Biochars and Activated Biocarbons Prepared via Conventional Pyrolysis and Chemical or Physical Activation of Mugwort Herb as Potential Adsorbents and Renewable Fuels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of the Prepared Adsorbents
2.2. Adsorption Properties of the Prepared Biochars and Activated Biocarbons
2.3. Energy Parameters of the Biochars Prepared
3. Materials and Methods
3.1. Biochars and Activated Carbons Preparation
3.2. Characterization of the Biochars and Activated Carbons
3.3. Adsorption of Inorganic and Organic Pollutants
3.4. Energy Parameters of the Biochars Prepared
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Gale, M.; Nguyen, T.; Moreno, M.; Gilliard-AbdulAziz, K.L. Physiochemical properties of biochar and activated carbon from biomass residue: Influence of process conditions to adsorbent properties. ACS Omega 2021, 6, 10224–10233. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, Z.; Niu, W.; Yang, L.; Zhou, T.; Qin, D.; Niu, Z.; Yuan, Q. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 2018, 143, 746–756. [Google Scholar] [CrossRef]
- Krysanowa, K.; Krylova, A.; Zaichenko, V. Properties of biochar obtained by hydrothermal carbonization and torrefaction of peat. Fuel 2019, 256, 115929. [Google Scholar] [CrossRef]
- Siipola, V.; Tamminen, T.; Källi, A.; Lahti, R.; Romar, H.; Rasa, K.; Keskinen, R.; Hyväluoma, J.; Hannula, M.; Wikberg, H. Effects of biomass type, carbonization process, and activation method on the properties of bio-based activated carbons. BioResources 2018, 13, 5976–6002. [Google Scholar] [CrossRef]
- Chen, R.; Li, L.; Liu, Z.; Lu, M.; Wang, C.; Li, H.; Ma, W.; Wang, S. Preparation and characterization of activated carbons from tobacco stem by chemical activation. J. Air Waste Manag. Assoc. 2017, 67, 713–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Luo, A.; Zhao, Y. Preparation and characterisation of activated carbon from waste tea by physical activation using steam. J. Air Waste Manag. Assoc. 2018, 68, 1269–1277. [Google Scholar] [CrossRef]
- Nowicki, P.; Pietrzak, R.; Wachowska, H. Influence of metamorphism degree of the precursor on preparation of nitrogen enriched activated carbons by ammoxidation and chemical activation of coals. Energy Fuels 2009, 23, 2205–2212. [Google Scholar] [CrossRef]
- Bazan-Woźniak, A.; Nowicki, P.; Pietrzak, R. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes. J. Clean. Prod. 2017, 152, 211–222. [Google Scholar] [CrossRef]
- Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials 2020, 13, 2047. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Nowicki, P.; Szewczuk-Karpisz, K.; Gęca, M.; Jędruchniewicz, K.; Oleszczuk, P. Simultaneous removal of toxic Pb(II) ions, poly (acrylic acid) and Triton X-100 from their mixed solution using engineered biochars obtained from horsetail herb precursor—Impact of post-activation treatment. Sep. Purif. Technol. 2021, 276, 119297. [Google Scholar] [CrossRef]
- Gęca, M.; Wiśniewska, M.; Nowicki, P. Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems—A review. Adv. Colloid Interface Sci. 2022, 305, 102687. [Google Scholar] [CrossRef]
- Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280. [Google Scholar] [CrossRef] [Green Version]
- Nolan, N.E.; Kulmatiski, A.; Beard, K.H.; Norton, J.M. Activated carbon decreases invasive plant growth by mediating plant–microbe interactions. AoB Plants 2015, 7, plu072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordá-Beneyto, M.; Suárez-García, F.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 2007, 45, 293–303. [Google Scholar] [CrossRef]
- Hammaniac, H.; Laghriba, F.; Farahib, A.; Lahricha, S.; El Ouafya, T.; Aboulkascd, A.; El Harfic, K.; El Mhammedi, M.A. Preparation of activated carbon from date stones as a catalyst to the reactivity of hydroquinone: Application in skin whitening cosmetics samples. J. Sci. Adv. Mater. Devices 2019, 4, 451–458. [Google Scholar] [CrossRef]
- Hassen, J.H.; Abdulkadir, H.K. Recent developments in the use of activated charcoal in medicine. J. Med. Sci. 2022, 91, 108–118. [Google Scholar] [CrossRef]
- Reza, M.S.; Yun, C.S.; Afroze, S.; Radenahmad, N.; Abu Bakar, M.S.; Saidur, R.; Taweekun, J.; Azad, A.K. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J. Basic Appl. Sci. 2020, 27, 208–238. [Google Scholar] [CrossRef]
- Bazan-Wozniak, A.; Nowicki, P.; Wolski, R.; Pietrzak, R. Activated bio-carbons prepared from the residue of supercritical extraction of raw plants and their application for removal of nitrogen dioxide and hydrogen sulfide from the gas phase. Materials 2021, 14, 3192. [Google Scholar] [CrossRef]
- Feng, P.; Li, J.; Wang, H.; Xu, Z. Biomass-Based Activated Carbon and Activators: Preparation of Activated Carbon from Corncob by Chemical Activation with Biomass Pyrolysis Liquids. ACS Omega 2020, 5, 24064–24072. [Google Scholar] [CrossRef]
- Ani, J.U.; Akpomie, K.G.; Okoro, U.C.; Aneke, L.E.; Onukwuli, O.D.; Ujam, O.T. Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Appl. Water Sci. 2020, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Awe, A.A.; Opeolu, B.O.; Fatoki, O.S.; Ayanda, O.S.; Jackson, V.A.; Snyman, R. Preparation and characterisation of activated carbon from Vitisvinifera leaf litter and its adsorption performance for aqueous phenanthrene. Appl. Biol. Chem. 2020, 63, 12. [Google Scholar] [CrossRef]
- Joshi, S.; Shrestha, S.; Shrestha, B. Activated Carbon from Various Agricultural Wastes by H3PO4 Activation: Preparation and Characterization. Chem. Eng. Technol. 2021, 44, 2327–2332. [Google Scholar] [CrossRef]
- Ekiert, H.; Pajor, J.; Klin, P.; Rzepiela, A.; Ślesak, H.; Szopa, A. Significance of Artemisia Vulgaris L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. Molecules 2020, 25, 4415. [Google Scholar] [CrossRef]
- Evwierhoma, E.T.; Madubiko, O.D.; Jaiyeola, A. Preparation and characterization of activated carbon from bean husk. Niger. J. Technol. 2018, 37, 674–678. [Google Scholar] [CrossRef] [Green Version]
- Jha, P.K.; Jha, V.K. Iodine adsorption characteristics of activated carbon obtained from Spinacia oleracea (spinach) leaves. Mong. J. Chem. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Lutfi, M.; Hanafi; Susilo, B.; Prasetyo, J.; Sandra; Prajogo, U. Characteristics of activated carbon from coconut shell (Cocosnucifera) through chemical activation process. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012134. [Google Scholar] [CrossRef]
- Mopoung, S.; Moonsri, P.; Palas, W.; Khumpai, S. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) Adsorption from Aqueous Solution. Sci. World J. 2015, 1, 415961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kra, D.O.; Allou, N.B.; Atheba, P.; Drogui, P.; Trokourey, A. Preparation and characterization of activated carbon based on wood (Acacia auriculeaformis, Côte d’Ivoire). J. Encapsul. Adsorpt. Sci. 2019, 9, 63–82. [Google Scholar] [CrossRef] [Green Version]
- Da, T.X.; Chen, T.; He, W.K.; Liu, P.; Ma, Y.; Tong, Z.F. Comprehensive comparisons of iodate adsorption onto corn stalk hydrothermal and pyrolytic biochar. J. Radioanal. Nucl. Chem. 2021, 329, 1277. [Google Scholar] [CrossRef]
- Ying, Z.; Chen, X.; Li, H.; Liu, X.; Zhang, C.; Zhang, J.; Yi, G. Efficient adsorption of methylene blue by porous biochar derived from soybean dreg using a one-pot synthesis method. Molecules 2021, 26, 661. [Google Scholar] [CrossRef] [PubMed]
- Suhaimi, N.; Kooh, M.R.R.; Lim, C.; Chao, C.-T.C.; Chau, Y.C.; Mahadi, A.H.; Chiang, H.; Hassan, N.H.H.; Thotagamuge, R. The Use of Gigantochloa bamboo-derived biochar for the removal of methylene blue from aqueous solution. Adsorpt. Sci. Technol. 2022, 2022, 824579. [Google Scholar] [CrossRef]
- Thang, N.H.; Khang, D.S.; Hai, T.D.; Nga, D.T.; Tuan, P.D. Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells. RSC Adv. 2021, 11, 26563–26570. [Google Scholar] [CrossRef]
- El-Bery, H.M.; Saleh, M.; El-Gendy, R.A.; Saleh, M.R.; Thabet, S.M. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 2022, 12, 5499. [Google Scholar] [CrossRef]
- Üner, O.; Geçgel, Ü.; Bayrak, Y. Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: Kinetic, isotherm, thermodynamic, and mechanism analysis. Water Air Soil Pollut. 2016, 227, 247. [Google Scholar] [CrossRef]
- Rapheal, I.A.; Moki, E.C.; Muhammad, A.; Mohammed, G.; Hassan, L.G.; Yauri, A.U.B. Physico-chemical and combustion analyses of bio-briquettes from biochar produced from pyrolysis of groundnut shell. Int. J. Adv. Chem. 2021, 9, 74–79. [Google Scholar] [CrossRef]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef]
- James, R.A.M.; Yuan, W.; Boyette, M.D.; Wang, D.; Kumar, A. Characterization of biochar from rice hulls and wood chips produced in a top-lit updraft biomass gasifier. Am. Soc. Agric. Biol. Eng. 2016, 59, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, A.S.; Abdullah, N.; Sulaiman, F.; Umar, S. Combustion characteristics of palm pressed fibres biochar and sub-bituminous Malaysian coal. Malays. J. Fundam. Appl. Sci. 2018, 14, 334–337. [Google Scholar] [CrossRef] [Green Version]
- Dudziak, M.; Werle, S.; Marszałek, A.; Sobek, S.; Magdziarz, A. Comparative assessment of the biomass solar pyrolysis biochars combustion behavior and zinc Zn(II) adsorption. Energy 2022, 261, 125360. [Google Scholar] [CrossRef]
- Gheorghe-Bulmau, C.; Volceanov, A.; Stanciulescu, I.; Ionescu, G.; Marculescu, C.; Radoiu, M. Production and properties assessment of biochars from rapeseed and poplar waste biomass for environmental applications in Romania. Env. Geochem Health 2022, 44, 1683–1696. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.F.; Ramiro, A.; Gonzalez-Garcia, C.M.; Ganan, J.; Encinar, J.M.; Sabio, E.; Rubiales, J. Pyrolysis of almond shells. Energy applications of fractions. Ind. Eng. Chem. 2005, 44, 3003–3012. [Google Scholar] [CrossRef]
- Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. BioEnergy Resour. 2013, 6, 663–677. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. J. Mater. Cycles Waste Manag. 2019, 21, 786–800. [Google Scholar] [CrossRef]
- Boehm, H.P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994, 32, 759. [Google Scholar] [CrossRef]
Sample | Cdaf 1 | Hdaf | Ndaf | Sdaf | Odiff 2 |
---|---|---|---|---|---|
ML | 46.0 | 7.8 | 2.5 | 0.3 | 43.4 |
MS | 51.4 | 7.6 | 0.7 | 0.2 | 40.1 |
ML300 | 65.7 | 5.9 | 3.6 | 0.9 | 23.9 |
ML400 | 72.4 | 5.1 | 3.9 | 0.8 | 17.8 |
MS300 | 71.6 | 5.2 | 0.9 | 0.8 | 21.5 |
MS400 | 77.7 | 4.4 | 1.2 | 0.6 | 16.1 |
MLCA | 87.5 | 2.6 | 0.9 | 0.8 | 8.2 |
MSCA | 94.7 | 2.3 | 0.4 | 0.9 | 1.7 |
MLDA | 82.2 | 0.9 | 3.2 | 1.1 | 12.6 |
MSDA | 95.7 | 0.7 | 0.9 | 0.9 | 1.8 |
Sample | Total 1 | Micropore | Micropore Contribution | Mean Pore Size [nm] | ||
---|---|---|---|---|---|---|
Surface Area [m2/g] | Pore Volume [cm3/g] | Area [m2/g] | Volume [cm3/g] | |||
ML300 | 7.0 | - | 0.014 | - | - | 8.359 |
ML400 | 16.2 | - | 0.032 | - | - | 8.115 |
MS300 | 11.6 | - | 0.024 | - | - | 8.346 |
MS400 | 15.7 | - | 0.031 | - | - | 7.795 |
MLCA | 377.4 | 141.5 | 0.544 | 0.073 | 0.13 | 5.773 |
MSCA | 974.4 | 204.3 | 1.190 | 0.100 | 0.08 | 4.885 |
MLDA | 69.1 | 35.5 | 0.075 | 0.018 | 0.24 | 4.325 |
MSDA | 291.4 | 187.8 | 0.205 | 0.101 | 0.49 | 2.822 |
Sample | Acidic Groups 1 [mmol/g] | Basic Groups 2 [mmol/g] | Total Amount [mmol/g] | pH of Water Extracts |
---|---|---|---|---|
ML | 1.19 | 0.66 | 1.85 | 6.51 |
MS | 0.92 | 0.35 | 1.27 | 6.27 |
ML300 | 0.95 | 1.57 | 2.52 | 8.46 |
ML400 | 1.14 | 1.03 | 2.17 | 8.85 |
MS300 | 0.49 | 2.68 | 3.17 | 10.08 |
MS400 | 0.90 | 1.27 | 2.17 | 9.92 |
MLCA | 1.18 | 0.12 | 1.30 | 3.23 |
MSCA | 0.65 | 0.25 | 0.90 | 3.61 |
MLDA | 0.00 | 4.58 | 4.58 | 12.47 |
MSDA | 0.00 | 1.83 | 1.83 | 10.12 |
Isotherm Model | Parameters | Biochars | |||
---|---|---|---|---|---|
ML300 | ML400 | MS300 | MS400 | ||
Langmuir | R2 | 0.962 | 0.992 | 0.999 | 0.983 |
qm | 84.09 | 85.74 | 29.02 | 28.77 | |
KL | 0.54 | 0.16 | 0.15 | 0.03 | |
Freundlich | R2 | 0.982 | 0.970 | 0.914 | 0.953 |
KF | 47.98 | 55.68 | 20.44 | 14.08 | |
1/n | 0.388 | 0.240 | 0.131 | 0.233 | |
Temkin | R2 | 0.987 | 0.758 | 0.625 | 0.919 |
AT | 6.17 | 17.82 | 397.26 | 43.84 | |
B | 25.579 | 18.293 | 3.457 | 4.012 |
Isotherm Model | Parameters | Activated Biocarbons | |||
---|---|---|---|---|---|
MLCA | MSCA | MLDA | MSDA | ||
Langmuir | R2 | 0.997 | 0.990 | 0.967 | 0.998 |
qm | 73.80 | 164.14 | 13.91 | 27.83 | |
KL | 0.02 | 0.01 | 0.04 | 0.43 | |
Freundlich | R2 | 0.879 | 0.936 | 0.981 | 0.993 |
KF | 37.22 | 102.09 | 5.64 | 22.16 | |
1/n | 0.219 | 0.149 | 0.289 | 0.133 | |
Temkin | R2 | 0.962 | 0.901 | 0.611 | 0.971 |
AT | 63.26 | 202.55 | 3.48 | 197.77 | |
B | 10.052 | 19.147 | 3.565 | 4.055 |
Carbonaceous Adsorbent | Maximum Adsorbed Amount [mg/g] | Reference |
---|---|---|
Iodine | ||
Activated carbon from bean husk | 1256 | [25] |
Activated carbon obtained from Spinacia oleracea (spinach) leaves | 623 | [26] |
Activated carbon from coconut shell | 249 | [27] |
Activated carbon from tamarind seed | 310 | [28] |
Activated carbon based on acacia wood | 381 | [29] |
Corn stalk hydrothermal and pyrolytic biochars | 17 and 10 | [30] |
Mugwort-based biochar and activated biocarbon | 774 and 948 | This study |
Methylene blue | ||
Activated carbon from tamarind seed | 96 | [28] |
Biochar derived from soybean dreg | 1274 | [31] |
Gigantochloa bamboo-derived biochar | 87 | [32] |
Activated carbon synthesized from cashew nut shells | 100 | [33] |
Activated carbon derived from lignocellulosic agriculture wastes | 149 | [34] |
Activated carbon prepared from Citrullus lanatus rind | 232 | [35] |
Mugwort post-extraction residue-based biochar and activated biocarbon | 84 and 167 | This study |
Biochar | Heat of Combustion [MJ/kg] | Reference |
---|---|---|
Biochar produced from pyrolysis of groundnut shell | 45.2 | [36] |
Biochars from coconut and palm shells | 33.7 and 33.6 | [37] |
Biochar from wood chips and rice hulls | 33.2 and 14.8 | [38] |
Biochar derived from palm pressed fibre | 27.3 | [39] |
Biochar from waste straw | 22.6 | [40] |
Biochars from rapeseed and poplar waste biomass | 20.6 and 22.3 | [41] |
Biochar from almond shell | 28.2 | [42] |
Biochars from pinewood and white straw | 27.8 and 22.0 | [43] |
Biochars formed from miscanthus straw and sawdust | 26.6 and 23.4 | [44] |
Mugwort post-extraction residue-based biochar | 30.3 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewska, M.; Rejer, K.; Pietrzak, R.; Nowicki, P. Biochars and Activated Biocarbons Prepared via Conventional Pyrolysis and Chemical or Physical Activation of Mugwort Herb as Potential Adsorbents and Renewable Fuels. Molecules 2022, 27, 8597. https://doi.org/10.3390/molecules27238597
Wiśniewska M, Rejer K, Pietrzak R, Nowicki P. Biochars and Activated Biocarbons Prepared via Conventional Pyrolysis and Chemical or Physical Activation of Mugwort Herb as Potential Adsorbents and Renewable Fuels. Molecules. 2022; 27(23):8597. https://doi.org/10.3390/molecules27238597
Chicago/Turabian StyleWiśniewska, Małgorzata, Kacper Rejer, Robert Pietrzak, and Piotr Nowicki. 2022. "Biochars and Activated Biocarbons Prepared via Conventional Pyrolysis and Chemical or Physical Activation of Mugwort Herb as Potential Adsorbents and Renewable Fuels" Molecules 27, no. 23: 8597. https://doi.org/10.3390/molecules27238597
APA StyleWiśniewska, M., Rejer, K., Pietrzak, R., & Nowicki, P. (2022). Biochars and Activated Biocarbons Prepared via Conventional Pyrolysis and Chemical or Physical Activation of Mugwort Herb as Potential Adsorbents and Renewable Fuels. Molecules, 27(23), 8597. https://doi.org/10.3390/molecules27238597