Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo’s Garden®: Adaptation to New Cultivation Systems
Abstract
:1. Introduction
2. Results
2.1. Micromorphological Analyses
2.2. Biochemical Analyses
2.3. Phytochemical Analyses
2.3.1. Non-Volatile Compound Analysis
Chemical Characterization
Quantitative Estimation of Steviol Glycosides
2.3.2. Volatile Compound Analysis
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.2.1. Control Potted Plants
4.2.2. Plants from Nemo’s Garden® Biosphere
4.3. Micromorphological Analyses
4.3.1. LM and FM
4.3.2. SEM
4.4. Biochemical Analyses
4.4.1. Pigments and Polyphenols, Extraction and Determination
4.4.2. Antioxidant Activity
4.5. Phytochemical Analyses
4.5.1. Non-Volatile Compounds Analysis
Extract Preparation
High-Performance Liquid Chromatography–Mass Spectrometry (HPLC–MS)
4.5.2. Volatile Compound Analysis
Headspace-Solid Phase Microextraction (HS-SPME) Analysis
Gas Chromatography–Mass Spectrometry (GC–MS)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- The Intergovernmental Panel on Climate Change (IPCC). Available online: https://www.ipcc.ch/ (accessed on 12 January 2022).
- Un Climate Change Conference UK 2021. Available online: https://ukcop26.org/ (accessed on 11 January 2022).
- FAO. Building a Common Vision for Sustainable Food and Agriculture. Principles and Approache; FAO: Rome, Italy, 2014. [Google Scholar]
- Pistelli, L.; Ascrizzi, R.; Giuliani, C.; Cervelli, C.; Ruffoni, B.; Princi, E.; Fontanesi, G.; Flamini, G.; Pistelli, L. Growing basil in the underwater biospheres of Nemo’s Garden®: Phytochemical, physiological and micromorphological analyses. Sci. Hortic. 2020, 259, 108851. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.; Li, J.; Han, B. Designing future crops: Challenges and strategies for sustainable agriculture. Plant J. 2021, 105, 1165–1178. [Google Scholar] [CrossRef]
- Melchior, I.C.; Newig, J. Governing Transitions towards Sustainable Agriculture—Taking Stock of an Emerging Field of Research. Sustainability 2021, 13, 528. [Google Scholar] [CrossRef]
- Dini, G.; Princi, E.; Gamberini, S.; Gamberini, L. Nemo’s Garden: Growing plants underwater. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6. [Google Scholar]
- Pal, P.; Kumar, R.; Guleria, V.; Mahajan, M.; Prasad, R.; Pathania, V.; Gill, B.; Singh, D.; Chand, G.; Singh, B.; et al. Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni. BMC Plant Biol. 2015, 15, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarma-Orozco, A.; Combatt-Caballero, E.; Jaraba-Navas, J. Growth and development of Stevia rebaudiana Bert., in high and low levels of radiation. Curr. Plant Biol. 2020, 22, 100144. [Google Scholar] [CrossRef]
- Debnath, M.; Ashwath, N.; Midmore, D.J. Physiological and morphological responses to abiotic stresses in two cultivars of Stevia rebaudiana (Bert.) Bertoni. S. African J. Bot. 2019, 123, 124–132. [Google Scholar] [CrossRef]
- de Andrade, M.V.S.; de Castro, R.D.; da Silva Cunha, D.; Gomes Neto, V.; Aparecida Carosio, M.G.; Ferreira, A.G.; de Souza-Neta, L.C.; Fernandez, L.G.; Ribeiro, P.R. Stevia rebaudiana (Bert.) Bertoni cultivated under different photoperiod conditions: Improving physiological and biochemical traits for industrial applications. Ind. Crops Prod. 2021, 168, 113595. [Google Scholar] [CrossRef]
- Khiraoui, A.; Bakha, M.; Boulli, A.; Hasib, A.; Al Faiz, C. The productivity of Stevia rebaudiana (Bertoni) on dry leaves and steviol glycosides of four varieties grown in six regions of Morocco. Biocatal. Agric. Biotechnol. 2021, 37, 102151. [Google Scholar] [CrossRef]
- Momtazi-Borojeni, A.A.; Esmaeili, S.-A.; Abdollahi, E.; Sahebkar, A. A Review on the Pharmacology and Toxicology of Steviol Glycosides Extracted from Stevia rebaudiana. Curr. Pharm. Des. 2017, 23, 1616–1622. [Google Scholar] [CrossRef]
- Clemente, C.; Angelini, L.G.; Ascrizzi, R.; Tavarini, S. Stevia rebaudiana (Bertoni) as a Multifunctional and Sustainable Crop for the Mediterranean Climate. Agriculture 2021, 11, 123. [Google Scholar] [CrossRef]
- Ciulu, M.; Quirantes-Piné, R.; Spano, N.; Sanna, G.; Borrás-Linares, I.; Segura-Carretero, A. Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves. Ind. Crops Prod. 2017, 108, 106–112. [Google Scholar] [CrossRef]
- Karaköse, H.; Jaiswal, R.; Kuhnert, N. Characterization and Quantification of Hydroxycinnamate Derivatives in Stevia rebaudiana Leaves by LC-MS n. J. Agric. Food Chem. 2011, 59, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, S.; Piccolella, S.; Nocera, P.; Tranquillo, E.; Dal Poggetto, F.; Catauro, M. New insights into phenol and polyphenol composition of Stevia rebaudiana leaves. J. Pharm. Biomed. Anal. 2019, 163, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Ceunen, S.; Geuns, J.M.C. Steviol Glycosides: Chemical Diversity, Metabolism, and Function. J. Nat. Prod. 2013, 76, 1201–1228. [Google Scholar] [CrossRef] [PubMed]
- Gardana, C.; Scaglianti, M.; Simonetti, P. Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 2010, 1217, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Montoro, P.; Molfetta, I.; Maldini, M.; Ceccarini, L.; Piacente, S.; Pizza, C.; Macchia, M. Determination of six steviol glycosides of Stevia rebaudiana (Bertoni) from different geographical origin by LC–ESI–MS/MS. Food Chem. 2013, 141, 745–753. [Google Scholar] [CrossRef]
- Pól, J.; Hohnová, B.; Hyötyläinen, T. Characterisation of Stevia Rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2007, 1150, 85–92. [Google Scholar] [CrossRef]
- Monteiro, W.R.; Castro, M.; de Moraes Castro, M.; Mazzoni-Viveiros, S.C.; Mahlberg, P.G. Development and some histochemical aspects of foliar glandular trichomes of Stevia rebaudiana (Bert.) Bert.—Asteraceae. Rev. Bras. Botânica 2001, 24, 349–357. [Google Scholar] [CrossRef]
- Tateo, F.; Bononi, M.; Mariotti, M.G.; Cornara, L.; Serrato-Valenti, G. Trichomes on vegetative and reproductive organs of Stevia rebaudiana (Asteraceae). Structure and secretory products. Plant Biosyst. -Int. J. Deal. All Asp. Plant Biol. 2001, 135, 25–37. [Google Scholar] [CrossRef]
- Bondarev, N.I.; Sukhanova, M.A.; Semenova, G.A.; Goryaeva, O.V.; Andreeva, S.E.; Nosov, A.M. Morphology and ultrastructure of trichomes of intact and in vitro plants of Stevia rebaudiana Bertoni with reference to biosynthesis and accumulation of steviol glycosides. Moscow Univ. Biol. Sci. Bull. 2010, 65, 12–16. [Google Scholar] [CrossRef]
- Giuliani, C.; Maleci Bini, L. Insight into the structure and chemistry of glandular trichomes of Labiatae, with emphasis on subfamily Lamioideae. Plant Syst. Evol. 2008, 276, 199–208. [Google Scholar] [CrossRef]
- Shaffert, E.E.; Chebotarui, A.A. Structure, topography and ontogeny of Stevia rebaudiana (Asteraceae) trichomes. Bot. Zhurnal (St. Petersburg) 1994, 79, 38–48. [Google Scholar]
- Pieracci, Y.; Pistelli, L.; Lari, M.; Iannone, M.; Marianelli, A.; Ascrizzi, R.; Pistelli, L.; Flamini, G. Hibiscus rosa-sinensis as Flavoring Agent for Alcoholic Beverages. Appl. Sci. 2021, 11, 9864. [Google Scholar] [CrossRef]
- Tavarini, S.; Sgherri, C.; Ranieri, A.M.; Angelini, L.G. Effect of Nitrogen Fertilization and Harvest Time on Steviol Glycosides, Flavonoid Composition, and Antioxidant Properties in Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2015, 63, 7041–7050. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Kuhn, G.; Prenzel, U.; Buschmann, C.; Meier, D. Adaptation of Chloroplast-Ultrastructure and of Chlorophyll- Protein Levels to High-Light and Low-Light Growth Conditions. Z. Naturforsch. C 1982, 37, 464–475. [Google Scholar] [CrossRef]
- Hernández, K.V.; Moreno-Romero, J.; Hernández de la Torre, M.; Manríquez, C.P.; Leal, D.R.; Martínez-Garcia, J.F. Effect of light intensity on steviol glycosides production in leaves of Stevia rebaudiana plants. Phytochemistry 2022, 194, 113027. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Canale, A.; Romano, D.; Flamini, G.; Tavarini, S.; Martini, A.; Ascrizzi, R.; Conte, G.; Mele, M.; Angelini, L.G. Flower scent bouquet variation and bee pollinator visits in Stevia rebaudiana Bertoni (Asteraceae), a source of natural sweeteners. Arthropod. Plant. Interact. 2017, 11, 381–388. [Google Scholar] [CrossRef]
- Mascarello, C.; Sacco, E.; Pamato, M.; Ruffoni, B. Propagazione di Stevia per talea. Nuova opportunitàdi mercato. Colt. Protette 2013, 5, 56–64. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT -Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P.R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Carol, S., Ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 1932633219. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on Methyl Silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Elsevier: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada; San Francisco, CA, USA, 1980; Volume 26, ISBN 9780123842503. [Google Scholar]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons, Inc.: New York, NY, USA, 1976; ISBN 047015019X. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes; Aldrich Chemical Company: Milwaukee, WI, USA, 1981. [Google Scholar]
Nemo’s Hydroponic | Nemo’s Pot | Control Pot | |
---|---|---|---|
Chlorophylla (chl a) mg/g FW | 0.69 ± 0.15 | 0.47 ± 0.02 | 0.71 ± 0.1 |
Chlorophyll b (chl b) mg/g FW | 0.36 ± 0.05 | 0.34 ± 0.01 | 0.37 ± 0.05 |
Total Chlorophylls (Tchl) mg/g FW | 1.05 ± 0.05 | 0.81 ± 0.03 | 1.09 ± 0.15 |
Ratio chl a/chl b | 2.1 | 1.3 | 1.9 |
Total Carotenoids (TCar) mg/g DW | 0.23 ± 0.02 | 0.05 ± 0.01 | 0.13 ± 0.02 |
Total phenolics (TPC) mg GAE/g DW | 15.83 ± 2.39 | 10.55 ± 0.76 | 26.6 ± 0.44 |
Antioxidant DPPH-assay mmol TE /mL | 3.78 ± 1.03 | 1.77 ± 0.8 | 7.4 ± 1.66 |
Antioxidant ABTS activity mmol TE /mL | 3.00 ± 0.36 | 1.91 ± 0.4 | 4.34 ± 0.46 |
Peak | Compound a | tR (min) | [M-H]− | [M+HCOO]− | [M+Na]+ | MS/MS Ions (m/z) | λmax | Extracts |
---|---|---|---|---|---|---|---|---|
1 | Dicaffeoylquinic acid I | 38.2 | 515 | - | 353, 179 | 252, 328 | CP, NH, NP | |
2 | Dicaffeoylquinic acid II | 38.8 | 515 | - | 353, 179 | 249, 329 | CP, NH, NP | |
3 | Dicaffeoylquinic acid III | 43.1 | 515 | - | 353, 179 | 248, 330 | CP, NH, NP | |
4 | Quercetin rhamnoside | 44.9 | 447 | - | 301, 179, 151 | 257, 346 | CP, NH, NP | |
5 | Dicaffeoylquinic acid III | 45.5 | 515 | - | 353, 179 | 255, 331 | CP, NH, NP | |
6 | Quercetin rhamnosyl-diglucoside | 46.9 | 771 | - | 609, 301 | 257, 335 | CP, NH, NP | |
7 | Tricaffeoylquinic acid | 48.1 | 677 | - | 515, 353 | 257, 332 | CP, NH, NP | |
8 | Rebaudioside A | 52.3 | 965 | 1011 | 989 | 827, 665 b | - | CP, NH, NP |
9 | Rebaudioside D | 54.0 | 1127 | 1173 | 1151 | 989, 827 b | - | CP, NH, NP |
10 | Rebaudioside N | 55.1 | 1273 | 1319 | 1297 | - | - | CP, NH, NP |
11 | Rebaudioside F | 56.2 | 935 | 981 | 959 | - | - | CP, NH, NP |
12 | Stevioside | 60.2 | 803 | 849 | 827 | 665, 509 b | - | CP, NH, NP |
13 | Rebaudioside C | 61.9 | 949 | 995 | 973 | 811, 665 b | - | CP, NH, NP |
14 | Rebaudioside B | 62.3 | 803 | 849 | 827 | 665, 503 b | - | CP, NH, NP |
Peak | Compound | Nemo’s Hydroponic | Nemo’s Pot | Control Pot |
---|---|---|---|---|
12 | Stevioside | 43.3 ± 17 | 25.1 ± 1.8 | 44.3 ± 6.7 |
13 | Rebaudioside C | 1.46 ± 0.26 | 0.793 ± 0.048 | 0.743 ± 0.15 |
Total | 44.8 ± 17 | 25.9 ± 1.8 | 45.0 ± 6.8 |
Compounds | l.r.i. 1 | Class | Relative Abundance (%) | ||
---|---|---|---|---|---|
Nemo’s Hydroponic | Nemo’s Pot | Control Pot | |||
α-pinene | 933 | MH | - 2 | - | 0.6 ± 0.10 |
sabinene | 976 | MH | - | - | 1.7 ± 0.18 |
β-pinene | 982 | MH | 1.5 ± 0.06 | 1.3 ± 0.05 | 9.1 ± 0.25 |
2-octanone | 992 | NT | - | - | - |
(E)-3-hexenol acetate | 1002 | NT | - | 0.2 ± 0.00 | - |
(Z)-3-hexenol acetate | 1009 | NT | - | - | - |
limonene | 1029 | MH | - | - | 0.7 ± 0.04 |
1,8-cineole | 1032 | OM | - | 0.2 ± 0.05 | |
(E)-β-ocimene | 1052 | MH | 0.4 ± 0.02 | - | |
linalool | 1101 | OM | 0.4 ± 0.01 | 0.2 ± 0.01 | 0.5 ± 0.11 |
nonanal | 1104 | NT | - | - | 0.4 ± 0.11 |
(E)-4,8-dimethylnona-1,3,7-triene | 1116 | NT | - | - | - |
(Z)-3-hexenyl butyrate | 1186 | NT | - | - | - |
α-terpineol | 1189 | OM | 0.1 ± 0.01 | - | 0.2 ± 0.00 |
decanal | 1204 | NT | - | - | 0.5 ± 0.01 |
(Z)-3-hexenyl isovalerate | 1234 | NT | - | - | - |
(E)-hex-3-enyl (E)-2-methylbut-2-enoate | 1319 | NT | - | - | - |
δ-elemene | 1340 | SH | 8.0 ± 0.07 | 6.1 ± 0.18 | 1.5 ± 0.01 |
cyclosativene | 1368 | SH | 0.1 ± 0.01 | - | - |
α-copaene | 1376 | SH | 0.3 ± 0.01 | 0.3 ± 0.04 | - |
β-bourbonene | 1384 | SH | - | 0.3 ± 0.00 | - |
β-cubebene | 1390 | SH | 0.4 ± 0.02 | - | 0.9 ± 0.01 |
β-elemene | 1392 | SH | 2.5 ± 0.01 | 2.4 ± 0.01 | 2.1 ± 0.01 |
(Z)-caryophyllene | 1405 | SH | - | 0.1 ± 0.01 | - |
α-gurjunene | 1410 | SH | 0.4 ± 0.03 | 0.4 ± 0.03 | 0.5 ± 0.01 |
β-ylangene | 1414 | SH | - | 2.8 ± 0.19 | - |
β-caryophyllene | 1420 | SH | 21.1 ± 0.45 | 27.5 ± 0.26 | 36.0 ± 0.19 |
β-copaene | 1429 | SH | - | - | 0.6 ± 0.01 |
γ-elemene | 1433 | SH | 2.2 ± 0.12 | - | - |
trans-α-bergamotene | 1438 | SH | 1.7 ± 0.12 | 1.9 ± 0.09 | 2.5 ± 0.01 |
aromadendrene | 1445 | SH | 0.2 ± 0.07 | 0.2 ± 0.07 | - |
α-humulene | 1456 | SH | 7.9 ± 0.07 | 8.8 ± 0.01 | 6.7 ± 0.04 |
(E)-β-farnesene | 1460 | SH | 10.4 ± 0.04 | 10.0 ± 0.59 | 8.1 ± 0.12 |
alloaromadendrene | 1461 | SH | - | - | - |
cis-muurola-4(14),5-diene | 1462 | SH | - | - | - |
γ-muurolene | 1477 | SH | 0.4 ± 0.12 | 0.3 ± 0.17 | - |
germacrene D | 1478 | SH | 10.9 ± 0.01 | 10.9 ± 0.46 | 13.1 ± 0.07 |
ar-curcumene | 1483 | SH | - | - | - |
β-chamigrene | 1485 | SH | 0.1 ± 0.08 | 0.6 ± 0.21 | - |
valencene | 1492 | SH | - | 0.5 ± 0.40 | - |
bicyclogermacrene | 1496 | SH | 19.5 ± 0.09 | 14.8 ± 0.04 | 5.2 ± 0.03 |
δ-amorphene | 1505 | SH | - | 0.2 ± 0.02 | - |
α-bulnesene | 1505 | SH | 2.4 ± 0.10 | 1.9 ± 0.01 | - |
β-bisabolene | 1509 | SH | 0.8 ± 0.04 | 0.9 ± 0.02 | - |
trans-γ-cadinene | 1513 | SH | 1.2 ± 0.04 | 1.3 ± 0.01 | 1.3 ± 0.01 |
δ-cadinene | 1525 | SH | 1.3 ± 0.01 | 1.4 ± 0.02 | 1.6 ± 0.01 |
(E)-γ-bisabolene | 1535 | SH | 0.3 ± 0.03 | 0.3 ± 0.00 | - |
α-cadinene | 1538 | SH | 0.2 ± 0.04 | 0.2 ± 0.00 | - |
(E)-nerolidol | 1565 | OS | 0.3 ± 0.05 | 0.2 ± 0.02 | 0.7 ± 0.00 |
germacrene D-4-ol | 1575 | OS | 1.2 ± 0.03 | 0.7 ± 0.02 | 0.4 ± 0.01 |
caryophyllene oxide | 1581 | OS | 0.4 ± 0.03 | 0.7 ± 0.01 | - |
globulol | 1583 | OS | 0.2 ± 0.00 | - | - |
5-epi-7-epi-α-eudesmol | 1603 | OS | 0.2 ± 0.05 | - | - |
humulene epoxide II | 1608 | OS | - | 0.1 ± 0.06 | - |
γ-eudesmol | 1630 | OS | 0.2 ± 0.03 | - | - |
epi-α-cadinol | 1641 | OS | 0.4 ± 0.04 | 0.4 ± 0.00 | 1.1 ± 0.10 |
manoyl oxide | 1988 | OD | 1.8 ± 0.00 | 0.9 ± 0.02 | 3.8 ± 0.02 |
Monoterpene hydrocarbons (MHs) | 1.9 ± 0.08 | 1.3 ± 0.05 | 12.1 ± 0.37 | ||
Oxygenated monoterpenes (OMs) | 0.5 ± 0.00 | 0.2 ± 0.01 | 0.9 ± 0.16 | ||
Sesquiterpene hydrocarbons (SHs) | 92.1 ± 0.16 | 93.9 ± 0.23 | 80.1 ± 0.51 | ||
Oxygenated sesquiterpenes (OSs) | 2.7 ± 0.21 | 2.1 ± 0.11 | 2.2 ± 0.10 | ||
Oxygenated diterpenes (ODs) | 1.8 ± 0.00 | 0.9 ± 0.02 | 3.8 ± 0.02 | ||
Non-terpene derivatives (NTs) | - | 0.2 ± 0.00 | 0.9 ± 0.10 | ||
Total identified (%) | 98.92 ± 0.02 | 98.6 ± 0.4 | 100.0 ± 0.01 |
Nemo’s Hydroponic | Nemo’s Pot | Control Pot | |
---|---|---|---|
Plant dry weight (g) | 5.71 | 2.97 | 24.5 |
Methanol extract (g) | 2.81 | 0.97 | 9.66 |
Yield (%) | 49.3 | 32.5 | 39.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ascrizzi, R.; De Leo, M.; Pistelli, L.; Giuliani, C.; Pieracci, Y.; Ruffoni, B.; Mascarello, C.; Fico, G.; Flamini, G.; Pistelli, L. Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo’s Garden®: Adaptation to New Cultivation Systems. Molecules 2022, 27, 8602. https://doi.org/10.3390/molecules27238602
Ascrizzi R, De Leo M, Pistelli L, Giuliani C, Pieracci Y, Ruffoni B, Mascarello C, Fico G, Flamini G, Pistelli L. Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo’s Garden®: Adaptation to New Cultivation Systems. Molecules. 2022; 27(23):8602. https://doi.org/10.3390/molecules27238602
Chicago/Turabian StyleAscrizzi, Roberta, Marinella De Leo, Laura Pistelli, Claudia Giuliani, Ylenia Pieracci, Barbara Ruffoni, Carlo Mascarello, Gelsomina Fico, Guido Flamini, and Luisa Pistelli. 2022. "Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo’s Garden®: Adaptation to New Cultivation Systems" Molecules 27, no. 23: 8602. https://doi.org/10.3390/molecules27238602
APA StyleAscrizzi, R., De Leo, M., Pistelli, L., Giuliani, C., Pieracci, Y., Ruffoni, B., Mascarello, C., Fico, G., Flamini, G., & Pistelli, L. (2022). Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo’s Garden®: Adaptation to New Cultivation Systems. Molecules, 27(23), 8602. https://doi.org/10.3390/molecules27238602