Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops
Abstract
:1. Introduction
2. Secondary Metabolites of Medicinal Plants: Importance for Human Health
3. Plant Growth Promoting Rhizobacteria Influencing the Cultivation of Medicinal Plants
3.1. Direct Mechanisms
3.1.1. Biological Nitrogen Fixation (BNF) and P-Solubilisation
3.1.2. Production of Phytohormones
3.2. Indirect Mechanisms
3.2.1. Aminocyclopropane-1-carboxylic Acid (ACC) Deaminase
3.2.2. Release of Siderophores, Cyanogenic Compounds and Ammonia
3.2.3. Secretion of Antibiotics and Lytic Enzymes
4. Rhizobacteria Mediated Improvement in Growth and Phytochemicals of Selected Medicinal Plants: Inoculation Effects
4.1. Datura
4.2. Aloe vera
4.3. Withania somnifera (Ashwagandha)
4.4. Fenugreek
4.5. Turmeric
4.6. Piper nigrum
4.7. Basil
4.8. Rosemary
4.9. Hyssopus
5. Abiotic Stress Alleviation in Medicinal Plants by Beneficial Rhizobacteria
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowti, P.S.; Rudrapur, S.; Naik, B.K. Production Scenario of Medicinal and Aromatic Crops in India. J. Pharmacogn. Phytochem. 2018, SP3, 274–277. [Google Scholar]
- Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahady, G.B.; Sharifi-Rad, M.; Masjedi, M.-R.; Lawal, T.O.; Ayatollahi, S.A. Medicinal Plants Used in the Treatment of Tuberculosis-Ethnobotanical and Ethnopharmacological Approaches. Biotechnol. Adv. 2020, 44, 107629. [Google Scholar] [CrossRef] [PubMed]
- Mintah, S.O.; Asafo-Agyei, T.; Archer, M.-A.; Junior, P.A.-A.; Boamah, D.; Kumadoh, D.; Appiah, A.; Ocloo, A.; Boakye, Y.D.; Agyare, C. Medicinal Plants for Treatment of Prevalent Diseases. In Pharmacognosy—Medicinal Plants; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Marques, A.P.S.; Bonfim, F.P.G.; Santos, D.G.P.O.; da Paz Lima, M.; Semir, J.; Martins, E.R.; Zucchi, M.I.; Hantao, L.W.; Sawaya, A.C.H.F.; Marques, M.O.M. Chemical Diversity of Essential Oils from the Brazilian Medicinal Plant Lychnophora Pinaster Mart from Different Environments. Ind. Crops Prod. 2020, 156, 112856. [Google Scholar] [CrossRef]
- Ahmadi, F.; Samadi, A.; Rahimi, A. Improving Growth Properties and Phytochemical Compounds of Echinacea Purpurea (L.) Medicinal Plant Using Novel Nitrogen Slow Release Fertilizer under Greenhouse Conditions. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.Z.; Ghorbanpour, M.; Aghaee, A.; Hadian, J. Deciphering Morpho-Physiological and Phytochemical Attributes of Tanacetum Parthenium L. Plants Exposed to C60 Fullerene and Salicylic Acid. Chemosphere 2020, 259, 127406. [Google Scholar] [CrossRef] [PubMed]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Lall, N.; Mahomoodally, M.F.; Esposito, D.; Steenkamp, V.; Zengin, G.; Steyn, A.; Oosthuizen, C.B. Cosmeceuticals from Medicinal Plants. Front. Pharmacol. 2020, 11, 1149. [Google Scholar] [CrossRef] [PubMed]
- Shakya, A.K. Medicinal Plants: Future Source of New Drugs. Int. J. Herb. Med. 2016, 4, 59–64. [Google Scholar]
- Kalauni, D.; Joshi, A. Status of Medicinal and Aromatic Plant (Maps) and Socio-Economic Influence in Nepalese Livelihood-a Review Research. Acta Sci. Agric. 2018, 2, 123–130. [Google Scholar]
- Selamoglu, Z. Polyphenolic Compounds in Human Health with Pharmacological Properties. J. Tradit. Med. Clin. Naturop. 2017, 6, e137. [Google Scholar] [CrossRef] [Green Version]
- Selamoglu, Z.; Ustuntas, H.E.; Ozgen, S. Traditional and Complementary Alternative Medicine Practices of Some Aromatic Plants in the Human Health. Res. J. Biol. 2016, 4, 52–54. [Google Scholar]
- Selamoglu, Z. Biotechnological Approaches on Anticancer Activity of Flavonoids-Mini Review. Mod. Approaches Drug Des. 2017, 1, 1. [Google Scholar] [CrossRef]
- Anywar, G.; Kakudidi, E.; Byamukama, R.; Mukonzo, J.; Schubert, A.; Oryem-Origa, H.; Jassoy, C. A Review of the Toxicity and Phytochemistry of Medicinal Plant Species Used by Herbalists in Treating People Living with HIV/AIDS in Uganda. Front. Pharmacol. 2021, 12, 615147. [Google Scholar] [CrossRef]
- Omara, T.; Kiprop, A.K.; Ramkat, R.C.; Cherutoi, J.; Kagoya, S.; Moraa Nyangena, D.; Azeze Tebo, T.; Nteziyaremye, P.; Nyambura Karanja, L.; Jepchirchir, A. Medicinal Plants Used in Traditional Management of Cancer in Uganda: A Review of Ethnobotanical Surveys, Phytochemistry, and Anticancer Studies. Evid.-Based Complement. Altern. Med. 2020, 2020, 3529081. [Google Scholar] [CrossRef] [Green Version]
- Matowa, P.R.; Gundidza, M.; Gwanzura, L.; Nhachi, C.F.B. A Survey of Ethnomedicinal Plants Used to Treat Cancer by Traditional Medicine Practitioners in Zimbabwe. BMC Complement. Med. Ther. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Dar, R.A.; Shahnawaz, M.; Qazi, P.H. General Overview of Medicinal Plants: A Review. J. Phytopharm. 2017, 6, 349–351. [Google Scholar] [CrossRef]
- Al-Ansari, M.M.; Andeejani, A.M.I.; Alnahmi, E.; AlMalki, R.H.; Masood, A.; Vijayaraghavan, P.; Rahman, A.A.; Choi, K.C. Insecticidal, Antimicrobial and Antioxidant Activities of Essential Oil from Lavandula latifolia L. and Its Deterrent Effects on Euphoria Leucographa. Ind. Crops Prod. 2021, 170, 113740. [Google Scholar] [CrossRef]
- Iqrar, I.; Shinwari, Z.K.; El-Sayed, A.S.A.F.; Ali, G.S. Exploration of Microbiome of Medicinally Important Plants as Biocontrol Agents against Phytophthora parasitica. Arch. Microbiol. 2021, 203, 2475–2489. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Sen, S.; Chakraborty, R.; Maurya, P.K.; Chattopadhyay, A. Cultivation of Medicinal Plants: Special Reference to Important Medicinal Plants of India. In Herbal Medicine in India; Springer: Berlin/Heidelberg, Germany, 2020; pp. 101–115. [Google Scholar]
- Strzemski, M.; Dzida, K.; Dresler, S.; Sowa, I.; Kurzepa, J.; Szymczak, G.; Wójciak, M. Nitrogen Fertilisation Decreases the Yield of Bioactive Compounds in Carlina Acaulis L. Grown in the Field. Ind. Crops Prod. 2021, 170, 113698. [Google Scholar] [CrossRef]
- Alipour, A.; Rahimi, M.M.; Hosseini, S.M.A.; Bahrani, A. Mycorrhizal Fungi and Growth-Promoting Bacteria Improves Fennel Essential Oil Yield under Water Stress. Ind. Crops Prod. 2021, 170, 113792. [Google Scholar] [CrossRef]
- Nair, R.; Pandey, S.K.; Jyothsna, J. Growth and Yield of Fenugreek (Trigonella Foenum Graecum L.) in Response to Different Levels of Phosphorus and Biofertilizer (Rhizobium and PSB) under Kymore Plateau and Satpura Hill Agro-Climatic Zone of Madhya Pradesh. Pharma Innov. J. 2021, 10, 419–422. [Google Scholar]
- Raiyani, V.N.; Kathiriya, R.K.; Thummer, V.M.; Rupareliya, V.V. Effect of FYM and Biofertilizers on Growth, Yield Attributes and Yield of Fenugreek (Trigonella Foenum-Graecum L.). IJCS 2018, 6, 746–748. [Google Scholar]
- Lobo, C.B.; Tomás, M.S.J.; Viruel, E.; Ferrero, M.A.; Lucca, M.E. Development of Low-Cost Formulations of Plant Growth-Promoting Bacteria to Be Used as Inoculants in Beneficial Agricultural Technologies. Microbiol. Res. 2019, 219, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Karagöz, F.P.; Dursun, A. Effects of Different PGPR Formulations, Chemical Fertilizers and Their Combinations on Some Plant Growth Characteristics of Poinsettia. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Derg. 2019, 29, 9–15. [Google Scholar]
- Yang, L.; Yang, C.; Li, C.; Zhao, Q.; Liu, L.; Fang, X.; Chen, X.-Y. Recent Advances in Biosynthesis of Bioactive Compounds in Traditional Chinese Medicinal Plants. Sci. Bull. 2016, 61, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, R.A.; El-Anssary, A.A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herb. Med. 2019, 1, 13. [Google Scholar]
- Yilmaz, M.A. Simultaneous Quantitative Screening of 53 Phytochemicals in 33 Species of Medicinal and Aromatic Plants: A Detailed, Robust and Comprehensive LC–MS/MS Method Validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Saha, A.; Basak, B.B. Scope of Value Addition and Utilization of Residual Biomass from Medicinal and Aromatic Plants. Ind. Crops Prod. 2020, 145, 111979. [Google Scholar] [CrossRef]
- Leontopoulos, S.; Skenderidis, P.; Skoufogianni, G. Potential Use of Medicinal Plants as Biological Crop Protection Agents. Biomed. J. Sci. Tech. Res 2020, 25, 19320–19324. [Google Scholar] [CrossRef]
- Atif, M.; Ilavenil, S.; Devanesan, S.; AlSalhi, M.S.; Choi, K.C.; Vijayaraghavan, P.; Alfuraydi, A.A.; Alanazi, N.F. Essential Oils of Two Medicinal Plants and Protective Properties of Jack Fruits against the Spoilage Bacteria and Fungi. Ind. Crops Prod. 2020, 147, 112239. [Google Scholar] [CrossRef]
- Nunes, A.R.; Rodrigues, A.L.M.; de Queiróz, D.B.; Vieira, I.G.P.; Neto, J.F.C.; Junior, J.T.C.; Tintino, S.R.; de Morais, S.M.; Coutinho, H.D.M. Photoprotective Potential of Medicinal Plants from Cerrado Biome (Brazil) in Relation to Phenolic Content and Antioxidant Activity. J. Photochem. Photobiol. B Biol. 2018, 189, 119–123. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, Z.; Zhang, X.; Lang, D.; Zhang, X. Growth-Promoting Bacteria Alleviates Drought Stress of G. Uralensis through Improving Photosynthesis Characteristics and Water Status. J. Plant Interact. 2019, 14, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zheng, L.; Zheng, Y.; Xue, S.; Zhang, J.; Huang, P.; Zhao, Y.; Hao, X.; He, Z.; Hu, Z. Insight into the Assembly of Root-Associated Microbiome in the Medicinal Plant Polygonum cuspidatum. Ind. Crops Prod. 2020, 145, 112163. [Google Scholar] [CrossRef]
- Singh, A.; Mishra, A.; Chaudhary, R.; Kumar, V. Role of Herbal Plants in Prevention and Treatment of Parasitic Diseases. J. Sci. Res. 2020, 64, 50–58. [Google Scholar] [CrossRef]
- Illamola, S.M.; Amaeze, O.U.; Krepkova, L.V.; Birnbaum, A.K.; Karanam, A.; Job, K.M.; Bortnikova, V.V.; Sherwin, C.M.T.; Enioutina, E.Y. Use of Herbal Medicine by Pregnant Women: What Physicians Need to Know. Front. Pharmacol. 2020, 10, 1483. [Google Scholar] [CrossRef]
- Wu, F.; Yan, M.; Li, Y.; Chang, S.; Song, X.; Zhou, Z.; Gong, W. CDNA Cloning, Expression, and Mutagenesis of a PR-10 Protein SPE-16 from the Seeds of Pachyrrhizus erosus. Biochem. Biophys. Res. Commun. 2003, 312, 761–766. [Google Scholar] [CrossRef]
- Shoemaker, M.; Hamilton, B.; Dairkee, S.H.; Cohen, I.; Campbell, M.J. In Vitro Anticancer Activity of Twelve Chinese Medicinal Herbs. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2005, 19, 649–651. [Google Scholar] [CrossRef]
- Albulescu, M. Phytochemicals in Antitumor Herbs and Herbal Formulas. In Phytochemicals-Isolation, Characterisation and Role in Human Health; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar]
- Lu, M.; Li, T.; Wan, J.; Li, X.; Yuan, L.; Sun, S. Antifungal Effects of Phytocompounds on Candida Species Alone and in Combination with Fluconazole. Int. J. Antimicrob. Agents 2017, 49, 125–136. [Google Scholar] [CrossRef]
- Ishaq, M.S.; Hussain, M.M.; Siddique Afridi, M.; Ali, G.; Khattak, M.; Ahmad, S. In Vitro Phytochemical, Antibacterial, and Antifungal Activities of Leaf, Stem, and Root Extracts of Adiantum Capillus Veneris. Sci. World J. 2014, 2014, 269793. [Google Scholar] [CrossRef]
- Ashraf, M.A. Phytochemicals as Potential Anticancer Drugs: Time to Ponder Nature’s Bounty. BioMed Res. Int. 2020, 2020, 8602879. [Google Scholar] [CrossRef]
- Manandhar, S.; Luitel, S.; Dahal, R.K. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. J. Trop. Med. 2019, 2019, 8602879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic Antioxidant and Antimicrobial Activities of Essential Oils of Some Selected Medicinal Plants in Combination and with Synthetic Compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar] [CrossRef]
- Tlili, N.; Sarikurkcu, C. Bioactive Compounds Profile, Enzyme Inhibitory and Antioxidant Activities of Water Extracts from Five Selected Medicinal Plants. Ind. Crops Prod. 2020, 151, 112448. [Google Scholar] [CrossRef]
- Verma, A.; Srivastava, R.; Sonar, P.K.; Yadav, R. Traditional, Phytochemical, and Biological Aspects of Rosa Alba L.: A Systematic Review. Future J. Pharm. Sci. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Shafei, M.N.; Saberi, Z.; Amini, S. Pharmacological Effects of Rosa damascena. Iran. J. Basic Med. Sci. 2011, 14, 295. [Google Scholar]
- Egan, P.A.; van der Kooy, F. Coproduction and Ecological Significance of Naphthoquinones in Carnivorous Sundews (Drosera). Chem. Biodivers. 2012, 9, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.S.P.; Caleja, C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications-a Review. Curr. Pharm. Des. 2020, 26, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Hohtola, A. Bioactive Compounds from Northern Plants. In Bio-Farms for Nutraceuticals; Springer: Berlin/Heidelberg, Germany, 2010; pp. 99–109. [Google Scholar]
- Zhao, B.T.; Kim, T.I.; Kim, Y.H.; Kang, J.S.; Min, B.S.; Son, J.K.; Woo, M.H. A Comparative Study of Mentha Arvensis L. and Mentha Haplocalyx Briq. by HPLC. Nat. Prod. Res. 2018, 32, 239–242. [Google Scholar] [CrossRef]
- Rajeswari, R.; Umadevi, M.; Rahale, C.S.; Pushpa, R.; Selvavenkadesh, S.; Kumar, K.S.; Bhowmik, D. Aloe Vera: Miracle Plant Its Medicinal and Traditional Uses in India. J. Pharmacogn. Phytochem. 2012, 1, 118–124. [Google Scholar]
- Maan, A.A.; Nazir, A.; Khan, M.K.I.; Ahmad, T.; Zia, R.; Murid, M.; Abrar, M. The Therapeutic Properties and Applications of Aloe Vera: A Review. J. Herb. Med. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Sawangjaroen, N.; Phongpaichit, S.; Subhadhirasakul, S.; Visutthi, M.; Srisuwan, N.; Thammapalerd, N. The Anti-Amoebic Activity of Some Medicinal Plants Used by AIDS Patients in Southern Thailand. Parasitol. Res. 2006, 98, 588–592. [Google Scholar] [CrossRef]
- Bagewadi, Z.K.; Muddapur, U.M.; Madiwal, S.S.; Mulla, S.I.; Khan, A. Biochemical and Enzyme Inhibitory Attributes of Methanolic Leaf Extract of Datura Inoxia Mill. Environ. Sustain. 2019, 2, 75–87. [Google Scholar] [CrossRef]
- Kamalizadeh, M.; Bihamta, M.; Zarei, A. Drought Stress and TiO2 Nanoparticles Affect the Composition of Different Active Compounds in the Moldavian Dragonhead Plant. Acta Physiol. Plant. 2019, 41, 21. [Google Scholar] [CrossRef]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Venugopala, K.N.; Jeewon, R.; Zengin, G.; Mahomoodally, M.F. A Systematic Review on Black Pepper (Piper Nigrum L.): From Folk Uses to Pharmacological Applications. Crit. Rev. Food Sci. Nutr. 2019, 59, S210–S243. [Google Scholar] [CrossRef]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of Extraction Methods on Yield, Phytochemical Constituents and Antioxidant Activity of Withania somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, N.; Shrivastava, D.; Ahmad Mir, B.; Kumar, S.; Govil, S.; Vahedi, M.; Bisen, P.S. Metabolomic and Biotechnological Approaches to Determine Therapeutic Potential of Withania Somnifera (L.) Dunal: A Review. Phytomedicine 2018, 50, 127–136. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H. Bin Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Chaudhary, P.S.; Chikara, S.K.; Sharma, M.C.; Iriti, M. Review on Fenugreek (Trigonella Foenum-Graecum L.) and Its Important Secondary Metabolite Diosgenin. Not. Bot. Horti Agrobot. 2018, 46, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Wani, S.A.; Kumar, P. Fenugreek: A Review on Its Nutraceutical Properties and Utilization in Various Food Products. J. Saudi Soc. Agric. Sci. 2018, 17, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.H.; Ha, I.J.; Lee, M.Y.; Kim, E.O.; Park, D.; Lee, J.H.; Lee, S.G.; Kim, D.W.; Lee, T.H.; Lee, E.J.; et al. Identification and Metabolite Profiling of Alkaloids in Aerial Parts of Papaver Rhoeas by Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. J. Sep. Sci. 2018, 41, 2517–2527. [Google Scholar] [CrossRef] [Green Version]
- Chandra De, L. Bio-Diversity and Conservation of Medicinal and Aromatic Plants. Adv. Plants Agric. Res. 2016, 5, 561–566. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Malekpoor, F.; Salimi, A.; Golparvar, A.; Hamedi, B. Effects of Foliar of the Application Chitosan and Reduced Irrigation on Essential Oil Yield, Total Phenol Content and Antioxidant Activity of Extracts from Green and Purple Basil. Acta Sci. Pol. Hortorum Cultus 2017, 16, 177–186. [Google Scholar] [CrossRef]
- Al-snafi, A.E. The Pharmacological Activities of Cuminum Cyminum—A Review The Pharmacological Activities of Cuminum Cyminum—A Review Prof Dr Ali Esmail Al-Snafi. IOSR J. Pharm. 2017, 6, 46–65. [Google Scholar]
- Dutta, B. Study of Secondary Metabolite Constituents and Curcumin Contents of Six Different Species of Genus Curcuma. J. Med. Plants Stud. 2015, 3, 116–119. [Google Scholar]
- Lee, J.; Jung, Y.; Shin, J.H.; Kim, H.K.; Moon, B.C.; Ryu, D.H.; Hwang, G.S. Secondary Metabolite Profiling of Curcuma Species Grown at Different Locations Using GC/TOF and UPLC/Q-TOF MS. Molecules 2014, 19, 9535–9551. [Google Scholar] [CrossRef] [Green Version]
- Sharma, T.; Kaur, A.; Saajan, S.; Thakur, R. Effect of Nitrogen on Growth and Yield of Medicinal Plants: A Review Paper. Eur. J. Mol. Clin. Med. 2020, 7, 2771–2776. [Google Scholar]
- Kole, R.K.; Roy, K.; Panja, B.N.; Sankarganesh, E.; Mandal, T.; Worede, R.E. Use of Pesticides in Agriculture and Emergence of Resistant Pests. Indian J. Anim. Hlth 2019, 58, 53–70. [Google Scholar] [CrossRef]
- Siegwart, M.; Graillot, B.; Blachere Lopez, C.; Besse, S.; Bardin, M.; Nicot, P.C.; Lopez-Ferber, M. Resistance to Bio-Insecticides or How to Enhance Their Sustainability: A Review. Front. Plant Sci. 2015, 6, 381. [Google Scholar] [CrossRef] [Green Version]
- Köberl, M.; Schmidt, R.; Ramadan, E.M.; Bauer, R.; Berg, G. The Microbiome of Medicinal Plants: Diversity and Importance for Plant Growth, Quality and Health. Front. Microbiol. 2013, 4, 400. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Long, C.; Lam, E. Roles of Plant-Associated Microbiota in Traditional Herbal Medicine. Trends Plant Sci. 2018, 23, 559–562. [Google Scholar] [CrossRef]
- Dent, D.; Cocking, E. Establishing Symbiotic Nitrogen Fixation in Cereals and Other Non-Legume Crops: The Greener Nitrogen Revolution. Agric. Food Secur. 2017, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Khairina, Y.; Jog, R.; Boonmak, C.; Toyama, T.; Oyama, T.; Morikawa, M. Indigenous Bacteria, an Excellent Reservoir of Functional Plant Growth Promoters for Enhancing Duckweed Biomass Yield on Site. Chemosphere 2021, 268, 129247. [Google Scholar] [CrossRef]
- Goswami, D.; Parmar, S.; Vaghela, H.; Dhandhukia, P.; Thakker, J.N. Describing Paenibacillus Mucilaginosus Strain N3 as an Efficient Plant Growth Promoting Rhizobacteria (PGPR). Cogent Food Agric. 2015, 1, 1000714. [Google Scholar] [CrossRef]
- Anand, K.; Kumari, B.; Mallick, M.A. Phosphate Solubilizing Microbes: An Effective and Alternative Approach as Biofertilizers. J. Pharm. Pharm. Sci. 2016, 8, 37. [Google Scholar]
- Jeong, S.; Moon, H.S.; Nam, K.; Kim, J.Y.; Kim, T.S. Application of Phosphate-Solubilizing Bacteria for Enhancing Bioavailability and Phytoextraction of Cadmium (Cd) from Polluted Soil. Chemosphere 2012, 88, 204–210. [Google Scholar] [CrossRef]
- Ghosh, P.; Rathinasabapathi, B.; Ma, L.Q. Phosphorus Solubilization and Plant Growth Enhancement by Arsenic-Resistant Bacteria. Chemosphere 2015, 134, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Sinha, S.N. Isolation and Characterization of Phosphate Solubilizing Bacterium Pseudomonas Aeruginosa KUPSB12 with Antibacterial Potential from River Ganga, India. Ann. Agrar. Sci. 2017, 15, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus Solubilization by Bacillus Species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, R.; Barman, S.; Mukherjee, R.; Mandal, N.C. Role of Phosphate Solubilizing Burkholderia Spp. for Successful Colonization and Growth Promotion of Lycopodium Cernuum L. (Lycopodiaceae) in Lateritic Belt of Birbhum District of West Bengal, India. Microbiol. Res. 2016, 183, 80–91. [Google Scholar] [CrossRef]
- Myresiotis, C.K.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Effect of Specific Plant-growth-promoting Rhizobacteria (PGPR) on Growth and Uptake of Neonicotinoid Insecticide Thiamethoxam in Corn (Zea Mays L.) Seedlings. Pest Manag. Sci. 2015, 71, 1258–1266. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Zahir, Z.A. Screening Plant Growth-promoting Rhizobacteria for Improving Growth and Yield of Wheat. J. Appl. Microbiol. 2004, 96, 473–480. [Google Scholar] [CrossRef]
- Saleem, A.R.; Brunetti, C.; Khalid, A.; Della Rocca, G.; Raio, A.; Emiliani, G.; De Carlo, A.; Mahmood, T.; Centritto, M. Drought Response of Mucuna Pruriens (L.) DC. Inoculated with ACC Deaminase and IAA Producing Rhizobacteria. PLoS ONE 2018, 13, e0191218. [Google Scholar] [CrossRef]
- Carey, N.S.; Krogan, N.T. The Role of AUXIN RESPONSE FACTOR s in the Development and Differential Growth of Inflorescence Stems. Plant Signal. Behav. 2017, 12, e1307492. [Google Scholar] [CrossRef] [Green Version]
- Aeron, A.; Kumar, S.; Pandey, P.; Maheshwari, D.K. Emerging Role of Plant Growth Promoting Rhizobacteria in Agrobiology. In Bacteria in Agrobiology: Crop Ecosystems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–36. [Google Scholar]
- Jha, C.K.; Saraf, M. Plant Growth Promoting Rhizobacteria (PGPR). J. Agric. Res. Dev. 2015, 5, 108–119. [Google Scholar]
- Waldie, T.; Leyser, O. Cytokinin Targets Auxin Transport to Promote Shoot Branching. Plant Physiol. 2018, 177, 803–818. [Google Scholar] [CrossRef] [Green Version]
- Vatén, A.; Soyars, C.L.; Tarr, P.T.; Nimchuk, Z.L.; Bergmann, D.C. Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage. Dev. Cell 2018, 47, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.O.; Omena-Garcia, R.P.; Oliveira, F.S.; Silva, W.A.; Hajirezaei, M.-R.; Vallarino, J.G.; Ribeiro, D.M.; Fernie, A.R.; Nunes-Nesi, A.; Araújo, W.L. Differential Root and Shoot Responses in the Metabolism of Tomato Plants Exhibiting Reduced Levels of Gibberellin. Environ. Exp. Bot. 2019, 157, 331–343. [Google Scholar] [CrossRef]
- Shahzad, R.; Waqas, M.; Khan, A.L.; Asaf, S.; Khan, M.A.; Kang, S.-M.; Yun, B.-W.; Lee, I.-J. Seed-Borne Endophytic Bacillus Amyloliquefaciens RWL-1 Produces Gibberellins and Regulates Endogenous Phytohormones of Oryza Sativa. Plant Physiol. Biochem. 2016, 106, 236–243. [Google Scholar] [CrossRef]
- Magnucka, E.G.; Pietr, S.J. Various Effects of Fluorescent Bacteria of the Genus Pseudomonas Containing ACC Deaminase on Wheat Seedling Growth. Microbiol. Res. 2015, 181, 112–119. [Google Scholar] [CrossRef]
- Glick, B.R. Bacteria with ACC Deaminase Can Promote Plant Growth and Help to Feed the World. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.; Duan, J.; DiBernardo, M.; Zetter, E.; Campos-García, J.; Glick, B.R.; Santoyo, G. The Production of ACC Deaminase and Trehalose by the Plant Growth Promoting Bacterium Pseudomonas Sp. UW4 Synergistically Protect Tomato Plants against Salt Stress. Front. Microbiol. 2019, 10, 1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, S.; Chauhan, P.S. ACC Deaminase-Producing Rhizosphere Competent Bacillus Spp. Mitigate Salt Stress and Promote Zea Mays Growth by Modulating Ethylene Metabolism. 3 Biotech 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Daur, I.; Saad, M.M.; Eida, A.A.; Ahmad, S.; Shah, Z.H.; Ihsan, M.Z.; Muhammad, Y.; Sohrab, S.S.; Hirt, H. Boosting Alfalfa (Medicago Sativa L.) Production with Rhizobacteria from Various Plants in Saudi Arabia. Front. Microbiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- García, J.E.; Maroniche, G.; Creus, C.; Suárez-Rodríguez, R.; Ramirez-Trujillo, J.A.; Groppa, M.D. In Vitro PGPR Properties and Osmotic Tolerance of Different Azospirillum Native Strains and Their Effects on Growth of Maize under Drought Stress. Microbiol. Res. 2017, 202, 21–29. [Google Scholar] [CrossRef]
- Ali, S.; Kim, W.-C. Plant Growth Promotion under Water: Decrease of Waterlogging-Induced ACC and Ethylene Levels by ACC Deaminase-Producing Bacteria. Front. Microbiol. 2018, 9, 1096. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, P.K.; Pramanik, K.; Mitra, S.; Soren, T.; Pandey, S.; Mondal, M.H.; Maiti, T.K. A Halotolerant Enterobacter Sp. Displaying ACC Deaminase Activity Promotes Rice Seedling Growth under Salt Stress. Res. Microbiol. 2018, 169, 20–32. [Google Scholar] [CrossRef]
- Tagele, S.B.; Kim, S.W.; Lee, H.G.; Lee, Y.S. Potential of Novel Sequence Type of Burkholderia Cenocepacia for Biological Control of Root Rot of Maize (Zea mays L.) Caused by Fusarium Temperatum. Int. J. Mol. Sci. 2019, 20, 1005. [Google Scholar] [CrossRef] [Green Version]
- Malambane, G.; Nonaka, S.; Shiba, H.; Ezura, H.; Tsujimoto, H.; Akashi, K. Comparative Effects of Ethylene Inhibitors on Agrobacterium-Mediated Transformation of Drought-Tolerant Wild Watermelon. Biosci. Biotechnol. Biochem. 2018, 82, 433–441. [Google Scholar] [CrossRef]
- Kumar, P.; Dubey, R.C.; Maheshwari, D.K.; Bajpai, V. ACC Deaminase Producing Rhizobium Leguminosarum Rpn5 Isolated from Root Nodules of Phaseolus Vulgaris L. Bangladesh J. Bot. 2016, 45, 477–484. [Google Scholar]
- Maxton, S.P.; Prasad, S.M.; Andy, A.; Masih, S.A. Characterization of ACC Deaminase Producing B. Cepacia, C. Freundii and S. Marcescens for Plant Growth Promoting Activity. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 883–897. [Google Scholar] [CrossRef]
- Devi, R.; Thakur, R. Screening and Identification of Bacteria for Plant Growth Promoting Traits from Termite Mound Soil. J. Pharm. Phytochem. 2018, 7, 1681–1686. [Google Scholar]
- Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. J. Microb. Biochem. Technol. 2015, 7, 96–102. [Google Scholar]
- Ghazy, N.; El-Nahrawy, S. Siderophore Production by Bacillus Subtilis MF497446 and Pseudomonas Koreensis MG209738 and Their Efficacy in Controlling Cephalosporium Maydis in Maize Plant. Arch. Microbiol. 2021, 203, 1195–1209. [Google Scholar] [CrossRef]
- Bharucha, U.D.; Patel, K.C.; Trivedi, U.B. Antifungal Activity of Catecholate Type Siderophore Produced by Bacillus Sp. Int. J. Res. Pharm. Sci. 2013, 4, 528–531. [Google Scholar]
- Vindeirinho, J.M.; Soares, H.M.V.M.; Soares, E.V. Modulation of Siderophore Production by Pseudomonas Fluorescens through the Manipulation of the Culture Medium Composition. Appl. Biochem. Biotechnol. 2021, 193, 607–618. [Google Scholar] [CrossRef]
- Luján, A.M.; Gómez, P.; Buckling, A. Siderophore Cooperation of the Bacterium Pseudomonas Fluorescens in Soil. Biol. Lett. 2015, 11, 20140934. [Google Scholar] [CrossRef]
- Bhat, M.A.; Rasool, R.; Ramzan, S. Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable and Eco-Friendly Agriculture. Acta Sci. Agric. 2019, 3, 23–25. [Google Scholar]
- Meena, M.; Swapnil, P.; Zehra, A.; Aamir, M.; Dubey, M.K.; Patel, C.B.; Upadhyay, R.S. Virulence Factors and Their Associated Genes in Microbes. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 181–208. [Google Scholar]
- Peek, M.E.; Bhatnagar, A.; McCarty, N.A.; Zughaier, S.M. Pyoverdine, the Major Siderophore in Pseudomonas Aeruginosa, Evades NGAL Recognition. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 843509. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.A.; Bernar, E.M.; Jung, K. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas Protegens Pf-5. PLoS ONE 2015, 10, e0117040. [Google Scholar] [CrossRef] [Green Version]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M.P. Plant Growth-Promoting Rhizobacteria (PGPR): Their Potential as Antagonists and Biocontrol Agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Sureshbabu, K.; Amaresan, N.; Kumar, K. Amazing Multiple Function Properties of Plant Growth Promoting Rhizobacteria in the Rhizosphere Soil. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 661–683. [Google Scholar] [CrossRef]
- Sivasakthi, S.; Usharani, G.; Saranraj, P. Biocontrol Potentiality of Plant Growth Promoting Bacteria (PGPR)-Pseudomonas Fluorescens and Bacillus Subtilis: A Review. Afr. J. Agric. Res. 2014, 9, 1265–1277. [Google Scholar]
- Rijavec, T.; Lapanje, A. Cyanogenic Pseudomonas Spp. Strains Are Concentrated in the Rhizosphere of Alpine Pioneer Plants. Microbiol. Res. 2017, 194, 20–28. [Google Scholar] [CrossRef]
- Lukkani, N.J.; Reddy, E.C.S. Evaluation of Plant Growth Promoting Attributes and Biocontrol Potential of Native Fluorescent Pseudomonas Spp. against Aspergillus Niger Causing Collar Rot of Ground Nut. Int. J. Plant Anim. Environ. Sci. 2014, 4, 256–262. [Google Scholar]
- Fouzia, A.; Allaoua, S.; Hafsa, C.-S.; Mostefa, G. Plant Growth Promoting and Antagonistic Traits of Indigenous Fluorescent Pseudomonas Spp. Isolated from Wheat Rhizosphere and A. Halimus Endosphere. Eur. Sci. J. 2015, 11, 129–148. [Google Scholar]
- Reetha, A.K.; Pavani, S.L.; Mohan, S. Hydrogen Cyanide Production Ability by Bacterial Antagonist and Their Antibiotics Inhibition Potential on Macrophomina Phaseolina (Tassi.) Goid. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 172–178. [Google Scholar]
- Singh, M.; Singh, D.; Gupta, A.; Pandey, K.D.; Singh, P.K.; Kumar, A. Plant Growth Promoting Rhizobacteria: Application in Biofertilizers and Biocontrol of Phytopathogens. In PGPR Amelioration in Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 41–66. [Google Scholar]
- Ahmad, E.; Zaidi, A.; Khan, M.S. Effects of Plant Growth Promoting Rhizobacteria on the Performance of Greengram under Field Conditions. Jordan J. Biol. Sci. 2016, 9, 79–88. [Google Scholar]
- Ahmad, E.; Khan, M.S.; Zaidi, A. ACC Deaminase Producing Pseudomonas Putida Strain PSE3 and Rhizobium Leguminosarum Strain RP2 in Synergism Improves Growth, Nodulation and Yield of Pea Grown in Alluvial Soils. Symbiosis 2013, 61, 93–104. [Google Scholar] [CrossRef]
- Tariq, M.; Noman, M.; Ahmed, T.; Hameed, A.; Manzoor, N.; Zafar, M. Antagonistic Features Displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. J. Plant Sci. Phytopathol. 2017, 1, 38–43. [Google Scholar]
- Wang, H.; Tang, X.; Wang, H.; Shao, H.B. Proline Accumulation and Metabolism-Related Genes Expression Profiles in Kosteletzkya Virginica Seedlings under Salt Stress. Front. Plant Sci. 2015, 6, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; McInroy, J.A.; Hu, C.-H.; Kloepper, J.W. Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Plant Dis. 2018, 102, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Meyer, S.L.F.; Everts, K.L.; Gardener, B.M.; Masler, E.P.; Abdelnabby, H.M.E.; Skantar, A.M. Assessment of DAPG-Producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon. J. Nematol. 2016, 48, 43. [Google Scholar] [CrossRef] [Green Version]
- Maksimov, I.V.; Abizgil’Dina, R.R.; Pusenkova, L.I. Plant Growth Promoting Rhizobacteria as Alternative to Chemical Crop Protectors from Pathogens. Appl. Biochem. Microbiol. 2011, 47, 333–345. [Google Scholar] [CrossRef]
- De Souza, J.T.; Arnould, C.; Deulvot, C.; Lemanceau, P.; Gianinazzi-Pearson, V.; Raaijmakers, J.M. Effect of 2, 4-Diacetylphloroglucinol on Pythium: Cellular Responses and Variation in Sensitivity among Propagules and Species. Phytopathology 2003, 93, 966–975. [Google Scholar] [CrossRef] [Green Version]
- Chin-A-Woeng, T.F.C.; Bloemberg, G.V.; Lugtenberg, B.J.J. Phenazines and Their Role in Biocontrol by Pseudomonas Bacteria. New Phytol. 2003, 157, 503–523. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Bist, V.; Srivastava, S.; Singh, P.C.; Trivedi, P.K.; Asif, M.H.; Chauhan, P.S.; Nautiyal, C.S. Unraveling Aspects of Bacillus Amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani. Front. Plant Sci. 2016, 7, 587. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-López, A.M.; Cordero-Ramírez, J.D.; Martínez-Álvarez, J.C.; López-Meyer, M.; Lizárraga-Sánchez, G.J.; Félix-Gastélum, R.; Castro-Martínez, C.; Maldonado-Mendoza, I.E. Rhizospheric Bacteria of Maize with Potential for Biocontrol of Fusarium Verticillioides. SpringerPlus 2016, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- El-Gamal, N.G.; Shehata, A.N.; Hamed, E.R.; Shehata, H.S. Improvement of Lytic Enzymes Producing Pseudomonas Fluorescens and Bacillus Subtilis Isolates for Enhancing Their Biocontrol Potential against Root Rot Disease in Tomato Plants. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1394–1400. [Google Scholar]
- Ashwini, N.; Srividya, S. Potentiality of Bacillus Subtilis as Biocontrol Agent for Management of Anthracnose Disease of Chilli Caused by Colletotrichum Gloeosporioides OGC1. 3 Biotech 2014, 4, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Illakkiam, D.; Anuj, N.L.; Ponraj, P.; Shankar, M.; Rajendhran, J.; Gunasekaran, P. Proteolytic Enzyme Mediated Antagonistic Potential of Pseudomonas Aeruginosa against Macrophomina phaseolina. Indian J. Exp. Biol. 2013, 51, 1024–1031. [Google Scholar]
- Melkamu, T.; Diriba, M.; Gezahegn, B.; Girma, A. Antagonistic Effects of Rhizobacteria against Coffee Wilt Disease Caused by Gibberella xylarioides. Asian J. Plant Pathol. 2013, 7, 109–122. [Google Scholar]
- Mekonnen, H.; Kibret, M. The Roles of Plant Growth Promoting Rhizobacteria in Sustainable Vegetable Production in Ethiopia. Chem. Biol. Technol. Agric. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Dos Santos, R.M.; Diaz, P.A.E.; Lobo, L.L.B.; Rigobelo, E.C. Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Front. Sustain. Food Syst. 2020, 4, 136. [Google Scholar] [CrossRef]
- Riahi, L.; Cherif, H.; Miladi, S.; Neifar, M.; Bejaoui, B.; Chouchane, H.; Masmoudi, A.S.; Cherif, A. Use of Plant Growth Promoting Bacteria as an Efficient Biotechnological Tool to Enhance the Biomass and Secondary Metabolites Production of the Industrial Crop Pelargonium Graveolens L’Hér. under Semi-Controlled Conditions. Ind. Crops Prod. 2020, 154, 112721. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, M.; Huang, G.; Yuan, Y.; Fu, C.; Yu, L. Coculture with Two Bacillus Velezensis Strains Enhances the Growth of Anoectochilus Plants via Promoting Nutrient Assimilation and Regulating Rhizosphere Microbial Community. Ind. Crops Prod. 2020, 154, 112697. [Google Scholar] [CrossRef]
- Wang, M.; Bian, Z.; Shi, J.; Wu, Y.; Yu, X.; Yang, Y.; Ni, H.; Chen, H.; Bian, X.; Li, T. Effect of the Nitrogen-Fixing Bacterium Pseudomonas Protegens CHA0-ΔretS-Nif on Garlic Growth under Different Field Conditions. Ind. Crops Prod. 2020, 145, 111982. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, V.; Kumar, V.; Devi, S.; Shukla, K.P.; Tiwari, A.; Singh, J.; Bisht, S. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence and Future Facets in Medicinal Plants. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2015; pp. 109–131. [Google Scholar]
- Chakrabartty, I.; Kalita, N.K.; Boruah, P.; Katiyar, V.; Hakeem, K.R.; Rangan, L. Physico-Rheological Characterization of Organically Derived Seed Samples from Alpinia Nigra (Gaertn.) BL Burtt, an Ethnic Medicinal Plant of Northeast India. Ind. Crops Prod. 2020, 152, 112560. [Google Scholar] [CrossRef]
- Rahmoune, B.; Morsli, A.; Khelifi-Slaoui, M.; Khelifi, L.; Strueh, A.; Erban, A.; Kopka, J.; Prell, J.; van Dongen, J.T. Isolation and Characterization of Three New PGPR and Their Effects on the Growth of Arabidopsis and Datura Plants. J. Plant Interact. 2017, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Geeta, R.; Gharaibeh, W. Historical Evidence for a Pre-Columbian Presence of Datura in the Old World and Implications for a First Millennium Transfer from the New World. J. Biosci. 2007, 32, 1227–1244. [Google Scholar] [CrossRef]
- Srivastava, R.; Srivastava, P. The Medicinal Significance of Datura Stramonium-A Review. Biomed. J. Sci. Tech. Res. 2020, 29, 22223–22226. [Google Scholar] [CrossRef]
- Khan, J.; Khan, R.; Qureshi, R.A. Ethnobotanical Study of Commonly Used Weeds of District Bannu, Khyber Pakhtunkhwa (Pakistan). J. Med. Plants Stud. 2013, 1, 1–6. [Google Scholar]
- Trancă, S.D.; Szabo, R.; Cociş, M. Acute Poisoning Due to Ingestion of Datura Stramonium–a Case Report. Rom. J. Anaesth. Intensive Care 2017, 24, 65. [Google Scholar] [PubMed] [Green Version]
- Li, J.; Lin, B.; Wang, G.; Gao, H.; Qin, M. Chemical Constituents of Datura Stramonium Seeds. Zhongguo Zhong Yao Za Zhi= Zhongguo Zhongyao Zazhi China J. Chin. Mater. Med. 2012, 37, 319–322. [Google Scholar]
- Berkov, S.; Zayed, R.; Doncheva, T. Alkaloid Patterns in Some Varieties of Datura Stramonium. Fitoterapia 2006, 77, 179–182. [Google Scholar] [CrossRef]
- Van Wyk, B.-E.; Van Heerden, F.; Van Oudtshoorn, B. Poisonous Plants of South Africa; Briza Publications: Pretoria, South Africa, 2002; ISBN 1875093303. [Google Scholar]
- Ivancheva, S.; Nikolova, M.; Tsvetkova, R. Pharmacological Activities and Biologically Active Compounds of Bulgarian Medicinal Plants. Phytochem. Adv. Res. 2006, 8, 87–103. [Google Scholar]
- Kumral, N.A.; Çobanoğlu, S.; Yalcin, C. Acaricidal, Repellent and Oviposition Deterrent Activities of Datura Stramonium L. against Adult Tetranychus Urticae (Koch). J. Pest Sci. 2010, 83, 173–180. [Google Scholar] [CrossRef]
- Rahmoune, B.; Zerrouk, I.Z.; Morsli, A.; Khelifi-Slaoui, M.; Khelifi, L.; Do Amarante, L. Phenylpropanoids and Fatty Acids Levels in Roots and Leaves of Datura stramonium and Datura innoxia. Int. J. Pharm. Pharm. Sci. 2017, 9, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Božić, D.; Jovanović, L.; Raičević, V.; Pavlović, D.; Sarić-Krsmanović, M.; Vrbničanin, S. The Effect of Plant Growth Promoting Rhizobacteria on Datura Stramonium L., Abutilon Theophrasti Med., Onopordon Acanthium L. and Verbascum Thapsus L. Seed Germination. Pestic. I Fitomed. 2014, 29, 205–212. [Google Scholar] [CrossRef]
- Nassar, R.M.A.; Boghdady, M.S.; Selim, D.A. Effect of Mineral and Bio-Fertilizers on Vegetative Growth, Mineral Status, Seed Yield, Tropane Alkaloids and Leaf Anatomy of Thorn Apple Plant (Datura Stramonium L.). Middle East J. Agric. Res 2015, 4, 754–768. [Google Scholar]
- Rahmoune, B.; Zerrouk, I.Z.; Bouzaa, S.; Morsli, A.; Khelifi-Slaoui, M.; Ludwig-Müller, J.; Khelifi, L. Amino Acids Profiling in Datura Stramonium and Study of Their Variations after Inoculation with Plant Growth Promoting Rhizobacteria. Biologia 2019, 74, 1373–1383. [Google Scholar] [CrossRef]
- Kahramanoğlu, İ.; Chen, C.; Chen, J.; Wan, C. Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe Vera Gel. Agronomy 2019, 9, 831. [Google Scholar] [CrossRef] [Green Version]
- Waithaka, P.N.; Gathuru, E.M.; Githaiga, B.M.; Kazungu, R.Z. Antimicrobial Properties of Aloe Vera, Aloe Volkensii and Aloe Secundiflora from Egerton University. Acta Sci. Microbiol. 2018, 1, 6–10. [Google Scholar]
- Kumar, S.; Jakhar, D.S.; Singh, R. Evaluating Antimicrobial Activity of Aloe Vera Plant Extract in Human Life. Biomed. J. Sci. Tech. Res. 2017, 1, 1854–1856. [Google Scholar] [CrossRef] [Green Version]
- Meena, N.K.; Tara, N.; Saharan, B.S. Review on PGPR: An Alternative for Chemical Fertilizers to Promote Growth in Aloe Vera Plants. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3546–3551. [Google Scholar]
- Oryan, A.; Mohammadalipour, A.; Moshiri, A.; Tabandeh, M.R. Topical Application of Aloe Vera Accelerated Wound Healing, Modeling, and Remodeling: An Experimental Study. Ann. Plast. Surg. 2016, 77, 37–46. [Google Scholar] [CrossRef]
- Sahu, P.K.; Giri, D.D.; Singh, R.; Pandey, P.; Gupta, S.; Shrivastava, A.K.; Kumar, A.; Pandey, K.D. Therapeutic and Medicinal Uses of Aloe Vera: A Review. Pharmacol. Pharm. 2013, 4, 599. [Google Scholar] [CrossRef] [Green Version]
- Meena, N.; Saharan, B.S. Effective Biocontrol of Leaf Rot Disease on Aloe Vera Plant by PGPR in Green House Experiment. BEPLS 2017, 7, 24–28. [Google Scholar]
- Khajeeyan, R.; Salehi, A.; Dehnavi, M.M.; Farajee, H.; Kohanmoo, M.A. Growth Parameters, Water Productivity and Aloin Content of Aloe Vera Affected by Mycorrhiza and PGPR Application under Different Irrigation Regimes. S. Afr. J. Bot. 2021. [Google Scholar] [CrossRef]
- Kalaimani, S.; Kandeepan, D.R.C. Effect of rhizobacterial inoculation on alkaloid aloin content of aloevera. IJRAR—Int. J. Res. Anal. Reviews. 2018, 5, 827y. [Google Scholar]
- Mamta, G.; Rahi, P.; Pathania, V.; Gulati, A.; Singh, B.; Bhanwra, R.K.; Tewari, R. Comparative Efficiency of Phosphate-Solubilizing Bacteria under Greenhouse Conditions for Promoting Growth and Aloin-A Content of Aloe Barbadensis. Arch. Agron. Soil Sci. 2012, 58, 437–449. [Google Scholar] [CrossRef]
- Pandey, V.; Ansari, W.A.; Misra, P.; Atri, N. Withania Somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application. Front. Plant Sci. 2017, 8, 1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umadevi, M.; Rajeswari, R.; Rahale, C.S.; Selvavenkadesh, S.; Pushpa, R.; Kumar, K.P.S.; Bhowmik, D. Traditional and Medicinal Uses of Withania Somnifera. Pharma Innov. 2012, 1, 102. [Google Scholar]
- Aslam, S.; Raja, N.I.; Hussain, M.; Iqbal, M.; Ejaz, M.; Ashfaq, D.; Fatima, H.; Shah, M.A.; Ehsan, M. Current Status of Withania Somnifera (L.) Dunal: An Endangered Medicinal Plant from Himalaya. Am. J. Plant Sci. 2017, 8, 1159. [Google Scholar] [CrossRef] [Green Version]
- Davis, L.; Kuttan, G. Effect of Withania Somnifera on CTL Activity. J. Exp. Clin. Cancer Res. CR 2002, 21, 115–118. [Google Scholar]
- Ali, N.A.; Jülich, W.-D.; Kusnick, C.; Lindequist, U. Screening of Yemeni Medicinal Plants for Antibacterial and Cytotoxic Activities. J. Ethnopharmacol. 2001, 74, 173–179. [Google Scholar] [CrossRef]
- Panda, S.; Kar, A. Withania Somnifera and Bauhinia Purpurea in the Regulation of Circulating Thyroid Hormone Concentrations in Female Mice. J. Ethnopharmacol. 1999, 67, 233–239. [Google Scholar] [CrossRef]
- Rajasekar, S.; Elango, R. Effect of Microbial Consortium on Plant Growth and Improvement of Alkaloid Content in Withania Somnifera (Ashwagandha). Curr. Bot. 2011, 2, 27–30. [Google Scholar]
- Anuroopa, N.; Bagyaraj, D.J. Selection of an Efficient Plant Growth Promoting Rhizobacteria for Inoculating Withania Somnifera. J. Sci. Ind. Res. 2017, 76, 244–248. [Google Scholar]
- Zandi, P.; Basu, S.K.; Cetzal-Ix, W.; Kordrostami, M.; Chalaras, S.K.; Khatibai, L.B. Fenugreek (Trigonella Foenum-graecum L.): An Important Medicinal and Aromatic Crop. In Active Ingredients from Aromatic and Medicinal Plants; IntechOpen: Rijeka, Croatia, 2017; pp. 207–224. [Google Scholar]
- Fernández-Aparicio, M.; Emeran, A.A.; Rubiales, D. Control of Orobanche Crenata in Legumes Intercropped with Fenugreek (Trigonella Foenum-Graecum). Crop Prot. 2008, 27, 653–659. [Google Scholar] [CrossRef]
- Syed, Q.A.; Rashid, Z.; Ahmad, M.H.; Shukat, R.; Ishaq, A.; Muhammad, N.; Rahman, H.U.U. Nutritional and Therapeutic Properties of Fenugreek (Trigonella foenum-graecum): A Review. Int. J. Food Prop. 2020, 23, 1777–1791. [Google Scholar] [CrossRef]
- Warke, V.B.; Deshmukh, T.A.; Patil, V.R. Development and Validation of RP-HPLC Method for Estimation of Diosgenin in Pharmaceutical Dosage Form. Asian J. Pharm. Clin. Res. 2011, 4, 126–128. [Google Scholar]
- Danesh, T.S.; Mehrafarin, A.; Naghdi, B.H.; Khalighi, S.F. Changes in Growth and Trigonelline/Mucilage Production of Fenugreek (Trigonella Foenum-Graecum L.) under Plant Growth Regulators Application. J. Med. Plants 2014, 13, 15–25. [Google Scholar]
- Sharghi, A.; Bolandnazar, S.; Badi, H.N.; Mehrafarin, A.; Sarikhani, M.R. The Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Growth Characteristics of Fenugreek under Water Deficit Stress. Adv. Biores. 2017, 8, 96–101. [Google Scholar]
- Sharghi, A.; Badi, H.N.; Bolandnazar, S.; Mehrafarin, A.; Sarikhani, M.R. Morphophysiological and Phytochemical Responses of Fenugreek to Plant Growth Promoting Rhizobacteria (PGPR) under Different Soil Water Levels. Folia Hortic. 2018, 30, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological Activities of Curcuminoids, Other Biomolecules from Turmeric and Their Derivatives–A Review. J. Tradit. Complement. Med. 2017, 7, 205–233. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Singh, A.K.; Kaushik, M.S.; Mishra, S.K.; Raj, P.; Singh, P.K.; Pandey, K.D. Interaction of Turmeric (Curcuma Longa L.) with Beneficial Microbes: A Review. 3 Biotech 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Bundy, R.; Walker, A.F.; Middleton, R.W.; Booth, J. Turmeric Extract May Improve Irritable Bowel Syndrome Symptomology in Otherwise Healthy Adults: A Pilot Study. J. Altern. Complement. Med. 2004, 10, 1015–1018. [Google Scholar] [CrossRef]
- Panahi, Y.; Saadat, A.; Beiraghdar, F.; Nouzari, S.M.H.; Jalalian, H.R.; Sahebkar, A. Antioxidant Effects of Bioavailability-Enhanced Curcuminoids in Patients with Solid Tumors: A Randomized Double-Blind Placebo-Controlled Trial. J. Funct. Foods 2014, 6, 615–622. [Google Scholar] [CrossRef]
- Mukerjee, A.; Vishwanatha, J.K. Formulation, Characterization and Evaluation of Curcumin-Loaded PLGA Nanospheres for Cancer Therapy. Anticancer Res. 2009, 29, 3867–3875. [Google Scholar]
- Osorio-Tobón, J.F.; Carvalho, P.I.N.; Barbero, G.F.; Nogueira, G.C.; Rostagno, M.A.; de Almeida Meireles, M.A. Fast Analysis of Curcuminoids from Turmeric (Curcuma longa L.) by High-Performance Liquid Chromatography Using a Fused-Core Column. Food Chem. 2016, 200, 167–174. [Google Scholar] [CrossRef]
- Qazi, M.A.; Iqbal, M.N.; Ashraf, M.; Khan, N.I.; Ahmad, R.; Umar, F.; Naeem, U.; Mughal, K.M.; Khalid, M.; Iqbal, Z. NPK requirements of turmeric for cultivation in Punjab. Pak. J. Sci. 2020, 72, 365. [Google Scholar]
- Ojikpong, T.O. Effect of Planting Dates and NPK (15: 15: 15) Fertilizer on the Growth an Yield of Turmeric (Curcuma Longa Linn). Int. J. Agric. Environ. Sci. 2018, 5, 42–46. [Google Scholar]
- Vinayarani, G.; Prakash, H. Growth Promoting Rhizospheric and Endophytic Bacteria from Curcuma Longa L. as Biocontrol Agents against Rhizome Rot and Leaf Blight Diseases. Plant Pathol. J. 2018, 34, 218. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.; Giri, D.D.; Singh, P.K.; Pandey, K.D. Effect of Azotobacter Chroococcum CL13 Inoculation on Growth and Curcumin Content of Turmeric (Curcuma Longa L.). Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 275–283. [Google Scholar]
- Prabhukarthikeyan, S.R.; Keerthana, U.; Raguchander, T. Antibiotic-Producing Pseudomonas Fluorescens Mediates Rhizome Rot Disease Resistance and Promotes Plant Growth in Turmeric Plants. Microbiol. Res. 2018, 210, 65–73. [Google Scholar] [CrossRef]
- Suryadevara, N.; Ponmurugan, P. Response of Turmeric to Plant Growth Promoting Rhizobacteria (Pgpr) Inoculation under Different Levels of Nitrogen. Int. J. Biol. Technol. 2012, 3, 39–44. [Google Scholar]
- Boominathan, U.; Sivakumaar, P.K. A Liquid Chromatography Method for the Determination of Curcumin in PGPR Inoculated Curcuma Longa. L Plant. Int. J. Pharm. Sci. Res. 2012, 3, 4438. [Google Scholar]
- Kumar, A.; Singh, M.; Singh, P.P.; Singh, S.K.; Singh, P.K.; Pandey, K.D. Isolation of Plant Growth Promoting Rhizobacteria and Their Impact on Growth and Curcumin Content in Curcuma Longa L. Biocatal. Agric. Biotechnol. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Dutta, S.C.; Neog, B. Accumulation of Secondary Metabolites in Response to Antioxidant Activity of Turmeric Rhizomes Co-Inoculated with Native Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria. Sci. Hortic. 2016, 204, 179–184. [Google Scholar] [CrossRef]
- Shobha, M.S. Effect of Endophytic and Plant Growth Promoting Rhizobacteria against Foot Rot Disease of Piper Nigrum L. Int. J. Environ. Agric. Biotechnol. 2018, 3, 268282. [Google Scholar]
- Dastager, S.G.; Deepa, C.K.; Pandey, A. Growth Enhancement of Black Pepper (Piper Nigrum) by a Newly Isolated Bacillus Tequilensis NII-0943. Biologia 2011, 66, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Deepa, C.K.; Dastager, S.G. Potential Plant Growth-Promoting Activity of Serratia Nematodiphila NII-0928 on Black Pepper (Piper Nigrum L.). World J. Microbiol. Biotechnol. 2011, 27, 259–265. [Google Scholar]
- Tangpao, T.; Chung, H.-H.; Sommano, S.R. Aromatic Profiles of Essential Oils from Five Commonly Used Thai Basils. Foods 2018, 7, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balanescu, F.; Mihaila, M.D.I.; Cârâc, G.; Furdui, B.; Vînătoru, C.; Avramescu, S.M.; Lisa, E.L.; Cudalbeanu, M.; Dinica, R.M. Flavonoid Profiles of Two New Approved Romanian Ocimum Hybrids. Molecules 2020, 25, 4573. [Google Scholar] [CrossRef]
- Mousavi, L.; Salleh, R.M.; Murugaiyah, V. Phytochemical and Bioactive Compounds Identification of Ocimum Tenuiflorum Leaves of Methanol Extract and Its Fraction with an Anti-Diabetic Potential. Int. J. Food Prop. 2018, 21, 2390–2399. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Attia, F.A.K.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant Activity and Total Phenolic Content of Essential Oils and Extracts of Sweet Basil (Ocimum basilicum L.) Plants. Food Sci. Hum. Wellness 2019, 8, 299–305. [Google Scholar] [CrossRef]
- Mittal, R.; Kumar, R.; Chahal, H.S. Antimicrobial Activity of Ocimum Sanctum Leaves Extracts and Oil. J. Drug Deliv. Ther. 2018, 8, 201–204. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Álvarez-García, S.; González-López, Ó.; Da Silva, F.; Casquero, P.A. Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean (Phaseolus vulgaris, L.). Insects 2019, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Mangmang, J.S.; Deaker, R.; Rogers, G. Inoculation Effect of Azospirillum Brasilense on Basil Grown under Aquaponics Production System. Org. Agric. 2016, 6, 65–74. [Google Scholar] [CrossRef]
- Ordookhani, K.; Sharafzadeh, S.; Zare, M. Influence of PGPR on Growth, Essential Oil and Nutrients Uptake of Sweet Basil. Adv. Environ. Biol. 2011, 5, 672–677. [Google Scholar]
- Atikbekkara, F.; Bousmaha, L.; Talebbendiab, S.A.; Boti, J.B.; Casanova, J. Chemical Composition of Essential Oil of Rosmarinus Officinalis L. Grown in the Tlemcen Region. J. Biol. Health 2007, 7, 6–11. [Google Scholar]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Singletary, K. Rosemary: An Overview of Potential Health Benefits. Nutr. Today 2016, 51, 102–112. [Google Scholar] [CrossRef]
- Habtemariam, S. The Therapeutic Potential of Rosemary (Rosmarinus Officinalis) Diterpenes for Alzheimer’s Disease. Evid.-Based Complement. Altern. Med. 2016, 2016, 2680409. [Google Scholar] [CrossRef] [Green Version]
- Arnold, N.; Valentini, G.; Bellomaria, B.; Hocine, L. Comparative Study of the Essential Oils from Rosmarinus Eriocalyx Jordan & Fourr. from Algeria and R. Officinalis L. from Other Countries. J. Essent. Oil Res. 1997, 9, 167–175. [Google Scholar]
- Dehghani Bidgoli, R.; Ghiaci Yekta, M. Investigating the Effect of Plant Growth-Promoting Rhizobacteria (Pseudomonas Putida R112) on Essential Oil of Rosmarinus Officinalis L. under Irrigation of Urban Purified Wastewater. J. Med. Plants 2020, 18, 212–226. [Google Scholar] [CrossRef]
- Sharma, M.; Sood, G.; Chauhan, A. Bioprospecting Beneficial Endophytic Bacterial Communities Associated with Rosmarinus Officinalis for Sustaining Plant Health and Productivity. World J. Microbiol. Biotechnol. 2021, 37, 1–17. [Google Scholar] [CrossRef]
- Bidgoli, R.D.; Azarnezhad, N.; Akhbari, M.; Ghorbani, M. Salinity Stress and PGPR Effects on Essential Oil Changes in Rosmarinus Officinalis L. Agric. Food Secur. 2019, 8, 1–7. [Google Scholar]
- Cáceres, J.A.; Cuervo, A.J.L.; Rodríguez, C.J.L. Effect of Organic Fertilization on Yield and Quality of Rosemary (Rosmarinus officinalis L.) Essential Oil. Agron. Colomb. 2017, 35, 232–237. [Google Scholar] [CrossRef]
- Kasmaei, L.S.; Yasrebi, J.; Zarei, M.; Ronaghi, A.; Chasemi, R.; Saharkhiz, M.J.; Ahmadabadi, Z.; Schnug, E. Impacts of PGPR, Compost and Biochar of Azolla on Dry Matter Yield, Nutrient Uptake, Physiological Parameters and Essential Oil of Rosmarinus Officinalis L. J. Kult. 2019, 71, 3–13. [Google Scholar]
- Omidbaigi, R. Production and Processing of Medicinal Plants. Beh-Nashr Mashhad 2005, 1, 210–225. [Google Scholar]
- Tahir, M.; Khushtar, M.; Fahad, M.; Rahman, M.A. Phytochemistry and Pharmacological Profile of Traditionally Used Medicinal Plant Hyssop (Hyssopus Officinalis L.). J. Appl. Pharm. Sci. 2018, 8, 132–140. [Google Scholar]
- Darzi, M.T.; Nekoo, B.S. Effects of Organic Amendments and Biofertilizer Application on Some Morphological Traits and Yield of Hyssop (Hyssopus Officinalis L.). J. Hortic. Sci. 2016, 30, 491–500. [Google Scholar]
- Sharifi, P. The Effect of Plant Growth Promoting Rhizobacteria (PGPR), Salicylic Acid and Drought Stress on Growth Indices, the Chlorophyll and Essential Oil of Hyssop (Hyssopus Officinalis). Biosci. Biotechnol. Res. Asia 2017, 14, 1033–1042. [Google Scholar] [CrossRef]
- Xiong, Y.W.; Li, X.W.; Wang, T.T.; Gong, Y.; Zhang, C.M.; Xing, K.; Qin, S. Root Exudates-Driven Rhizosphere Recruitment of the Plant Growth-Promoting Rhizobacterium Bacillus Flexus KLBMP 4941 and Its Growth-Promoting Effect on the Coastal Halophyte Limonium Sinense under Salt Stress. Ecotoxicol. Environ. Saf. 2020, 194. [Google Scholar] [CrossRef]
- Barnawal, D.; Pandey, S.S.; Bharti, N.; Pandey, A.; Ray, T.; Singh, S.; Chanotiya, C.S.; Kalra, A. ACC Deaminase-Containing Plant Growth-Promoting Rhizobacteria Protect Papaver Somniferum from Downy Mildew. J. Appl. Microbiol. 2017, 122, 1286–1298. [Google Scholar] [CrossRef]
- Asghari, B.; Khademian, R.; Sedaghati, B. Plant Growth Promoting Rhizobacteria (PGPR) Confer Drought Resistance and Stimulate Biosynthesis of Secondary Metabolites in Pennyroyal (Mentha Pulegium L.) under Water Shortage Condition. Sci. Hortic. 2020, 263, 110374. [Google Scholar] [CrossRef]
- El-Serafy, R.S.; El-Sheshtawy, A.A. Effect of Nitrogen Fixing Bacteria and Moringa Leaf Extract on Fruit Yield, Estragole Content and Total Phenols of Organic Fennel. Sci. Hortic. 2020, 265, 109209. [Google Scholar] [CrossRef]
- Ghanbarzadeh, Z.; Mohsenzadeh, S.; Rowshan, V.; Zarei, M. Mitigation of Water Deficit Stress in Dracocephalum Moldavica by Symbiotic Association with Soil Microorganisms. Sci. Hortic. 2020, 272, 109549. [Google Scholar] [CrossRef]
- Kang, J.P.; Huo, Y.; Yang, D.U.; Yang, D.C. Influence of the Plant Growth Promoting Rhizobium Panacihumi on Aluminum Resistance in Panax Ginseng. J. Ginseng Res. 2020, 45, 442–449. [Google Scholar] [CrossRef]
- Huo, Y.; Kang, J.P.; Ahn, J.C.; Kim, Y.J.; Piao, C.H.; Yang, D.U.; Yang, D.C. Siderophore-Producing Rhizobacteria Reduce Heavy Metal-Induced Oxidative Stress in Panax Ginseng Meyer. J. Ginseng Res. 2021, 45, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Chiappero, J.; del Rosario Cappellari, L.; Sosa Alderete, L.G.; Palermo, T.B.; Banchio, E. Plant Growth Promoting Rhizobacteria Improve the Antioxidant Status in Mentha Piperita Grown under Drought Stress Leading to an Enhancement of Plant Growth and Total Phenolic Content. Ind. Crops Prod. 2019, 139, 111553. [Google Scholar] [CrossRef]
- Del Rosario Cappellari, L.; Santoro, M.V.; Schmidt, A.; Gershenzon, J.; Banchio, E. Induction of Essential Oil Production in Mentha x Piperita by Plant Growth Promoting Bacteria Was Correlated with an Increase in Jasmonate and Salicylate Levels and a Higher Density of Glandular Trichomes. Plant Physiol. Biochem. 2019, 141, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Seif Sahandi, M.; Mehrafarin, A.; Naghdi Badi, H.; Khalighi-Sigaroodi, F.; Sharifi, M. Improving Growth, Phytochemical, and Antioxidant Characteristics of Peppermint by Phosphate-Solubilizing Bacteria along with Reducing Phosphorus Fertilizer Use. Ind. Crops Prod. 2019, 141, 111777. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, A.; Maji, D.; Awasthi, A.; Vajpayee, P.; Kalra, A. Evaluating the Potential of Combined Inoculation of Trichoderma Harzianum and Brevibacterium Halotolerans for Increased Growth and Oil Yield in Mentha Arvensis under Greenhouse and Field Conditions. Ind. Crops Prod. 2019, 131, 173–181. [Google Scholar] [CrossRef]
- Chandra, S.; Askari, K.; Kumari, M. Optimization of Indole Acetic Acid Production by Isolated Bacteria from Stevia Rebaudiana Rhizosphere and Its Effects on Plant Growth. J. Genet. Eng. Biotechnol. 2018, 16, 581–586. [Google Scholar] [CrossRef]
- Del Rosario Cappellari, L.; Chiappero, J.; Santoro, M.V.; Giordano, W.; Banchio, E. Inducing Phenolic Production and Volatile Organic Compounds Emission by Inoculating Mentha Piperita with Plant Growth-Promoting Rhizobacteria. Sci. Hortic. 2017, 220, 193–198. [Google Scholar] [CrossRef]
- Tahami, M.K.; Jahan, M.; Khalilzadeh, H.; Mehdizadeh, M. Plant Growth Promoting Rhizobacteria in an Ecological Cropping System: A Study on Basil (Ocimum Basilicum L.) Essential Oil Production. Ind. Crops Prod. 2017, 107, 97–104. [Google Scholar] [CrossRef]
- Jha, Y.; Subramanian, R.B. Rhizobacteria Enhance Oil Content and Physiological Status of Hyptis Suaveolens under Salinity Stress. Rhizosphere 2016, 1, 33–35. [Google Scholar] [CrossRef]
- Llorente, B.E.; Alasia, M.A.; Larraburu, E.E. Biofertilization with Azospirillum Brasilense Improves in Vitro Culture of Handroanthus Ochraceus, a Forestry, Ornamental and Medicinal Plant. New Biotechnol. 2016, 33, 32–40. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, Y.N.; Fan, Q.; Han, Q.Q.; Paré, P.W.; Xu, R.; Wang, Y.Q.; Wang, S.M.; Zhang, J.L. Improved Growth and Metabolite Accumulation in Codonopsis Pilosula (Franch.) Nannf. by Inoculation of Bacillus Amyloliquefaciens GB03. J. Agric. Food Chem. 2016, 64, 8103–8108. [Google Scholar] [CrossRef]
- Ogbe, A.A.; Finnie, J.F.; Van Staden, J. The Role of Endophytes in Secondary Metabolites Accumulation in Medicinal Plants under Abiotic Stress. S. Afr. J. Bot. 2020, 134, 126–134. [Google Scholar] [CrossRef]
- Guo, J.; Muhammad, H.; Lv, X.; Wei, T.; Ren, X.; Jia, H.; Atif, S.; Hua, L. Prospects and Applications of Plant Growth Promoting Rhizobacteria to Mitigate Soil Metal Contamination: A Review. Chemosphere 2020, 246, 125823. [Google Scholar] [CrossRef]
- Gouvea, D.R.; Gobbo-Neto, L.; Lopes, N.P. The Influence of Biotic and Abiotic Factors on the Production of Secondary Metabolites in Medicinal Plants. Plant Bioact. Drug Discov. Princ. Pract. Perspect. 2012, 17, 419. [Google Scholar]
- Shahzad, S.M.; Arif, M.S.; Ashraf, M.; Abid, M.; Ghazanfar, M.U.; Riaz, M.; Yasmeen, T.; Zahid, M.A. Alleviation of Abiotic Stress in Medicinal Plants by PGPR. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2015; pp. 135–166. [Google Scholar]
- Lim, J.-H.; Kim, S.-D. Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus Licheniformis K11 in Pepper. Plant Pathol. J. 2013, 29, 201. [Google Scholar] [CrossRef]
- Heidari, M.; Mousavinik, S.M.; Golpayegani, A. Plant Growth Promoting Rhizobacteria (PGPR) Effect on Physiological Parameters and Mineral Uptake in Basil (Ociumum Basilicm L.) under Water Stress. J. Agric. Biol. Sci. 2011, 6, 6–11. [Google Scholar]
- Ghorbanpour, M.; Hatami, M.; Khavazi, K. Role of Plant Growth Promoting Rhizobacteria on Antioxidant Enzyme Activities and Tropane Alkaloid Production of Hyoscyamus Niger under Water Deficit Stress. Turk. J. Biol. 2013, 37, 350–360. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, J.; Ren, T.; Du, H.; Liu, H.; Li, Y.; Zhang, C. Salt Stress Decreases Seedling Growth and Development but Increases Quercetin and Kaempferol Content in Apocynum venetum. Plant Biol. 2020, 22, 813–821. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Effect of Salinity Stress on Growth and Physiology of Medicinal Plants. In Medicinal Plants and Environmental Challenges; Springer: Berlin/Heidelberg, Germany, 2017; pp. 177–188. [Google Scholar]
- Chauhan, N.; Kumar, D. Effect of Salinity Stress on Growth Performance of Citronella Java. Int. J Geol. Agric. Environ. Sci. 2014, 2, 11–14. [Google Scholar]
- Mondal, H.K.; Kaur, H. Effect of Salt Stress on Medicinal Plants and Its Amelioration by Plant Growth Promoting Microbes. Int. J. Bio-Resour. Stress Manag. 2017, 8, 477–487. [Google Scholar] [CrossRef]
- Rabiei, Z.; Hosseini, S.J.; Pirdashti, H.; Hazrati, S. Physiological and Biochemical Traits in Coriander Affected by Plant Growth-Promoting Rhizobacteria under Salt Stress. Heliyon 2020, 6, e05321. [Google Scholar] [CrossRef]
- Bharti, N.; Barnawal, D.; Awasthi, A.; Yadav, A.; Kalra, A. Plant Growth Promoting Rhizobacteria Alleviate Salinity Induced Negative Effects on Growth, Oil Content and Physiological Status in Mentha Arvensis. Acta Physiol. Plant. 2014, 36, 45–60. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Jabborova, D.; Mamadalieva, N. Salt Tolerant Pseudomonas Extremorientalis Able to Stimulate Growth of Silybum Marianum under Salt Stress. Med. Aromat. Plant. Sci. Biotechnol. 2013, 7, 7–10. [Google Scholar]
- Egamberdieva, D. Pseudomonas Chlororaphis: A Salt-Tolerant Bacterial Inoculant for Plant Growth Stimulation under Saline Soil Conditions. Acta Physiol. Plant. 2012, 34, 751–756. [Google Scholar] [CrossRef]
- Danish, S.; Kiran, S.; Fahad, S.; Ahmad, N.; Ali, M.A.; Tahir, F.A.; Rasheed, M.K.; Shahzad, K.; Li, X.; Wang, D. Alleviation of Chromium Toxicity in Maize by Fe Fortification and Chromium Tolerant ACC Deaminase Producing Plant Growth Promoting Rhizobacteria. Ecotoxicol. Environ. Saf. 2019, 185, 109706. [Google Scholar] [CrossRef] [PubMed]
S. No. | Medicinal Plant | Secondary Metabolites/Bioactive Compounds | Ref. | ||||
---|---|---|---|---|---|---|---|
1. | Mentha piperita (peppermint) | Hesperidin | Diosmin | Didymin | Rosmarinic acid | [53] | |
2. | Aloe vera (aloe) | Aloin Anthraquinones | Lupeol Cinnamic acid Salicylic acid | β-sitosterol or campestrol Fatty acids | [54,55] | ||
3. | Ocimum sanctum (holy basil) | Eugenol | Carvacrol | Rosmarinic acid | Oleanolic acid | [56] | |
4. | Datura inoxia (pricklyburr) | Terpenoids Phenols | Flavonoids | Saponins | [57] | ||
5. | Dracocephalum moldavica (Moldavian balm or dragonhead) | Phenolic acids (p-coumaric acid) | Chlorogenic acid | Ellagitannins (apigenin) | Flavonoids (gentisic acid) | [58] | |
6. | Piper nigrum (black pepper) | Piperic acid Piperine | Piperttine Piperamide | [59] | |||
7. | Withania somnifera (ashwagandha) | Withanine | Somniferine Withanolides | [60,61] | |||
8. | Zingiber officinale (ginger) | Geranial | Phenylpropanoid | Oleoresin Gingerols | [62] | ||
9. | Trigonella foenum-graecum (fenugreek) | Coumarins Flavonoids | Polyphenols | Steroidal sapogenins (diosgenin) Alkaloids (protodioscin) | [63,64] | ||
10. | Papaver Somniferum (opium poppy) | Morphine | Narceine | Thebaine | Papaverine | [65,66] | |
11. | Ocimum basilicum (sweet basil) | Various phenolic compounds | | | [67] | ||
12. | Cuminum cyminum (cumin) | Coumarins | Anthraquinone | Steroids | Flavonoids | [68] | |
13. | Curcuma longa (turmeric) | Terpenoids | Flavonoids | Phenols | Curcumin | [69,70] |
S. No. | Medicinal Plant | Bioinoculant Used | Bio-Chemical Traits | References |
---|---|---|---|---|
1. | Limonium sinense | Bacillus flexus KLBMP 4941 | Enhanced synthesis of chlorophyll and flavonoids, osmotic regulation, increased activity of antioxidant enzymes and regulation of sodium/potassium homeostasis | [225] |
2. | Papaver somniferum | Pseudomonas putida (WPTe) | Indole acetic acid production, growth and yield improvement, increased chlorophyll synthesis and stomatal conductance | [226] |
3. | Mentha pulegium L. | Azotobacter chroococcum and Azospirillum brasilense | Mitigation of drought resistance, enhanced production of ascorbic acid, soluble sugars, proteins, flavonoids, total phenolics, oxygenated monoterpenes and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity | [227] |
4. | Foeniculum vulgare sp. vulgare Mill | Bacillus polymyxa, A. chroococcum, and Azospirillum lipoferum | Increased plant attributes such as length, number of branches/plant, fresh weight of fruits and herbs, fruit yield, oil components, total phenolic content and photosynthesis | [228] |
5. | Dracocephalum moldavica | Micrococcus yunnanensis and Claroideoglomus etunicatum | Enhanced photosynthesis, nutrient and dry matter accumulation, higher content of rosmarinic acid, eugenol, hesperetin and p-coumaric acid | [229] |
6. | Panax ginseng | Rhizobium panacihumi | Biomass accumulation, higher proline levels, increased soluble sugar and total phenolic contents, scavenging response to oxidative stress, mitigation of aluminium stress | [230] |
7. | Panax ginseng Meyer | Mesorhizobium panacihumi DCY119T | Production of siderophores, scavenging of ROS to circumvent iron stress, enhanced IAA production | [231] |
8. | Anoectochilus formosanus (Wall.) Lindl. (YYB) and Anoectochilus roxburghii (Wall.) Lindl. (MRH) | Bacillus velezensis strains (ZJ-11 and D2WM) | Increased plant biological parameters such as height and weight, significant increase in flavonoid and kinsenoside content and reduction in the population of pathogenic fungi | [136] |
9. | Mentha piperita | Bacillus amyloliquefaciens (GB03) and Pseudomonas fluorescens WCS417r | Bacterial inoculation improved various plant growth parameters including leaf number, surface area, and biomass, reduction in membrane lipid peroxidation and oxidative stress and increased phenolic content | [232] |
10. | Mentha piperita | Pseudomonas fluorescens WCS417r, P. putida SJ04 and B. subtilis GB03 | Rise in jasmonic acid (JA) and salicylic acid (SA) leading to glandular trichome density | [233] |
11. | Mentha piperita | Pantoea agglomerans and P. putida | Phosphate solubilisation, enhanced biological attributes such as leaf number and length, number of stems, overall dry biomass accumulation and photosynthetic pigments | [234] |
12. | Mentha arvensis | Bacillus flexus (Sd-30), Stenotrophomonas spp. (Az-30), and Brevibacterium halotolerans (Sd-6) | Enhanced photosynthesis, higher oil content and nutrient accumulation | [235] |
13. | Stevia rebaudiana | PGPR strains (CA1001, CA2003 and CA2004) | IAA production | [236] |
14. | Mentha piperita | P. fluorescens, P. putida, and B. subtilis | Enhanced emission of volatile organic compounds and phenolics | [237] |
15. | Ocimum basilicum L. | Two biofertilizers containing Pseudomonas sp., Azospirillum sp., Bacillus sp., Azotobacter sp. | Increased dry matter accumulation in shoots and essential oils | [238] |
16. | Hyptis Suaveolens | Bacillus pumilus and Pseudomonas Pseudoalcaligenes | Reduction of salinity impact, enhanced carotenoids and chlorophyll pigment | [239] |
17. | Handroanthus Ochraceus | Azospirillum brasilense | Increased root volume, dry matter accumulation, enhanced density or size of glandular trichomes | [240] |
18. | Codonopsis pilosula (Franch.) Nannf. | Bacillus amyloliquefaciens GB03 | Two-fold increase in content of lobetyolin | [241] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizvi, A.; Ahmed, B.; Khan, M.S.; El-Beltagi, H.S.; Umar, S.; Lee, J. Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules 2022, 27, 1407. https://doi.org/10.3390/molecules27041407
Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J. Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules. 2022; 27(4):1407. https://doi.org/10.3390/molecules27041407
Chicago/Turabian StyleRizvi, Asfa, Bilal Ahmed, Mohammad Saghir Khan, Hossam S. El-Beltagi, Shahid Umar, and Jintae Lee. 2022. "Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops" Molecules 27, no. 4: 1407. https://doi.org/10.3390/molecules27041407
APA StyleRizvi, A., Ahmed, B., Khan, M. S., El-Beltagi, H. S., Umar, S., & Lee, J. (2022). Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules, 27(4), 1407. https://doi.org/10.3390/molecules27041407