New Polymeric Adsorbents Functionalized with Aminobenzoic Groups for the Removal of Residual Antibiotics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorbent Synthesis and Characterization
2.2. Adsorption Characterization
2.3. Kinetic Studies
2.4. Equilibrium Studies—Adsorption Isotherms
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of Chemically Modified Copolymers with p-Aminobenzoic Groups
3.3. Adsorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pan, J.; Bai, X.; Li, Y.; Yang, B.; Yang, P.; Yu, F.; Ma, J. HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance. Environ. Res. 2022, 205, 112425. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.L.; Mueller, L.V.; Polyakov, M.; Weinstock, S.F. Where have all the antibiotic patents gone? Nat. Biotechnol. 2006, 24, 1529–1531. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhang, H.; Dai, H.; Wan, X.; Zhu, F.; Xu, Q.; Ji, W. Efficient, rapid and simple adsorption method by polydopamine polystyrene nanofibers mat for removal of multi-class antibiotic residues in environmental water. Chemosphere 2022, 288, 132616. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xu, X.; Yang, L.; Chen, C.; Qian, J.; Chen, X.; Sun, D. Soft foam-like UiO-66/Polydopamine/Bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride. Chem. Eng. J. 2020, 395, 125174. [Google Scholar] [CrossRef]
- Mangla, D.; Sharma, A.; Ikram, S. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective. J. Hazard. Mater. 2022, 425, 127946. [Google Scholar] [CrossRef]
- Wang, T.; Pan, X.; Ben, W.; Wang, J.; Hou, P.; Qiang, Z. Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J. Environ. Sci. 2017, 52, 111–117. [Google Scholar] [CrossRef]
- Akpe, S.G.; Ahmed, I.; Puthiaraj, P.; Yu, K.; Ahn, W.S. Microporous organic polymers for efficient removal of sulfamethoxazole from aqueous solutions. Microporous Mesoporous Mater. 2020, 296, 109979. [Google Scholar] [CrossRef]
- Ahamad, T.; Chaudhary, A.A.; Naushad, M.; Alshehri, S.M. Fabrication of MnFe2O4 nanoparticles embedded chitosan diphenylurea formaldehyde resin for the removal of tetracycline from aqueous solution. Int. J. Biol. Macromol. 2019, 134, 180–188. [Google Scholar] [CrossRef]
- Gopal, G.; Alex, S.A.; Chandrasekaran, N.; Mukherjee, A. A review on tetracycline removal from aqueous systems by advanced treatment techniques. RSC Adv. 2020, 10, 27081. [Google Scholar] [CrossRef]
- Khatibi, A.D.; Mahvi, A.H.; Mengelizadeh, N.; Balarak, D. Adsorption–desorption of tetracycline onto molecularly imprinted polymer: Isotherm, kinetics, and thermodynamics studies. Desalin. Water Treat. 2021, 230, 240–251. [Google Scholar] [CrossRef]
- Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous Matrices-A review. J. Environ. Manage. 2011, 92, 2304–2347. [Google Scholar] [CrossRef] [PubMed]
- Okoli, C.P.; Ofomaja, A.E. Development of sustainable magnetic polyurethane polymer nanocomposite for abatement of tetracycline antibiotics aqueous pollution: Response surface methodology and adsorption dynamics. J. Clean. Prod. 2019, 217, 42–55. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Wu, M.; Pang, Y.; Hao, Z.; Hu, M.; Qiu, R.; Chen, Z. Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: Kinetics, mechanism and column adsorption. Bioresour. Technol. 2021, 320, 124264. [Google Scholar] [CrossRef] [PubMed]
- Mirsoleimani-azizi, S.M.; Setoodeh, P.; Zeinali, S.; Rahimpour, M.R. Tetracycline antibiotic removal from aqueous solutions by MOF-5: Adsorption isotherm, kinetic and thermodynamic studies. J. Environ. Chem. Eng. 2018, 6, 6118–6130. [Google Scholar] [CrossRef]
- Priya, S.S.; Radha, K.V. A review on the adsorption studies of tetracycline onto various types of adsorbents. Chem. Eng. Commun. 2015, 204, 821–839. [Google Scholar] [CrossRef]
- Ren, L.; Chen, M.; Zheng, J.; Li, Z.; Tian, C.; Wang, Q.; Wang, Z. Efficacy of a novel electrochemical membrane-aerated biofilm reactor for removal of antibiotics from micro-polluted surface water and suppression of antibiotic resistance genes. Bioresour. Technol. 2021, 338, 125527. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Oba, S.N.; Aniagor, C.O.; Adeniyi, A.G.; Ighalo, J.O. Adsorption of ciprofloxacin from water: A comprehensive review. J. Ind. Eng. Chem. 2021, 93, 57–77. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zeng, G.; Liu, N.; Liu, S. Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review. Chemosphere 2019, 226, 360–380. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365–385. [Google Scholar] [CrossRef]
- Lozano-Morales, V.; Gardi, I.; Nir, S.; Undabeytia, T. Removal of pharmaceuticals from water by clay-cationic starch sorbents. J. Clean. Prod. 2018, 190, 703–711. [Google Scholar] [CrossRef]
- Dutta, M.; Dutta, N.N.; Bhattacharya, K.G. Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon. Sep. Purif. Technol. 1999, 16, 213–224. [Google Scholar] [CrossRef]
- Adriano, W.S.; Veredas, V.; Santana, C.C.; Goncalves, L.R.B. Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochem. Eng. J. 2005, 27, 132–137. [Google Scholar] [CrossRef]
- Azhar, M.R.; Abid, H.R.; Sun, H.; Periasamy, V.; Tadé, M.O.; Wang, S. Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J. Colloid Interface Sci. 2016, 478, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Pedersen, J.A. Adsorption of sulfonamide antimicrobial agents to clay mineral. Environ. Sci. Technol. 2005, 39, 9509–9516. [Google Scholar] [CrossRef]
- de Sousa, D.N.R.; Insa, S.; Mozeto, A.A.; Petrovic, M.; Chaves, T.F.; Fadini, P.S. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 2018, 205, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Popa, A.; Ene, R.; Visinescu, D.; Dragan, E.S.; Ilia, G.; Iliescu, S.; Parvulescu, V. Transitional metals immobilized by coordination on aminophosphonate functionalized copolymers and their catalytic properties. J. Mol. Catal. A Chem. 2015, 408, 262–270. [Google Scholar] [CrossRef]
- Popa, A.; Ilia, G.; Iliescu, S.; Plesu, N.; Ene, R.; Parvulescu, V. Styrene-co-divinylbenzene/silica hybrid supports for immobilization transitional metals and their application in catalysis. Polym. Bull. 2019, 76, 139–152. [Google Scholar] [CrossRef]
- Nichita, I.; Lupa, L.; Stoia, M.; Dragan, E.S.; Popa, A. Aminophosphonic groups grafted onto the structure of macroporous styrene–divinylbenzene copolymer: Preparation and studies on the antimicrobial effect. Polym. Bull. 2019, 76, 4539–4557. [Google Scholar] [CrossRef]
- Popa, A.; Davidescu, C.M.; Trif, R.; Ilia, G.; Iliescu, S.; Dehelean, G. Study of quaternary “onium” salts grafted on polymers: Antibacterial activity of quaternary phosphonium salts grafted on “gel-type” styrene-divinylbenzene copolymers. React. Funct. Polym. 2003, 55, 151–158. [Google Scholar] [CrossRef]
- Davidescu, C.M.; Ardelean, R.; Popa, A. Performance of poly(styrene-codivinylbenzene) functionalized with different aminophosphonate pendant groups, in the removal of phenolic compounds from aqueous solutions. Pure Appl. Chem. 2016, 88, 993–1004. [Google Scholar] [CrossRef]
- Davidescu, C.M.; Ardelean, R.; Popa, A. New polymeric adsorbent materials used for removal of phenolic derivatives from wastewaters. Pure Appl. Chem. 2019, 91, 443–458. [Google Scholar] [CrossRef]
- Phoon, B.L.; Ong, C.C.; Saheed, M.S.M.; Show, P.L.; Chang, J.S.; Ling, T.C.; Lam, S.S.; Juan, J.C. Conventional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater. 2020, 400, 122961. [Google Scholar] [CrossRef] [PubMed]
- Dragan, E.S.; Avram, E.; Axente, D.; Marcu, C. Ion-exchange resins. III. Functionalization–morphology correlations in the synthesis of some macroporous, strong basic anion exchangers and uranium-sorption properties evaluation. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 2451–2461. [Google Scholar] [CrossRef]
- Dragan, E.S.; Humelnicu, D.; Dinu, M.V. Design of porous strong base anion exchangers bearing N,N-dialkyl 2-hydroxyethyl ammonium groups with enhanced retention of Cr(VI) ions from aqueous solution. React. Funct. Polym. 2018, 124, 55–63. [Google Scholar] [CrossRef]
- Davidescu, C.M.; Popa, A. The heterogenizing of chloromethylated styrene-divinylbenzene copolymers with orto- and para-aminobenzoic pending groups. Mater. Plast. 2003, 40, 109–111. [Google Scholar]
- Pacurariu, C.; Mihoc, G.; Popa, A.; Muntean, S.G.; Ianos, R. Adsorption of phenol and p-chlorophenol from aqueous solutions on poly (styrene-co-divinylbenzene) functionalized materials. Chem. Eng. J. 2013, 222, 218–227. [Google Scholar] [CrossRef]
- Huang, J.; Huang, K.; Liu, S.; Luo, Q.; Shi, S. Synthesis, characterization, and adsorption behavior of aniline modified polystyrene resin for phenol in hexane and in aqueous solution. J. Colloid Interface Sci. 2008, 317, 434–441. [Google Scholar] [CrossRef]
- Dragan, E.S.; Humelnicu, D. Contribution of cross-linker and silica morphology on Cr(VI) sorption performances of organic anion exchangers embedded into silica pores. Molecules 2020, 25, 1249. [Google Scholar] [CrossRef] [Green Version]
- Dragan, E.S.; Humelnicu, D.; Ignat, M.; Varganici, C.D. Superadsorbents for strontium and cesium removal Enriched in amidoxime by homo-IPN strategy connected with porous silica texture. ACS Appl. Mater. Interfaces 2020, 12, 44622–44638. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. Prot. 1998, 76, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.S.; McKay, G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 1998, 76, 822–827. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Jhung, S.H. A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6. J. Hazard. Mater. 2017, 340, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Li, X.; Zhang, Z.; Liu, F.; Deng, Y.; Zhang, X.; Li, A.; He, L.; Xing, B. High Adsorption of Sulfamethoxazole by an Amine-Modified Polystyrene-Divinylbenzene Resin and Its Mechanistic Insight. Environ. Sci. Technol. 2016, 50, 10015–10023. [Google Scholar] [CrossRef] [PubMed]
Sample | wt % | |||
---|---|---|---|---|
C | N | O | Cl | |
PAB1 | 90.64 | 0.47 | 7.61 | 1.28 |
PAB2 | 91.40 | 0.85 | 3.10 | 1.43 |
PAB3 | 86.22 | 1.30 | 10.95 | 1.53 |
Polymeric Adsorbent | Surface Area, m2/g | Total Pore Volume, cm3/g |
---|---|---|
PAB1 | 20.14 | 2.44 × 10−2, for pores with ϕ < 45.7 nm |
PAB2 | 27.89 | 4.11 × 10−2, for pores with ϕ < 47.2 nm |
PAB3 | 34.56 | 5.68 × 10−2, for pores with ϕ < 47.6 nm |
Temperature (K) | Co (mM·L−1) | RL (PAB1) | RL (PAB2) | RL (PAB3) |
---|---|---|---|---|
298 | 3.000 | 0.367 | 0.257 | 0.155 |
2.500 | 0.411 | 0.293 | 0.180 | |
2.000 | 0.466 | 0.341 | 0.215 | |
1.000 | 0.635 | 0.509 | 0.354 | |
308 | 3.000 | 0.391 | 0.285 | 0.195 |
2.500 | 0.435 | 0.324 | 0.225 | |
2.000 | 0.491 | 0.375 | 0.266 | |
1.000 | 0.658 | 0.545 | 0.420 | |
313 | 3.000 | 0.423 | 0.307 | 0.230 |
2.500 | 0.468 | 0.348 | 0.264 | |
2.000 | 0.524 | 0.400 | 0.310 | |
1.000 | 0.687 | 0.571 | 0.473 | |
318 | 3.000 | 0.438 | 0.337 | 0.262 |
2.500 | 0.484 | 0.379 | 0.299 | |
2.000 | 0.539 | 0.433 | 0.347 | |
1.000 | 0.701 | 0.604 | 0.515 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardelean, R.; Popa, A.; Drăgan, E.S.; Davidescu, C.-M.; Ignat, M. New Polymeric Adsorbents Functionalized with Aminobenzoic Groups for the Removal of Residual Antibiotics. Molecules 2022, 27, 2894. https://doi.org/10.3390/molecules27092894
Ardelean R, Popa A, Drăgan ES, Davidescu C-M, Ignat M. New Polymeric Adsorbents Functionalized with Aminobenzoic Groups for the Removal of Residual Antibiotics. Molecules. 2022; 27(9):2894. https://doi.org/10.3390/molecules27092894
Chicago/Turabian StyleArdelean, Radu, Adriana Popa, Ecaterina Stela Drăgan, Corneliu-Mircea Davidescu, and Maria Ignat. 2022. "New Polymeric Adsorbents Functionalized with Aminobenzoic Groups for the Removal of Residual Antibiotics" Molecules 27, no. 9: 2894. https://doi.org/10.3390/molecules27092894
APA StyleArdelean, R., Popa, A., Drăgan, E. S., Davidescu, C. -M., & Ignat, M. (2022). New Polymeric Adsorbents Functionalized with Aminobenzoic Groups for the Removal of Residual Antibiotics. Molecules, 27(9), 2894. https://doi.org/10.3390/molecules27092894