti-hepatitis C virus activity. Phytochemistry 2016, 128, 60–70. [Google Scholar] [CrossRef]
- Chao, C.H.; Cheng, J.C.; Shen, D.Y.; Huang, H.C.; Wu, Y.C.; Wu, T.S. 13-Methyl-3,4-seco-ent-podocarpanes, rare C18-diterpenoids from the roots of Flueggea virosa. RSC Adv. 2016, 6, 34708. [Google Scholar] [CrossRef]
- Chao, C.H.; Cheng, J.C.; Gonçalves, T.P.; Hwang, K.W.; Lin, C.C.; Huang, H.C.; Hwang, S.Y.; Wu, Y.C. Glaulactams A–C, daphniphyllum alkaloids from Daphniphyllum glaucescens. Sci. Rep. 2018, 8, 15417. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.H.; Chao, C.H.; Huang, T.Z.; Huang, C.Y.; Hwang, T.L.; Dai, C.F.; Sheu, J.H. Cembranoid-related metabolites and biological activities from the soft coral Sinularia flexibilis. Mar. Drugs 2018, 16, 278. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Chao, C.H.; Huang, C.Y.; Hwang, T.L.; Chang, F.R.; Dai, C.F.; Sheu, J.H. An unprecedented cCembranoid with a novel tricyclo[9.3.0.02,12]tetradecane skeleton and related diterpenes from the soft coral Sarcophyton cinereum. Bull. Chem. Soc. Jpn. 2022, 95, 374–379. [Google Scholar] [CrossRef]
- Chao, C.H.; Chen, Y.J.; Huang, C.Y.; Chang, F.R.; Dai, C.F.; Sheu, J.H. Cembranolides and related constituents from the soft coral Sarcophyton cinereum. Molecules 2022, 27, 1760. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, M.M.; Sarotti, A.M. Sensitivity analysis of DP4+ with the probability distribution terms: Development of a universal and customizable method. J. Org. Chem. 2021, 86, 8544–8548. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.J.; Wu, S.L.; Fang, H.J.; Chiang, M.Y.; Wu, J.Y.; Fang, L.S.; Sheu, J.H. Junceellolides E−G, new briarane diterpenes from the West Pacific Ocean gorgonian Junceella fragilis. J. Nat. Prod. 2000, 63, 1483–1487. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.H.; Lin, Y.J.; Cheng, J.C.; Huang, H.C.; Yeh, Y.J.; Wu, T.S.; Hwang, S.Y.; Wu, Y.C. Chemical constituents from Flueggea virosa and the structural revision of dehydrochebulic acid trimethyl ester. Molecules 2016, 21, 1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemke, C.; Kehraus, S.; Wright, A.D.; König, G.M. New secondary metabolites from the Marine endophytic fungus Apiospora montagnei. J. Nat. Prod. 2004, 67, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Glauser, G.; Gindro, K.; Fringeli, J.; De Joffrey, J.P.; Rudaz, S.; Wolfender, J.L. Differential analysis of Mycoalexins in configuration zones of grapevine fubgal pathogens by ultrahigh pressure liquid chromatography/time-of-flight mass spectrometry and capillary nuclear magnetic resonance. J. Agric. Food Chem. 2009, 57, 1127–1134. [Google Scholar] [CrossRef]
- Cheng, M.J.; Wu, M.D.; Hsieh, S.Y.; Chen, I.S.; Yuan, G.F. Secondary metabolites isolated from the fungus Biscogniauxia cylindrospora BCRC33717. Chem. Nat. Compd. 2011, 47, 527–530. [Google Scholar] [CrossRef]
- Kumar, N.; Zuo, Y.; Yalavarthi, S.; Hunker, K.L.; Knight, J.S.; Kanthi, Y.; Obi, A.T.; Ganesh, S.K. SARS-CoV-2 Spike protein S1-mediated endothelial injury and pro-inflammatory state is amplified by dihydrotestosterone and prevented by mineralocorticoid antagonism. Viruses 2021, 13, 2209. [Google Scholar] [CrossRef]
- Satta, S.; Meng, Z.; Hernandez, R.; Cavallero, S.; Zhou, T.; Hsiai, T.K.; Zhou, C. An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike protein-induced inflammation in both murine and human macrophages. Theranostics 2022, 12, 2639–2657. [Google Scholar] [CrossRef]
- Olajide, O.A.; Iwuanyanwu, V.U.; Lepiarz-Raba, I.; Al-Hindawi, A.A.; Aderogba, M.A.; Sharp, H.L.; Nash, R.J. Garcinia kola and garcinoic acid suppress SARS-CoV-2 spike glycoprotein S1-induced hyper-inflammation in human PBMCs through inhibition of NF-κB activation. Phytother. Res. 2021, 35, 6963–6973. [Google Scholar] [CrossRef]
- Umar, S.; Palasiewicz, K.; Meyer, A.; Kumar, P.; Prabhakar, B.S.; Volin, M.V.; Rahat, R.; Al-Awqati, M.; Chang, H.J.; Zomorrodi, R.K.; et al. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cell. Mol. Life Sci. 2022, 79, 301. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16; Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Crawford, K.H.D.; Eguia, R.; Dingens, A.S.; Loes, A.N.; Malone, K.D.; Wolf, C.R.; Chu, H.Y.; Tortorici, M.A.; Veesler, D.; Murphy, M.; et al. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 Spike protein for neutralization assays. Viruses 2020, 12, 513. [Google Scholar] [CrossRef] [PubMed]
- Chanput, W.; Mes, J.; Vreeburg, R.A.; Savelkoul, H.F.; Wichers, H.J. Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: A tool to study inflammation modulating effects of food-derived compounds. Food Funct. 2010, 3, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Alam, B.; Lǐ, J.; Gě, Q.; Khan, M.A.; Gōng, J.; Mehmood, S.; Yuán, Y.; Gǒng, W. Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? Front. Plant Sci. 2021, 12, 791033. [Google Scholar] [CrossRef]
1 a | 2 b | 3 b | 5 b | 6 a | |
---|---|---|---|---|---|
No. | δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | δH (J in Hz) |
1 | 2.42 br d (13.2) | 2.16 td (14.2, 4.4) | 2.52 td (14.0, 4.3) | 1.98 m | 2.25 dd (14.5, 3.7) |
2.28 td (13.2, 5.4) | 1.88 m | 1.59 m | 1.98 m | 1.95 d (14.5, 2.0) | |
2 | 2.10 m | 1.88 m | 2.01 m | 2.24 m | 4.00 ddd (3.7, 3.0, 2.0) |
2.05 m | 1.73 m | 1.85 m | 1.50 m | ||
3 | 3.81 br s | 3.40 dd (11.7, 3.4) | 3.62 br s | 3.88 t (8.0) | 3.63 br d (3.0) |
5 | 2.94 br s | 0.91 d (2.4) | 1.29 d (3.6) | 1.56 d (6.2) | 2.39 dd (4.6, 2.2) |
6 | 5.90 br d (9.8) | 4.21 m | 4.15 m | 4.44 t (6.2) | 5.85 dd (12.0, 4.6) |
7 | 6.60 dd (9.8, 2.9) | 4.72 d (4.4) | 4.71 d (4.3) | 4.72 d (6.2) | 6.61 dd (12.0, 2.2) |
11 | 6.93 s | 6.67 s | 6.73 s | 6.58 s | 6.58 s |
14 | 6.89 s | 7.12 s | 7.11 s | 6.85 s | 6.96 s |
15 | 2.18 s | 2.22 s | 2.21 s | 2.18 s | 2.18 s |
18 | 1.19 s | 1.14 s | 1.11 s | 1.03 s | 1.03 s |
19 | 4.37 d (12.2) | 1.14 s | 1.17 s | 1.10 s | 1.25 s |
4.04 dd (12.2, 1.7) | |||||
20 | 4.07 d (8.5) | 4.11 d (8.5) | 2.98 d (16.3) | 2.95 d (14.0) | |
2.72 d (8.5) | 2.75 d (8.5) | 2.55 d (16.3) | 2.68 d (14.0) | ||
OMe | 3.88 s | 3.86 s | 3.86 s | 3.80 s | 3.84 s |
1 a | 2 b | 3 b | 4 c | 5 b | 6 a | |
---|---|---|---|---|---|---|
No. | δC (mult.) | δC (mult.) | δC (mult.) | δC (mult.) | δC (mult.) | δC (mult.) |
1 | 27.9 (CH2) | 25.9 (CH2) | 20.5 (CH2) | 33.1 (CH2) | 30.3 (CH2) | 39.1 (CH2) |
2 | 28.9 (CH2) | 27.0 (CH2) | 24.9 (CH2) | 28.6 (CH2) | 25.7 (CH2) | 72.7 (CH) |
3 | 74.5 (CH) | 78.5 (CH) | 74.9 (CH) | 78.0 (CH) | 71.3 (CH) | 77.7 (CH) |
4 | 36.6 (C) | 39.1 (C) | 37.9 (C) | 39.7 (C) | 36.1 (C) | 37.3 (C) |
5 | 39.0 (CH) | 56.8 (CH) | 50.8 (CH) | 44.8 (CH) | 58.7 (CH) | 50.0 (CH) |
6 | 122.8 (CH) | 68.9 (CH) | 69.1 (CH) | 23.0 (CH2) | 78.5 (CH) | 127.8 (CH) |
7 | 131.2 (CH) | 72.9 (CH) | 73.0 (CH) | 33.0 (CH2) | 77.5 (CH) | 131.4 (CH) |
8 | 125.2 (C) | 125.9 (C) | 125.8 (C) | 141.0 (C) | 125.6 (C) | 128.5 (C) |
9 | 134.8 (C) | 145.1 (C) | 145.5 (C) | 76.8 (C) | 131.9 (C) | 134.2 (C) |
10 | 47.5 (C) | 39.2 (C) | 39.0 (C) | 43.6 (C) | 80.4 (C) | 79.7 (C) |
11 | 108.1 (CH) | 101.6 (CH) | 101.8 (CH) | 67.3 (CH) | 110.9 (CH) | 112.1 (CH) |
12 | 157.4 (C) | 158.3 (C) | 158.3 (C) | 78.4 (CH) | 157.7 (C) | 157.1 (C) |
13 | 125.9 (C) | 124.6 (C) | 124.4 (C) | 45.1 (C) | 124.3 (C) | 124.9 (C) |
14 | 129.0 (CH) | 129.0 (CH) | 128.9 (CH) | 126.3 (CH) | 128.7 (CH) | 132.2 (CH) |
15 | 15.8 (CH3) | 15.9 (CH3) | 15.9 (CH3) | 145.6 (CH) | 15.9 (CH3) | 15.7 (CH3) |
16 | 114.0 (CH2) | |||||
17 | 25.2 (CH3) | |||||
18 | 19.3 (CH3) | 28.7 (CH3) | 28.0 (CH3) | 29.4 (CH3) | 23.1 (CH3) | 28.3 (CH3) |
19 | 75.4 (CH2) | 15.4 (CH3) | 22.2 (CH3) | 16.7 (CH3) | 23.8 (CH3) | 22.6 (CH3) |
20 | 174.5 (C) | 65.8 (CH2) | 65.9 (CH2) | 18.0 (CH3) | 44.1 (CH2) | 51.0 (CH2) |
OMe | 55.4 (CH3) | 55.5 (CH3) | 55.5 (CH3) | 55.3 (CH3) | 55.4 (CH3) |
DP4+ (%) a | ||||||||
---|---|---|---|---|---|---|---|---|
Candidates of 1 | Candidates of 2 | Candidates of 6 | ||||||
3β-OH | 3α-OH | 6β-OH | 6α-OH | 2α,10α-OH | 2β,10α-OH | 2α,10β-OH | 2β,10β-OH | |
H | 100.00% | 0% | 100.00% | 0% | 100.00% | 0% | 0% | 0% |
C | 100.00% | 0% | 100.00% | 0% | 100.00% | 0% | 0% | 0% |
All data | 100.00% | 0% | 100.00% | 0% | 100.00% | 0% | 0% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.-C.; Chen, Y.-J.; Chuang, C.-W.; Chao, Y.-H.; Huang, H.-C.; Lin, C.-C.; Chao, C.-H. Polyoxygenated Terpenoids and Polyketides from the Roots of Flueggea virosa and Their Inhibitory Effect against SARS-CoV-2-Induced Inflammation. Molecules 2022, 27, 8548. https://doi.org/10.3390/molecules27238548
Cheng J-C, Chen Y-J, Chuang C-W, Chao Y-H, Huang H-C, Lin C-C, Chao C-H. Polyoxygenated Terpenoids and Polyketides from the Roots of Flueggea virosa and Their Inhibitory Effect against SARS-CoV-2-Induced Inflammation. Molecules. 2022; 27(23):8548. https://doi.org/10.3390/molecules27238548
Chicago/Turabian StyleCheng, Ju-Chien, Yi-Ju Chen, Chi-Wen Chuang, Ya-Hsuan Chao, Hui-Chi Huang, Chia-Chi Lin, and Chih-Hua Chao. 2022. "Polyoxygenated Terpenoids and Polyketides from the Roots of Flueggea virosa and Their Inhibitory Effect against SARS-CoV-2-Induced Inflammation" Molecules 27, no. 23: 8548. https://doi.org/10.3390/molecules27238548
APA StyleCheng, J. -C., Chen, Y. -J., Chuang, C. -W., Chao, Y. -H., Huang, H. -C., Lin, C. -C., & Chao, C. -H. (2022). Polyoxygenated Terpenoids and Polyketides from the Roots of Flueggea virosa and Their Inhibitory Effect against SARS-CoV-2-Induced Inflammation. Molecules, 27(23), 8548. https://doi.org/10.3390/molecules27238548