Chemometric Optimization of Biologically Active Compounds Extraction from Grape Marc: Composition and Antimicrobial Activity
Abstract
:1. Introduction
2. Results
2.1. The Influence of Temperature on the Extraction Yield of Bioactive Compounds
2.2. Characterization of Grape Marc Extract
2.3. Antimicrobial Activity of Grape Marc Extract
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Extract Characterization
4.2.1. Total Polyphenols and Flavonoids by Folin–Ciocalteu
4.2.2. Total Tannins by Folin–Ciocalteu
4.2.3. Total Anthocyanins
4.2.4. HPLC Analysis of Polyphenols
4.2.5. HPLC Analysis of Anthocyanins
4.2.6. Quantification of Organic Acids
4.2.7. Antioxidant Activity by Reaction with DPPH Radical
4.2.8. Antioxidant Activity by Reaction with ABTS Radical
4.2.9. Color Parameters (CIELab)
4.3. Analysis of Antimicrobial Activity
4.3.1. Test Microorganisms
4.3.2. Agar Well Diffusion Method
4.3.3. Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Determination
4.4. Mathematical Modeling
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schieber, A.; Stintzind, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antonilli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8989–9003. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.D.; Auqui, M.; Linares, M.B. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT-Food Sci. Technol. 2011, 44, 2238–2243. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fiber for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Opriș, O.; Lung, I.; Soran, L.; Sturza, R.; Ghendov-Moșanu, A. Fondant candies enriched with antioxidants from aronia berries and grape marc. Rev. Chim. 2020, 71, 74–79. [Google Scholar] [CrossRef]
- Ghendov-Moşanu, A.; Sturza, R.; Chiriţa, E.; Patraş, A. Valorization of wine-making by-products in the production of jellycandies. Online Mag. Ital. Food Mater. Mach. 2016, 9, 12–15. [Google Scholar]
- Spinei, A.; Sturza, R.; Moşanu, A.; Zagnat, M.; Bordeniuc, G. Use of anthocyanin extract from wine products in the prevention of experimental dental caries. Revista Română Medicină Dentară 2017, 20, 161–175. [Google Scholar]
- Llobera, A.; Canellas, J. Antioxidant activity and dietary fibre of prensal blanc white grape (Vitis vinifera) by-products. Int. J. Food Sci. Technol. 2008, 43, 1953–1959. [Google Scholar] [CrossRef]
- Parry, J.W.; Li, H.; Liu, J.-R.; Zhou, K.; Zhang, L.; Ren, S. Antioxidant activity, antiproliferation of colon cancer cells, and chemical composition of grape pomace. Food Nutr. Sci. 2011, 2, 530–540. [Google Scholar] [CrossRef] [Green Version]
- Ping, L.; Brosse, N.; Sannigrahi, P.; Ragauskasc, A. Evaluation of grape stalks as a bioresource. Ind. Crops Prod. 2011, 33, 200–204. [Google Scholar] [CrossRef]
- Lafka, T.I.; Sinanoglou, V.; Lazos, E.S. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 2007, 104, 1206–1214. [Google Scholar] [CrossRef]
- Mollica, A.; Scioli, G.; Della Valle, A.; Cichelli, A.; Novellino, E.; Bauer, M.; Kamysz, W.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Castillo-López, R.; et al. Phenolic Analysis and In Vitro Biological Activity of Red Wine, Pomace and Grape Seeds Oil Derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants 2021, 10, 1704. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Thimothe, J.; Bonsi, I.A.; Padilla-Zakour, O.I.; Koo, H. Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. J. Agric. Food Chem. 2007, 55, 10200–10207. [Google Scholar] [CrossRef]
- Chira, K.; Suh, J.-H.; Saucier, C.; Teissedre, P.-L. Les polyphénols du raisin. Phytotherapie 2008, 6, 75–82. [Google Scholar] [CrossRef]
- Guebailia, H.A.; Chira, K.; Richard, T.; Mabrouk, T.; Furiga, A.; Vitrac, X.; Monti, J.-P.; Delaunay, J.-C.; Mérillon, J.-M. Hopeaphenol: The first resveratrol tetramer in wines from North Africa. J. Agric. Food Chem. 2006, 54, 9559–9564. [Google Scholar] [CrossRef]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability, and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef] [Green Version]
- KocevarGlavac, N.; Lunder, M. Preservative efficacy of selected antimicrobials of natural origin in a cosmetic emulsion. Int. J. Cosmet. Sci. 2018, 40, 276–284. [Google Scholar] [CrossRef]
- Radulovic, N.S.; Blagojevic, P.D.; Stojanovic-Radic, Z.Z.; Stojanovic, N.M. Antimicrobial plant metabolites: Structure diversity and mechanism of action. Curr. Med. Chem. 2013, 20, 932–952. [Google Scholar]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Ferreira, C.; Saavedra, M.J. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Duggirala, S.; Nankar, R.P.; Rajendran, S.; Doble, M. Phytochemicals as inhibitors of bacterial cell division protein FtsZ: Coumarins are promising candidates. Appl. Biochem. Biotechnol. 2014, 174, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Ibrahim, S.A. Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics. Appl. Microbiol. Biotechnol. 2014, 95, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Oyedemi, S.O.; Okoh, A.I.; Mabinya, L.V.; Pirochenva, G.; Afolayan, A.J. The proposed mechanism of bactericidal action of eugenol, (-terpineol and (-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr. J. Biotechnol. 2009, 8, 1280–1290. [Google Scholar]
- Iora, S.R.L.; Maciel, G.M.; Zielinski, A.A.F.; da Silva, M.V.; Pontes, P.V.A.; Haminiuk, C.W.I.; Granato, D. Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. Int. J. Food Sci. Technol. 2015, 50, 62–69. [Google Scholar] [CrossRef]
- Rondeau, P.; Gambier, F.; Jolibert, F.; Brosse, N. Compositions and chemical variability of grape pomaces from French vineyard. Ind. Crops Prod. 2013, 43, 251–254. [Google Scholar] [CrossRef]
- Brahim, M.; Gambier, F.; Brosse, N. Optimization of polyphenols extraction from grape residues in water medium. Ind. Crops Prod. 2014, 52, 18–22. [Google Scholar] [CrossRef]
- Llobera, A.; Cañellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of polyphenols from agri-food by-products: The olive oil and winery industries cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Tournour, H.H.; Segundo, M.A.; Magalhães, L.M.; Barreiros, L.; Queiroz, J.; Cunha, L.M. Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Ind. Crops Prod. 2015, 74, 397–406. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A.; Decorti, D. The combined extraction of polyphenols from grape marc: Ultrasound assisted extraction followed by supercritical CO2 extraction of ultrasound-raffinate. LWT 2015, 61, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Garrido, T.; Gizdavic-Nikolaidis, M.; Leceta, I.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K.; Kilmartin, P.A. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Manag. 2019, 88, 110–117. [Google Scholar] [CrossRef]
- Ćurko, N.; Kelšin, K.; Dragović-Uzelac, V.; Valinger, D.; Tomašević, M.; Kovačević Ganić, K. Microwave-assisted extraction of different groups of phenolic compounds from grape skin pomaces: Modeling and optimization. Polish J. Food Nutr. Sci. 2019, 69, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Palenzuela, B.; Arce, L.; Macho, A.; Muñoz, E.; Ríos, A.; Valcárcel, M. Bioguided extraction of polyphenols from grape marc by using an alternative supercritical-fluid extraction method based on a liquid solvent trap. Anal. Bioanal. Chem. 2004, 378, 2021–2027. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from grape marc. J. Food Eng. 2019, 240, 105–113. [Google Scholar] [CrossRef]
- El Darra, N.; Grimi, N.; Vorobiev, E.; Louka, N.; Maroun, R. Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food Bioprocess Technol. 2013, 6, 1281–1289. [Google Scholar] [CrossRef]
- Puértolas, E.; López, N.; Saldaña, G.; Álvarez, I.; Raso, J. Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. J. Food Eng. 2010, 98, 120–125. [Google Scholar] [CrossRef]
- Ghendov-Moșanu, A.; Sturza, A.; Patraș, A. Process for obtaining polyphenols from grape pomace. Short-term patent. OBIP 2014, 10, 32. [Google Scholar]
- Štambuk, P.; Tomašković, D.; Tomaz, I.; Maslov, L.; Stupić, D.; Karoglan Kontić, J. Application of pectinases for recovery of grape seeds phenolics. 3 Biotech 2016, 6, 224. [Google Scholar] [CrossRef] [Green Version]
- Tena, N.; Asuero, A.G. Up-to-date analysis of the extraction methods for anthocyanins: Principles of the techniques, optimization, technical progress, and industrial application. Antioxidants 2022, 11, 286. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, J.G.; Li, W.-F.; Chen, J.; Wang, D.Y.; Zhu, L. Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. J. Sep. Sci. 2009, 32, 1437–1444. [Google Scholar] [CrossRef]
- Simić, V.M.; Rajković, K.M.; Stojičević, S.S.; Veličković, D.T.; Nikolić, N.Č.; Lazić, M.L.; Karabegović, I.T. Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Sep. Purif. Technol. 2016, 160, 89–97. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinic, M.; Tomas, S.; Bilić, M.; Velić, D. Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; de Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Harbourne, N.; Jacquier, J.C.; O’Riordan, D. Optimisation of the aqueous extraction conditions of phenols from meadowsweet (Filipendulaulmaria L.) for incorporation into beverages. Food Chem. 2009, 116, 722–729. [Google Scholar] [CrossRef]
- Prasad, K.N.; Yang, E.; Yi, C.; Zhao, M.; Jiang, Y. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov. Food Sci. Emerg. Technol. 2009, 10, 155–159. [Google Scholar] [CrossRef]
- Tsakona, S.; Galanakis, C.M.; Gekas, V. Hydro-ethanolic mixtures for the recovery of phenols from Mediterranean plant materials. Food Bioprocess. Technol. 2012, 5, 1384. [Google Scholar] [CrossRef]
- Liazid, A.; Palma, M.; Brigui, J.; Barroso, C.G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A 2007, 1140, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Moure, A.; Cruz, J.M.; Franco, D.; Dominguez, J.M.; Sineiro, J.; Domínguez, H.; Núñez, M.; Parajó, J.C. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Ruperez, P.; Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 1997, 44, 1390–1393. [Google Scholar] [CrossRef]
- Dent, M.; Dragović-Uzelac, V.; Penić, M.; Brncic, M.; Bosiljkov, T.; Levaj, B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Gertenbach, D.D. Solid-liquid extraction technologies for manufacturing nutraceuticals. In Functional Foods: Biochemical and Processing Aspects; Shi, J., Mazza, G., Le Maguer, M., Eds.; CRC Press: New York, NY, USA, 2002; Volume 2, pp. 331–366. [Google Scholar]
- Frank, T.C.; Downey, J.R.; Gupta, S.K. Quickly screen solvent for organic solids. Chem. Eng. Prog. 1999, 95, 41–46. [Google Scholar]
- Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Karacabey, E.; Mazza, G. Optimization of solid-liquid extraction of resveratrol and other phenolic compounds from milled grape canes (Vitis vinifera). J. Agric. Food Chem. 2008, 56, 6318. [Google Scholar] [CrossRef]
- Rajha, H.N.; Darra, N.E.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape byproducts by response surface methodology. Influence of solid-liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process. Food Sci. Nutr. 2014, 5, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Bucić-Kojić, A.; Planinic, M.; Tomas, S.; Jakobek, L.; Šeruga, M. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int. J. Food Sci. Technol. 2009, 44, 2394–2401. [Google Scholar] [CrossRef]
- Spigno, G.; De Faveri, D.M. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng. 2007, 78, 793–801. [Google Scholar] [CrossRef]
- Rusu, M.; Ghendov-Mosanu, A.; Sturza, R. Application of polynomial mathematical models for the extraction of bioactive compounds from plant sources. Appl. Math. 2021, 12, 1126–1144. [Google Scholar] [CrossRef]
- Taofiq, O.; Silva, A.R.; Costa, C.; Ferreira, I.; Nunes, J.; Prieto, M.A.; Simal-Gandara, J.; Barros, L.; Ferreira, I.C.F.R. Optimization of ergosterol extraction from Pleurotus mushrooms using response surface methodology. Food Funct. 2020, 11, 5887–5897. [Google Scholar] [CrossRef] [PubMed]
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Niculaua, M. Rose hips, a valuable source of antioxidants to improve gingerbread characteristics. Molecules 2020, 25, 5659. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [Green Version]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. Food Sci. Technol. 2012, 48, 316–322. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushanb, B.; Rosales, A.; Rodriguez Turienzo, L.; Cortina, J.L. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Rodrigues, E.; Gonzaga, L.V.; Caliari, V.; Genovese, M.I.; Gonalves, A.E.D.S.S.; Fett, R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011, 127, 174–179. [Google Scholar] [CrossRef]
- Corrales, M.; Fernández García, A.; Butz, P.; Tauscher, B. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 2009, 90, 415–421. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant activity and polyphenols characterization of four monovarietal grape pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef]
- dos Santos Lima, M.; Dutra, M.C.P.; Toaldo, I.M.; Correa, L.C.; Pereira, G.E.; de Oliveira, D.; Bordignon-Luiz, M.T.; Ninow, J.L. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration. Food Chem. 2015, 188, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Raffo, A.; Paoletti, F.; Antonelli, M. Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three sea buckthorn (Hippophaer hamnoides L.) cultivars. Eur. Food Res. Technol. 2004, 219, 360–368. [Google Scholar] [CrossRef]
- Adamczak, A.; Buchwald, W.; Zieliński, J.; Mielcarek, S. Flavonoid and organic acid content in rose hips (rosal., sect. caninaedc. em. christ.). Acta Biol. Crac. 2012, 54, 105–112. [Google Scholar]
- Kim, D.-O.; Lee, C.Y. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 2004, 44, 253–273. [Google Scholar] [CrossRef]
- Bakari, G.; Misinzo, G.; Nho, C.W.; Kim, H.-Y. Variation in phenolic compounds and antioxidant activity of various organs of african cabbage (Cleome gynandra L.) accessions at different growth stages. Antioxidants 2021, 10, 1952. [Google Scholar]
- Yammine, S.; Delsart, C.; Vitrac, X.; MiettonPeuchot, M.; Ghidossi, R. Characterisation of polyphenols and antioxidant potential of red and white pomace by-product extracts using subcritical water extraction. Oeno One 2020, 5, 263–278. [Google Scholar]
- Ben Aziz, M.; Garcia, F.; Mouls, L.; Fulcrand, H.; Hajjaj, H. Proanthocyanidins and anthocyanins contents, chromatic and antioxidant properties of red grape pomaces from morocco. J. Food Meas. Charact. 2019, 13, 2051–2061. [Google Scholar] [CrossRef]
- Jackman, R.L.; Yada, R.Y.; Tung, M.A. A review: Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis. J. Food Biochem. 1987, 11, 279–308. [Google Scholar] [CrossRef]
- Kabir, F.; Shahin Sultana, M.; Heri Kurnianta, H. Antimicrobial activities of grape (Vitis vinifera L.) pomace polyphenols as a source of naturally occurring bioactive components. Afr. J. Biotechnol. 2015, 14, 2157–2161. [Google Scholar]
- Cushnie, T.; Lamb, A. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef]
- Jayaprakasha, G.; Selvi, T.; Sakaria, K. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Int. Food Res. J. 2003, 36, 117–122. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Chorianopoulos, N.; Nychas, G.; Haroutounian, S. Antilisterial activities of polyphenol-rich extracts of grapes and vinification byproducts. J. Agric. Food Chem. 2009, 57, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Cisowska, A.; Wojnicz, D.; Hendrich, A. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun. 2011, 6, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-F. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Olech, M.; Nowak, R.; Pecio, Ł.; Łos, R.; Malm, A.; Rzymowska, J.; Oleszek, W. Multidirectional characterisation of chemical composition and health-promoting potential of Rosa rugosa hips. Nat. Prod. Res. 2016, 31, 667–671. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A. Obtaining and stabilizing dyes, antioxidants and preservatives of plant origin for functional foods. Ph.D. Thesis, Technical University of Moldova, Chisinau, Moldova, 2021; 72p. Available online: http://www.cnaa.md/files/theses/2021/56994/aliona_-mosanu_abstract_en.pdf (accessed on 4 January 2022).
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic 1965, 16, 144–158. [Google Scholar]
- Spranger, I.; Sun, B.; Mateus, A.M.; de Freitas, V.; Ricardo-da-Silva, J. Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chem. 2008, 108, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites, Ecological Methods and Concepts; Wiley-Blackwell: Hoboken, NJ, USA, 1994; p. 248. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterisation and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar]
- OIV Method OIV-MA-AS315-11: R2007; HPLC-Determination of nine major anthocyanins in red and rosé wine; International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2021; Volume 2, 13p.
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. The influence of temperature, storage conditions, pH, and ionic strength on the antioxidant activity and color parameters of rowan berries extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- OIV Method OIV-MA-AS2-11: R2006; Determination of chromatic characteristics according to CIELab; International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2021; Volume 1, 16p.
- Magaldi, S.; Mata-Essayag, S.; de Capriles, C.H. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004, 8, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valgas, C.; De Souza, S.M.; Smânia, E.F.A. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed.; CLSI document M07-A9; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Bica, A.M. Fitting data using optimal hermite type cubic interpolating splines. Appl. Math. Lett. 2012, 25, 2047–2051. [Google Scholar] [CrossRef] [Green Version]
- Paninski, L. Estimation of entropy and mutual information. Neural Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef] [Green Version]
Concentration of Ethanolic Solution, % (v/v) | Temperature, °C | ||
---|---|---|---|
30 | 45 | 65 | |
Total Polyphenol Content (TPC), mg GAE/g DW | |||
0 | 3.41 ± 0.21 c | 4.30 ± 0.14 d | 5.35 ± 0.18 e |
40 | 4.78 ± 0.18 d | 5.77 ± 0.22 e | 8.69 ± 0.17 g |
60 | 7.51 ± 0.25 f | 9.52 ± 0.24 h | 11.02 ± 0.02 i |
80 | 5.76 ± 0.18 e | 7.14 ± 0.13 f | 9.40 ± 0.10 h |
96 | 1.37 ± 0.11 a | 1.73 ± 0.11 a | 2.39 ± 0.10 b |
Total Flavonoid Content (TFC), mg GAE/g DW | |||
0 | 1.83 ± 0.03 b | 2.50 ± 0.03 b,c | 3.32 ± 0.04 c,d |
40 | 3.04 ± 0.12 c | 3.85 ± 0.11 d | 5.98 ± 0.08 g |
60 | 4.89 ± 0.09 e | 6.87 ± 0.07 h | 7.76 ± 0.14 i |
80 | 4.31 ± 0.10 e | 5.43 ± 0.05 f | 7.38 ± 0.15 h |
96 | 0.84 ± 0.03 a | 0.94 ± 0.04 a | 1.48 ± 0.04 a |
Tannin Content (TC), mg TAE/g DW | |||
0 | 0.27 ± 0.02 c | 0.35 ± 0.04 c,d | 0.53 ± 0.02 e |
40 | 0.47 ± 0.02 d | 0.57 ± 0.04 e | 1.16 ± 0.04 i,j |
60 | 0.84 ± 0.03 g | 1.11 ± 0.07 i,j | 1.37 ± 0.01 k |
80 | 0.74 ± 0.05 f,g | 0.95 ± 0.04 h | 1.24 ± 0.04 j,k |
96 | 0.11 ± 0.01 a | 0.14 ± 0.02 a,b | 0.18 ± 0.01 b |
Total Anthocyanin Content (TAC), mg ME/g DW | |||
0 | 0.02 ± 0.01 a | 0.03 ± 0.01 a | 0.05 ± 0.01 a |
40 | 0.35 ± 0.01 c | 0.56 ± 0.01 e | 0.71 ± 0.01 f,g |
60 | 0.67 ± 0.01 f | 0.79 ± 0.01 g | 0.97 ± 0.02 h |
80 | 0.45 ± 0.01 d | 0.62 ± 0.01 f | 0.79 ± 0.01 g |
96 | 0.23 ± 0.01 b | 0.29 ± 0.01 b,c | 0.38 ± 0.01 c |
Indices | Quantity |
---|---|
Polyphenols | |
Gallic acid, µg/100 g DW | 104.84 ± 9.21 |
m-Hydroxybenzoic acid, µg/100 gDW | 0.54 ± 0.07 |
Protocatechuic acid, µg/100 gDW | 17.20 ± 0.65 |
p-Hydroxybenzoic acid, µg/100 g DW | 18.28 ± 0.32 |
Syringic acid, µg/100 gDW | 10.22 ± 0.17 |
Ferulic acid, µg/100 gDW | 44.09 ± 1.06 |
Sinapic acid, µg/100 gDW | 0.43 ± 0.09 |
Catechin, µg/100 gDW | 72.04 ± 1.16 |
Quercetin, µg/100 gDW | 10.22 ± 0.35 |
Hyperoside, µg/100 gDW | 19.89 ± 0.50 |
Procyanidin B1, µg/100 gDW | 71.51 ± 0.97 |
Procyanidin B2, µg/100 gDW | 824.73 ± 13.26 |
Ferulic acid methyl ester, µg/100 g | 39.78 ± 1.04 |
Anthocyanins | |
Cyanidol-3-glucoside, µg/100 gDW | 43.65 ± 1.87 |
Petunidol-3-glucoside, µg/100 gDW | 79.54 ± 1.65 |
Dolphinidol-3-glucoside, µg/100 gDW | 51.41 ± 1.23 |
Peonidol-3-glucoside, µg/100 gDW | 83.42 ± 2.02 |
Malvidol-3-glucoside, µg/100 gDW | 519.92 ± 14.65 |
Peonidol-3-acetylglucoside, µg/100 g DW | 15.52 ± 0.48 |
Malvidol-3-acetylglucoside, µg/100 gDW | 119.31 ± 9.04 |
Peonidol-3-coumarylglucoside, µg/100 g DW | 7.76 ± 0.83 |
Malvidol-3-coumarilglucoside, µg/100 g DW | 49.47 ± 0.79 |
Organic acids | |
Malic acid, mg/100gDW | 373 ± 7 |
Citric acid, mg/100gDW | 415 ± 5 |
Ascorbic acid, mg/100gDW | 36 ± 1 |
Acetic acid, mg/100gDW | 500 ± 3 |
Tartaric acid, mg/100gDW | 4279 ± 81 |
Antioxidant activity | |
Antioxidant activity (DPPH), mmol TE/100gDW | 15.09 ± 1.72 |
Antioxidant activity (ABTS), mmol TE/100gDW | 18.67 ± 0.89 |
CIELab Chromatic Characteristics | |
L* | 60.10 ± 0.15 |
a* | 9.72 ± 0.09 |
b* | 1.22 ± 0.05 |
C* | 9.80 ± 0.07 |
H*, ° | 7.2 ± 0.1 |
Bacterial Strain | Zone Diameter of Inhibition, mm | MIC, mg/mL | MBC, mg/mL |
---|---|---|---|
Bacillus subtilis ATCC 6633 | 11 ± 2 | 7.81 ± 0.21 | 15.62 ± 0.62 |
Staphylococcus aureus ATCC 25923 | 11 ± 2 | 7.81 ± 0.19 | 15.62 ± 0.41 |
Escherichia coli ATCC 25922 | 9 ± 1 | 62.50 ± 1.57 | 125.00 ± 5.00 |
Klebsiella pneumoniae ATCC13883 | 7 ± 1 | nd | nd |
Compound | Max Absorption (nm) | Retention Time (min) |
---|---|---|
Gallic acid | 280 | 5.294 |
Protocatechuic acid | 256 | 9.267 |
p-hydroxybenzoic acid | 256 | 13.918 |
Procyanidin B1 | 280 | 16.704 |
m-hydroxybenzoic acid | 280 | 17.989 |
Catechin | 280 | 18.53 |
Procyanidin B2 | 280 | 23.433 |
Syringic acid | 280 | 25.002 |
Ferulic acid | 324 | 36.233 |
Sinapic acid | 324 | 38.564 |
Ferulic acid methyl ester | 365 | 57.754 |
Quercetin | 256 | 65.278 |
Compound | Dolphinidol-3-glucoside | Cyanidol-3-glucoside | Petunidol-3-glucoside | Peonidol-3-glucoside | Malvidol-3-glucoside | Peonidol-3-acetylglucoside | Malvidol-3-acetylglucoside | Peonidol-3-coumarylglucoside | Malvidol-3-coumarilglucoside |
Retention Time (min) | 8.064 | 9.834 | 11.080 | 13.315 | 14.768 | 27.775 | 29.379 | 42.725 | 43.739 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghendov-Mosanu, A.; Cojocari, D.; Balan, G.; Patras, A.; Lung, I.; Soran, M.-L.; Opriş, O.; Cristea, E.; Sturza, R. Chemometric Optimization of Biologically Active Compounds Extraction from Grape Marc: Composition and Antimicrobial Activity. Molecules 2022, 27, 1610. https://doi.org/10.3390/molecules27051610
Ghendov-Mosanu A, Cojocari D, Balan G, Patras A, Lung I, Soran M-L, Opriş O, Cristea E, Sturza R. Chemometric Optimization of Biologically Active Compounds Extraction from Grape Marc: Composition and Antimicrobial Activity. Molecules. 2022; 27(5):1610. https://doi.org/10.3390/molecules27051610
Chicago/Turabian StyleGhendov-Mosanu, Aliona, Daniela Cojocari, Greta Balan, Antoanela Patras, Ildiko Lung, Maria-Loredana Soran, Ocsana Opriş, Elena Cristea, and Rodica Sturza. 2022. "Chemometric Optimization of Biologically Active Compounds Extraction from Grape Marc: Composition and Antimicrobial Activity" Molecules 27, no. 5: 1610. https://doi.org/10.3390/molecules27051610
APA StyleGhendov-Mosanu, A., Cojocari, D., Balan, G., Patras, A., Lung, I., Soran, M. -L., Opriş, O., Cristea, E., & Sturza, R. (2022). Chemometric Optimization of Biologically Active Compounds Extraction from Grape Marc: Composition and Antimicrobial Activity. Molecules, 27(5), 1610. https://doi.org/10.3390/molecules27051610