Highly Stretchable Composite Foams via Sustainable Utilization of Waste Tire Rubbers for Temperature-Dependent Electromagnetic Wave Absorption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure
2.2. EWA Properties
2.3. EWA Mechanisms
2.4. Temperature Dependence of EWA
3. Materials and Methods
3.1. Materials
3.2. Fabrication of PU/WTR@CNT/Fe3O4 Composite Foams
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ramarad, S.; Khalid, M.; Ratnam, C.T.; Chuah, A.L.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- Aoudia, K.; Azem, S.; Aït Hocine, N.; Gratton, M.; Pettarin, V.; Seghar, S. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Manag. 2017, 60, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Lamri, Y.; Benzerga, R.; Ayadi, A.; Gendre, L.L.; El-Assal, A. Glass foam composites based on tire’s waste for microwave absorption application. J. Non-Cryst. Solids 2020, 537, 120017. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Ghaneian, M.T.; Mahvi, A.H.; Oliveri Conti, G.; Faramarzian, M.; Dehghani, M.; Ferrante, M. A new recycling technique for the waste tires reuse. Environ. Res. 2017, 158, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Siddika, A.; Mamun, M.A.A.; Alyousef, R.; Amran, Y.H.M.; Aslani, F.; Alabduljabbar, H. Properties and utilizations of waste tire rubber in concrete: A review. Constr. Build. Mater. 2019, 224, 711–731. [Google Scholar] [CrossRef]
- Sathiskumar, C.; Karthikeyan, S. Recycling of waste tires and its energy storage application of by-products—A review. Sustain. Mater. Technol. 2019, 22, e00125. [Google Scholar] [CrossRef]
- Ma, L.; Hamidinejad, M.; Zhao, B.; Liang, C.; Park, C.B. Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 2021, 14, 19. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; E, X.; Wang, B.; Jia, Z.; Chi, Q.; Wu, G. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 2022, 103, 157–164. [Google Scholar] [CrossRef]
- Jia, X.; Li, Y.; Shen, B.; Zheng, W. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Compos. Part B-Eng. 2022, 233, 109652. [Google Scholar] [CrossRef]
- Sheng, A.; Yang, Y.; Ren, W.; Duan, H.; Liu, B.; Zhao, G.; Liu, Y. Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection. J. Mater. Sci.-Mater. Electron. 2019, 30, 14669–14678. [Google Scholar] [CrossRef]
- Kaushal, S.; Chaudhary, A.; Dhakate, S.R. Analysis of electromagnetic shielding performance of waste rubber powder-based flexible composites. J. Mater. Sci.-Mater. Electron. 2022, 33, 24434–24446. [Google Scholar] [CrossRef]
- Jia, L.-C.; Li, Y.-K.; Yan, D.-X. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 2017, 121, 267–273. [Google Scholar] [CrossRef]
- Zheng, J.; Hanshe, M.; Sun, Z.; Chen, Y.; Jiang, S.; Zhang, Y.; Cao, Y.; Li, X.; E, S. From waste to wealth: Crumb rubber@carbon nanotube/Fe3O4 composites towards highly effective electromagnetic microwave absorption with wide bandwidth. Diam. Relat. Mater. 2022, 126, 109089. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Zhou, Z.-H.; Zhu, J.-L.; Sun, W.-J.; Yan, D.-X.; Dai, K.; Li, Z.-M. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. Part B-Eng. 2021, 220, 108985. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, Y.; Liu, X. Electromagnetic wave absorption performance of magnesium phosphate cement functionalized by nano-Fe3O4 magnetic fluid and hollow glass microspheres. Constr. Build. Mater. 2020, 265, 120771. [Google Scholar] [CrossRef]
- Huang, K.; Chen, M.; He, G.; Hu, X.; He, W.; Zhou, X.; Huang, Y.; Liu, Z. Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling. Carbon 2020, 157, 466–477. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, D.; Wu, J.; Zhang, R.; Lu, X.; Fan, B.; Li, Y.; Wu, H. Environmentally friendly a multifunctional cellulose-based carbon foam for superior electromagnetic wave absorption performance. Compos. Commun. 2022, 35, 101320. [Google Scholar] [CrossRef]
- Liang, L.; Li, Q.; Yan, X.; Feng, Y.; Wang, Y.; Zhang, H.-B.; Zhou, X.; Liu, C.; Shen, C.; Xie, X. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Shen, X.; Huang, X. Multilevel structural design and heterointerface engineering of a host-guest binary aerogel toward multifunctional broadband microwave absorption. ACS Mater. Lett. 2022, 4, 1787–1797. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Z.; Yang, Y.; Duan, H.; Zhao, G.; Liu, Y.; Hu, Y.; Sun, R.; Wong, C.-P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, Q.; Zhao, Y.; Wang, J. Low-energy-consumption fabrication of porous TPU/graphene composites for high-performance microwave absorption and the influence of Fe3O4 incorporation. J. Alloys Compd. 2022, 909, 164627. [Google Scholar] [CrossRef]
- Lou, Z.; Han, X.; Liu, J.; Ma, Q.; Yan, H.; Yuan, C.; Yang, L.; Han, H.; Weng, F.; Li, Y. Nano-Fe3O4/bamboo bundles/phenolic resin oriented recombination ternary composite with enhanced multiple functions. Compos. Part B-Eng. 2021, 226, 109335. [Google Scholar]
- Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M.-K.; Hong, S.M.; Han, M.; Gogotsi, Y.; Koo, C.M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Inter. 2019, 11, 38046–38054. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chen, Y.; Zheng, J.; Jiang, S.; Dong, W.; Li, X.; Li, Y.; E, S. Temperature-dependent electromagnetic microwave absorbing characteristics of stretchable polyurethane composite foams with ultrawide bandwidth. Adv. Eng. Mater. 2022, 24, 2101489. [Google Scholar] [CrossRef]
- Wang, G.; Gao, Z.; Tang, S.; Chen, C.; Duan, F.; Zhao, S.; Lin, S.; Feng, Y.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017. [Google Scholar] [CrossRef]
- Zeng, X.; Jiang, G.; Zhu, L.; Wang, C.; Chen, M.; Yu, R. Fe3O4 nanoflower-carbon nanotube composites for microwave shielding. ACS Appl. Nano Mater. 2019, 2, 5475–5482. [Google Scholar] [CrossRef]
- He, P.; Wang, X.-X.; Cai, Y.-Z.; Shu, J.-C.; Zhao, Q.-L.; Yuan, J.; Cao, M.-S. Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 2019, 11, 6080–6088. [Google Scholar] [CrossRef]
- Sripornsawat, B.; Saiwari, S.; Pichaiyut, S.; Nakason, C. Influence of ground tire rubber devulcanization conditions on properties of its thermoplastic vulcanizate blends with copolyester. Eur. Polym. J. 2016, 85, 279–297. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, H.; Guo, H.; Liu, K.; Mei, C.; Li, Y.; Duan, G.; He, S.; Han, J.; Zheng, J.; et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohyd. Polym. 2022, 276, 118799. [Google Scholar] [CrossRef]
- Duan, Y.; Li, Y.; Wang, D.; Wang, R.; Wang, Y.; Hou, L.; Yan, X.; Li, Q.; Yang, W.; Li, Y. Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite. Carbon 2019, 153, 682–690. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B.; Cao, X.; Zhao, J.; Chen, L.; Shan, L.; Wang, H.; Wu, G. 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. Part B-Eng. 2021, 205, 108529. [Google Scholar] [CrossRef]
- Zuo, X.; Xu, P.; Zhang, C.; Li, M.; Jiang, X.; Yue, X. Porous magnetic carbon nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave absorption synthesized by electrospinning. Ceram. Int. 2019, 45, 4474–4481. [Google Scholar]
- Xu, P.; Han, X.; Wang, C.; Zhou, D.; Lv, Z.; Wen, A.; Wang, X.; Zhang, B. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 2008, 112, 10443–10448. [Google Scholar] [CrossRef]
- Ma, F.; Qin, Y.; Li, Y.-Z. Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy. Appl. Phys. Lett. 2010, 96, 202507. [Google Scholar] [CrossRef]
- Yan, L.; Liu, J.; Zhao, S.; Zhang, B.; Gao, Z.; Ge, H.; Chen, Y.; Cao, M.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595–1607. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Zhu, T.; Chang, S.; Wang, W. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 2020, 388, 124317. [Google Scholar] [CrossRef]
- Levy, O.; Stroud, D. Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Phys. Rev. B 1997, 56, 8035–8046. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Yin, X.; Yuan, X.; Zhang, Y.; Liu, X.; Cheng, L.; Zhang, L. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 2014, 73, 185–193. [Google Scholar]
- Li, Y.; Gai, L.; Song, G.; An, Q.; Xiao, Z.; Zhai, S. Enhanced properties of CoS2/Cu2S embedded N/S co-doped mesh-like carbonaceous composites for electromagnetic wave absorption. Carbon 2022, 186, 238–252. [Google Scholar] [CrossRef]
- Li, C.; Ge, Y.; Jiang, X.; Sui, J.; Zhang, Z.; Yu, L. Lightweight three-dimensional Fe3O4/carbon micro-flowers with tunable microwave absorption properties. J. Alloys Compd. 2019, 798, 414–423. [Google Scholar] [CrossRef]
- Chuai, D.; Liu, X.; Yu, R.; Ye, J.; Shi, Y. Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites. Compos. Part A Appl. Sci. Manuf. 2016, 89, 33–39. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Hanshe, M.; He, W.; Hang, T.; Li, Z.; Jiang, S.; E, S.; Li, X.; Chen, Y. Highly Stretchable Composite Foams via Sustainable Utilization of Waste Tire Rubbers for Temperature-Dependent Electromagnetic Wave Absorption. Molecules 2022, 27, 8971. https://doi.org/10.3390/molecules27248971
Zheng J, Hanshe M, He W, Hang T, Li Z, Jiang S, E S, Li X, Chen Y. Highly Stretchable Composite Foams via Sustainable Utilization of Waste Tire Rubbers for Temperature-Dependent Electromagnetic Wave Absorption. Molecules. 2022; 27(24):8971. https://doi.org/10.3390/molecules27248971
Chicago/Turabian StyleZheng, Jiajia, Mohammed Hanshe, Weiwei He, Tianyi Hang, Zhihui Li, Shaohua Jiang, Shiju E, Xiping Li, and Yiming Chen. 2022. "Highly Stretchable Composite Foams via Sustainable Utilization of Waste Tire Rubbers for Temperature-Dependent Electromagnetic Wave Absorption" Molecules 27, no. 24: 8971. https://doi.org/10.3390/molecules27248971
APA StyleZheng, J., Hanshe, M., He, W., Hang, T., Li, Z., Jiang, S., E, S., Li, X., & Chen, Y. (2022). Highly Stretchable Composite Foams via Sustainable Utilization of Waste Tire Rubbers for Temperature-Dependent Electromagnetic Wave Absorption. Molecules, 27(24), 8971. https://doi.org/10.3390/molecules27248971