First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Spectroscopic and Analytical Methods
3.2. Synthesis of 3-Ammoniumpropylbis(catecholato)silicate 1
3.3. Synthesis of Materials 2 and 3
3.4. Synthesis of Dibutylammonium Tris(catecholato)silicate 4
3.5. General Procedure for the Knoevenagel Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schwarz, R.; Kuchen, W. Zur Kenntnis der Kieselsäuren. VII. Über Kieselsäurederivate der Dioxybenzole. Z. Anorg. Allg. Chem. 1951, 266, 185–192. [Google Scholar] [CrossRef]
- Hartmann, D.; Thorwart, T.; Müller, R.; Thusek, J.; Schwabedissen, J.; Mix, A.; Lamm, J.-H.; Neumann, B.; Mitzel, N.W.; Greb, L. The Structure of Bis(catecholato)silanes: Phase Adaptation by Dynamic Covalent Chemistry of the Si–O Bond. J. Am. Chem. Soc. 2021, 143, 18784–18793. [Google Scholar] [CrossRef] [PubMed]
- Kano, N. Chapter 11—Penta- and Hexacoordinated Silicon(IV) Compounds. In Organosilicon Compounds, Theory and Experiment (Synthesis); Lee, V.Y., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 645–716. [Google Scholar]
- Tacke, R.; Pülm, M.; Wagner, B. Zwitterionic Pentacoordinate Silicon Compounds. In Advances in Organometallic Chemistry; West, R., Hill, A.F., Eds.; Academic Press: Cambridge, MA, USA, 1999; pp. 221–273. [Google Scholar]
- Hosomi, A.; Kohra, S.; Ogata, K.; Yanagi, T.; Tominaga, Y. Studies in organosilicon chemistry. 100. Pentacoordinate allylsiliconates in organic synthesis: Synthesis of triethylammonium bis(catecholato)allylsiliconates and selective allylation of aldehydes. J. Org. Chem. 1990, 55, 2415–2420. [Google Scholar] [CrossRef]
- Patel, N.R.; Kelly, C.B.; Siegenfeld, A.P.; Molander, G.A. Mild, Redox-Neutral Alkylation of Imines Enabled by an Organic Photocatalyst. ACS Catal. 2017, 7, 1766–1770. [Google Scholar] [CrossRef] [PubMed]
- Phelan, J.P.; Lang, S.B.; Sim, J.; Berritt, S.; Peat, A.J.; Billings, K.; Fan, L.; Molander, G.A. Open-Air Alkylation Reactions in Photoredox-Catalyzed DNA-Encoded Library Synthesis. J. Am. Chem. Soc. 2019, 141, 3723–3732. [Google Scholar] [CrossRef]
- Cullen, S.T.J.; Friestad, G.K. Alkyl Radical Addition to Aliphatic and Aromatic N-Acylhydrazones Using an Organic Photoredox Catalyst. Org. Lett. 2019, 21, 8290–8294. [Google Scholar] [CrossRef]
- Raynor, K.D.; May, G.D.; Bandarage, U.K.; Boyd, M.J. Generation of Diversity Sets with High sp3 Fraction Using the Photoredox Coupling of Organotrifluoroborates and Organosilicates with Heteroaryl/Aryl Bromides in Continuous Flow. J. Org. Chem. 2018, 83, 1551–1557. [Google Scholar] [CrossRef]
- Jouffroy, M.; Primer, D.N.; Molander, G.A. Base-Free Photoredox/Nickel Dual-Catalytic Cross-Coupling of Ammonium Alkylsilicates. J. Am. Chem. Soc. 2016, 138, 475–478. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.-Y. Visible-light-promoted cross-coupling reaction of hypervalent bis-catecholato silicon compounds with selenosulfonates or thiosulfonates. Org. Chem. Front. 2021, 8, 1976–1982. [Google Scholar] [CrossRef]
- Lemière, G.; Millanvois, A.; Ollivier, C.; Fensterbank, L. A Parisian Vision of the Chemistry of Hypercoordinated Silicon Derivatives. Chem. Rec. 2021, 21, 1119–1129. [Google Scholar] [CrossRef]
- Corcé, V.; Lévêque, C.; Ollivier, C.; Fensterbank, L. Silicates in Photocatalysis, in: Photocatalysis in Organic Synthesis; König, B., Ed.; Georg Thieme Verlag: Stuttgart, Germany, 2019; pp. 427–466. [Google Scholar]
- Tacke, R.; Ulmer, B.; Wagner, B.; Arlt, M. A Novel Silicon-Based Linkage and Cleavage Strategy for Solid-Phase Synthesis: Formation of Resin-Linked Zwitterionic Pentacoordinate Silicates as the Key Step and Release of the Target Molecules in a Traceless Fashion. Organometallics 2000, 19, 5297–5309. [Google Scholar] [CrossRef]
- Naoe, M.; Iwashita, H.; Saito, S.; Koike, M.; Wada, H.A. Shimojima, K. Kuroda, Preparation of Porous Pentacoordinate Organosilicon Frameworks Using Organoalkoxysilanes and Tris-catechol Linkers. Chem. Lett. 2020, 49, 1075–1077. [Google Scholar] [CrossRef]
- Lambert, J.B.; Singer, S.R. Self-assembled macrocycles with pentavalent silicon linkages. J. Organomet. Chem. 2004, 689, 2293–2302. [Google Scholar] [CrossRef]
- McCord, D.J.; Small, J.H.; Greaves, J.; Van, Q.N.; Shaka, A.J.; Fleischer, E.B.; Shea, K.J. Pentacoordinate Siliconate Tetraanionic Molecular Squares. Synthesis, Structure, and Solution Conformation of a Novel Tetraanion−Tetracation Ion Pair. J. Am. Chem. Soc. 1998, 120, 9763–9770. [Google Scholar] [CrossRef]
- Pak, J.J.; Greaves, J.; McCord, D.J.; Shea, K.J. Diastereoselective Self-Assembly of a Pentacoordinate Siliconate Tetraanionic Molecular Square. A Mechanistic Investigation. Organometallics 2002, 21, 3552–3561. [Google Scholar] [CrossRef]
- Boudin, A.; Cerveau, G.; Chuit, C.; Corriu, R.J.P.; Reye, C. Reactivity of dianionic hexacoordinated silicon complexes toward nucleophiles: A new route to organosilanes from silica. Organometallics 1988, 7, 1165–1171. [Google Scholar] [CrossRef]
- Boudin, A.; Cerveau, G.; Chuit, C.; Corriu, R.J.P.; Reye, C. Reaction of Grignard Reagents with Dianionic Hexacoordinated Silicon Complexes: Organosilicon Compounds from Silica Gel. Angew. Chem. Int. Ed. 1986, 25, 474–476. [Google Scholar] [CrossRef]
- Roeser, J.; Prill, D.; Bojdys, M.J.; Fayon, P.; Trewin, A.; Fitch, A.N.; Schmidt, M.U.; Thomas, A. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres. Nat. Chem. 2017, 9, 977–982. [Google Scholar] [CrossRef]
- Holmes, J.L.; Abrahams, B.F.; Ahveninen, A.; Boughton, B.A.; Hudson, T.A.; Robson, R.; Thinagaran, D. Self-assembly of a Si-based cage by the formation of 24 equivalent covalent bonds. Chem. Commun. 2018, 54, 11877–11880. [Google Scholar] [CrossRef]
- Wolff, B.; Weiss, A. Novel Octahedral Si and Ge Complexes with a Hexadentate Diphenol Ligand. Angew. Chem. Int. Ed. 1986, 25, 162–163. [Google Scholar] [CrossRef]
- Kawakami, Y.; Ogishima, T.; Kawara, T.; Yamauchi, S.; Okamoto, K.; Nikaido, S.; Souma, D.; Jin, R.-H.; Kabe, Y. Silane catecholates: Versatile tools for self-assembled dynamic covalent bond chemistry. Chem. Commun. 2019, 55, 6066–6069. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, M.J.; Russo, T.; Solomon, D.H. Complexes of Benzene-1,2-diol Mannich Bases. I. Novel Hexacoordinate Zwitterionic Silicon(IV) Complexes. Aust. J. Chem. 2001, 54, 375–381. [Google Scholar] [CrossRef]
- Maskey, R.; Bendel, C.; Malzacher, J.; Greb, L. Completing the Redox-Series of Silicon Trisdioxolene: Ortho-Quinone and Lewis Superacid Make a Powerful Redox Catalyst. Chem. Eur. J. 2020, 26, 17386–17389. [Google Scholar] [CrossRef] [PubMed]
- Kinrade, S.D.; Gillson, A.-M.E.; Knight, C.T.G. Silicon-29 NMR evidence of a transient hexavalent silicon complex in the diatom Navicula pelliculosa. J. Chem. Soc. Dalton Trans. 2002, 3, 307–309. [Google Scholar] [CrossRef]
- Weiss, A.; Herzog, A. Isolation and Characterization of a Silicon-Organic Complex from Plants. In Biochemistry of Silicon and Related Problems; Bendz, G., Lindqvist, I., Runnström-Reio, V., Eds.; Springer: Boston, MA, USA, 1978; pp. 109–127. [Google Scholar]
- Kenla, T.J.N.; Tatong, M.D.K.; Talontsi, F.M.; Dittrich, B.; Frauendorf, H.; Laatsch, H. Si-enterobactin from the endophytic Streptomyces sp. KT-S1-B5—A potential silicon transporter in Nature? Chem. Commun. 2013, 49, 7641–7643. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Liotta, L.F.; Soumoy, L.; Aprile, C.; Giacalone, F.; Gruttadauria, M. New Hybrid Organic-inorganic Multifunctional Materials Based on Polydopamine-like Chemistry. Asian J. Org. Chem. 2021, 10, 2932–2943. [Google Scholar] [CrossRef]
- Massaro, M.; Campisciano, V.; Iborra, C.V.; Liotta, L.F.; Sánchez-Polo, M.; Riela, S.; Gruttadauria, M. New Mussel Inspired Polydopamine-Like Silica-Based Material for Dye Adsorption. Nanomaterials 2020, 10, 1416. [Google Scholar] [CrossRef]
- Bindu, P.; Varghese, B.; Rao, M.N.S. Six Coordinate Tris(catecholato)silicates of Primary Amine Residues—Synthesis, Characterization, and Thermolysis Studies. X-ray Structures of [n-C3H7NH3]2[Si(C6H4O2)3]·1/2(C6H14N2) and of a Bulky Secondary Ammonium Ion, [(i-C4H9)2NH2]2[Si(C6H4O2)3]·H2O. Phosphorus Sulfur Silicon Relat. Elem. 2003, 178, 2373–2386. [Google Scholar] [CrossRef]
- Kingston, J.V.; Vargheese, B.; Rao, M.N.S. Synthesis and Characterization of Tris(catecholato)Silicates, [(C6H4O2) 3Si] 2− with Different Counter Cations—First Pyrolysis Study and X-ray Structure of [{(CH3) 2CH} 2NH2] 2[(C6H4O2) 3Si] · 2CH 3CN · H2O. Main Group Chem. 2000, 3, 79–90. [Google Scholar] [CrossRef]
- Reich, H.J. Mechanism of C–Si Bond Cleavage Using Lewis Bases (n → σ*). In Lewis Base Catalysis in Organic Synthesis; Vedejs, E., Denmark, S.E., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 233–280. [Google Scholar]
- Tamao, K. Discovery and synthetic applications of novel silicon-carbon bond cleavage reactions based on the coordination number change of organosilicon compounds. Proc. Jpn. Acad. B 2008, 84, 123–133. [Google Scholar] [CrossRef]
- Tacke, R.; Lopex-Mras, A.; Sperlich, J.; Strohmann, C.; Kuhs, W.F.; Mattern, G.; Sebald, A. Neue zwitterionische λ51-Spirosilicate: Synthesen, Einkristall-Röntgenstrukturanalysen und Festkörper-NMR-Untersuchungen. Chem. Ber. 1993, 126, 851–861. [Google Scholar] [CrossRef]
- Belton, D.J.; Deschaume, O.; Patwardhan, S.V.; Perry, C.C. A Solution Study of Silica Condensation and Speciation with Relevance to in Vitro Investigations of Biosilicification. J. Phys. Chem. B 2010, 114, 9947–9955. [Google Scholar] [CrossRef] [PubMed]
- Annenkov, V.V.; Danilovtseva, E.N.; Pal’shin, V.A.; Verkhozina, O.N.; Zelinskiy, S.N.; Krishnan, U.M. Silicic acid condensation under the influence of water-soluble polymers: From biology to new materials. RSC Adv. 2017, 7, 20995–21027. [Google Scholar] [CrossRef]
- Belton, D.; Paine, G.; Patwardhan, S.V.; Perry, C.C. Towards an understanding of (bio)silicification: The role of amino acids and lysine oligomers in silicification. J. Mater. Chem. 2004, 14, 2231–2241. [Google Scholar] [CrossRef]
- Belton, D.; Patwardhan, S.V.; Perry, C.C. Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chem. Commun. 2005, 27, 3475–3477. [Google Scholar] [CrossRef]
- Sumper, M.; Kröger, N. Silica formation in diatoms: The function of long-chain polyamines and silaffins. J. Mater. Chem. 2004, 14, 2059–2065. [Google Scholar] [CrossRef]
- Kröger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M. Species-specific polyamines from diatoms control silica morphology. PNAS 2000, 97, 14133–14138. [Google Scholar] [CrossRef]
Entry | Cycle | Catalyst | Conv.% |
---|---|---|---|
1 | 1 | A | 17 |
2 | 1 | 2 | 18 |
3 | 1 | 3 | 80 |
4 | 2 | 3 | >99 |
5 | 3 | 3 | >99 |
6 | 4 | 3 | 44 |
7 | - | 4 (0.33 mol%) | >99 |
8 | - | 4 (0.09 mol%) | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campisciano, V.; Taormina, B.; Spinella, A.; Liotta, L.F.; Giacalone, F.; Gruttadauria, M. First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate. Molecules 2022, 27, 2521. https://doi.org/10.3390/molecules27082521
Campisciano V, Taormina B, Spinella A, Liotta LF, Giacalone F, Gruttadauria M. First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate. Molecules. 2022; 27(8):2521. https://doi.org/10.3390/molecules27082521
Chicago/Turabian StyleCampisciano, Vincenzo, Benedetto Taormina, Alberto Spinella, Leonarda F. Liotta, Francesco Giacalone, and Michelangelo Gruttadauria. 2022. "First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate" Molecules 27, no. 8: 2521. https://doi.org/10.3390/molecules27082521
APA StyleCampisciano, V., Taormina, B., Spinella, A., Liotta, L. F., Giacalone, F., & Gruttadauria, M. (2022). First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate. Molecules, 27(8), 2521. https://doi.org/10.3390/molecules27082521