Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polymer Synthesis and Characterization
2.2. Self-Assembly Behaviors of the Synthesized Zwitterionic Conjugated Bottlebrush Copolymers
2.3. In Vitro Drug Loading and Drug Release Study
2.4. Photophysical Properties
2.5. In Vitro Cellular Uptake and Cytotoxicity
3. Materials and Methods
3.1. Materials and Characterizations
3.2. Synthesis of 4-Bromo-9-N-4-bromophenyl-1,8-naphthalimide (1)
3.3. Synthesis of 2,7-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9,9-bis(6′-azidohexyl) Fluorine (2)
3.4. Synthesis of Azido-Functionalized Polyfluorene (PFONPN-g-N3) by Suzuki Coupling Reaction
3.5. Synthesis of Propargyl 2-Bromoisobutyrate
3.6. Synthesis of Alkyne-PHEMA by ATRP
3.7. Synthesis of Conjugated Bottlebrush Copolymers PFONPN-g-PHEMA by Click Reaction through “Grafting to” Approach
3.8. Synthesis of Tyr-NCA and CHO-Br2
3.9. Synthesis of Amino-Functionalized Conjugated Bottlebrush Copolymers PFONPN-g-(PHEMA-g-NH2)
3.10. Synthesis of Conjugated Bottlebrush Copolymers PFONPN-g-(PHEMA-g-(PTyr-NH2)) by Ring-Opening Polymerization through “Grafting from” Approach
3.11. Synthesis of Conjugated Bottlebrush ATRP Macroinitiator PFONPN-g-(PHEMA-g-(PTyr-Br2))
3.12. Synthesis of Zwitterionic Conjugated Bottlebrush Copolymers PFONPN-g-(PHEMA-g-(PTyr-b-P(OEGMA-co-SBMA)2)) by ATRP through “Grafting from” Approach
3.13. In Vitro Drug Loading and Drug Release
3.14. In Vitro Cellular Uptake
3.15. Cell Viability Study
3.16. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, Z.; Tang, M.; Liang, S.; Zhang, M.; Biesold, G.M.; He, Y.; Hao, S.-M.; Choi, W.; Liu, Y.; Peng, J.; et al. Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Prog. Polym. Sci. 2021, 116, 101387. [Google Scholar] [CrossRef]
- Verduzco, R.; Li, X.; Pesek, S.L.; Stein, G.E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev. 2015, 44, 2405–2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Matyjaszewski, K. Synthesis of molecular brushes by “grafting onto” method: Combination of ATRP and click reactions. J. Am. Chem. Soc. 2007, 129, 6633–6639. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging. ACS Appl. Mater. Interfaces 2014, 6, 21769–21779. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Dutta, S.; Bowden, N.B. Synthesis of Ultralarge Molecular Weight Bottlebrush Polymers Using Grubbs’ Catalysts. Macromolecules 2004, 37, 4365–4374. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Tang, D.; An, X.; Guo, Y.; Zhao, Y. Multi-responsive graft copolymer micelles comprising acetal and disulfide linkages for stimuli-triggered drug delivery. J. Mater. Chem. B 2015, 3, 3959–3971. [Google Scholar] [CrossRef]
- Miki, K.; Kimura, A.; Oride, K.; Kuramochi, Y.; Matsuoka, H.; Harada, H.; Hiraoka, M.; Ohe, K. High-contrast fluorescence imaging of tumors in vivo using nanoparticles of amphiphilic brush-like copolymers produced by ROMP. Angew. Chem. Int. Ed. Engl. 2011, 50, 6567–6570. [Google Scholar] [CrossRef]
- Neugebauer, D.; Theis, M.; Pakula, T.; Wegner, G.; Matyjaszewski, K. Densely heterografted brush macromolecules with crystallizable grafts. Synthesis and bulk properties. Macromolecules 2006, 39, 584–593. [Google Scholar] [CrossRef]
- Radzinski, S.C.; Foster, J.C.; Matson, J.B. Synthesis of bottlebrush polymers via transfer-to and grafting-through approaches using a RAFT chain transfer agent with a ROMP-active Z-group. Polym. Chem. 2015, 6, 5643–5652. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Zhu, W.; Yao, D.; Long, M.; Peng, B.; Zhang, K.; Chen, Y. Disk-Like Micelles with a Highly Ordered Pattern from Molecular Bottlebrushes. ACS Macro Lett. 2013, 3, 70–73. [Google Scholar] [CrossRef]
- Xia, Y.; Kornfield, J.A.; Grubbs, R.H. Efficient Synthesis of Narrowly Dispersed Brush Polymers via Living Ring-Opening Metathesis Polymerization of Macromonomers. Macromolecules 2009, 42, 3761–3766. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Olsen, B.D.; Kornfield, J.A.; Grubbs, R.H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: The importance of side chain arrangement. J. Am. Chem. Soc. 2009, 131, 18525–18532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Huang, S.; Wang, X.; Wang, M. Theranostic unimolecular micelles of highly fluorescent conjugated polymer bottlebrushes for far red/near infrared bioimaging and efficient anticancer drug delivery. Polym. Chem. 2016, 7, 7455–7468. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Ma, X.; Hou, C.; Lv, S.; Jia, D.; Lu, Y.; Xue, P.; Kang, Y.; Xu, Z. A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomater. Sci. 2020, 8, 473–484. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, L.; Feng, X.; Wang, C.; Shuai, X.; Chen, Y. Molecular nanoworm with PCL core and PEO shell as a non-spherical carrier for drug delivery. Macromol. Rapid Commun. 2012, 33, 1351–1355. [Google Scholar] [CrossRef]
- Traina, C.A.; Bakus, R.C., 2nd; Bazan, G.C. Design and synthesis of monofunctionalized, water-soluble conjugated polymers for biosensing and imaging applications. J. Am. Chem. Soc. 2011, 133, 12600–12607. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, X.; Yang, Y.; Li, S.; Li, L.; Wang, S. Binding-Directed Energy Transfer of Conjugated Polymer Materials for Dual-Color Imaging of Cell Membrane. Chem. Mater. 2016, 28, 4661–4669. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Y.; Zeng, G.; Li, X.; Yang, Z.; Li, X.; Jiang, R.; Hu, W.; Sun, P.; Wang, Q.; et al. A water-soluble conjugated polymer with azobenzol side chains based on “turn-on” effect for hypoxic cell imaging. Polym. Chem. 2016, 7, 6890–6894. [Google Scholar] [CrossRef]
- Zhou, L.; Lv, F.; Liu, L.; Wang, S. Polarity Conversion of Conjugated Polymer for Lysosome Escaping. ACS Appl. Mater. Interfaces 2017, 9, 27427–27432. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Huang, X.; Liang, P.; Tang, Y.; Zhang, Y.; Fu, N.; Huang, W.; Dong, X. NIR-Absorbing water-soluble conjugated polymer dots for photoacoustic imaging-guided photothermal/photodynamic synergetic cancer therapy. J. Mater. Chem. B 2018, 6, 7402–7410. [Google Scholar] [CrossRef]
- Zhou, L.; Lv, F.; Liu, L.; Wang, S. Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Acc. Chem. Res. 2019, 52, 3211–3222. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Liu, J.; Hu, Z.; Jiang, J.; Yan, F.; Feng, G. Water-soluble conjugated polymeric micelles as a carrier for studying Pt(IV) release and imaging in living cells. Polym. Chem. 2020, 11, 1720–1726. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Y.; Yu, J.; Chen, L.; Luo, M.; Yang, L.; Li, P.; Li, S.; Zhang, X.H. Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. Small 2021, 17, e2103127. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Kukhta, N.A.; Marks, A.; Luscombe, C.K. The effect of side chain engineering on conjugated polymers in organic electrochemical transistors for bioelectronic applications. J. Mater. Chem. C 2022, 10, 2314–2332. [Google Scholar] [CrossRef]
- Chen, L.; Wu, L.; Yu, J.; Kuo, C.T.; Jian, T.; Wu, I.C.; Rong, Y.; Chiu, D.T. Highly photostable wide-dynamic-range pH sensitive semiconducting polymer dots enabled by dendronizing the near-IR emitters. Chem. Sci. 2017, 8, 7236–7245. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.R.; Mukherjee, S.; Das, S.; Patra, C.R.; Iyer, P.K. Multifunctional (3-in-1) cancer theranostics applications of hydroxyquinoline-appended polyfluorene nanoparticles. Chem. Sci. 2017, 8, 7566–7575. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Tao, P.; Zou, L.; Gao, P.; Liu, Y.; Liu, X.; Wang, H.; Liu, S.; Dong, Q.; Li, J.; et al. Hyperbranched Phosphorescent Conjugated Polymer Dots with Iridium(III) Complex as the Core for Hypoxia Imaging and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2017, 9, 28319–28330. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, F.; Chen, D.; Shen, L.; Xu, S.; Guo, D.; Su, Y.; Yan, D.; Zhu, X. Color-Convertible, Unimolecular, Micelle-Based, Activatable Fluorescent Probe for Tumor-Specific Detection and Imaging In Vitro and In Vivo. Small 2017, 13, 1604062. [Google Scholar] [CrossRef]
- Kahveci, Z.; Martinez-Tome, M.J.; Mallavia, R.; Mateo, C.R. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase. ACS Appl. Mater. Interfaces 2017, 9, 136–144. [Google Scholar] [CrossRef]
- Li, S.; Jiang, X.-F.; Xu, Q.-H. Polyfluorene based conjugated polymer nanoparticles for two-photon live cell imaging. Sci. China Chem. 2017, 61, 88–96. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, W.; Ma, H.; Jiang, R.; Tang, Y.; Ji, Y.; Lu, X.; Hou, B.; Deng, W.; Huang, W.; et al. Photo-Induced Charge-Variable Conjugated Polyelectrolyte Brushes Encapsulating Upconversion Nanoparticles for Promoted siRNA Release and Collaborative Photodynamic Therapy under NIR Light Irradiation. Adv. Funct. Mater. 2017, 27, 1702592. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, C.; Ge, W.; Sun, R.; Huang, F.; Wang, X. Self-Assembled Conjugated Polymer/Chitosan-graft-Oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by “Turn-On” FRET. ACS Appl. Mater. Interfaces 2017, 9, 22875–22884. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Yuan, Y.; Sun, Z.; Guo, S.; Dong, H.; Wu, C. Ratiometric Fluorescent Detection of Intracellular Singlet Oxygen by Semiconducting Polymer Dots. Anal. Chem. 2018, 90, 14629–14634. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; He, P.; Hussain, S.; Lu, H.; Zhou, X.; Lv, F.; Liu, L.; Dai, Z.; Wang, S. Conjugated Polymer-Based Photoelectrochemical Cytosensor with Turn-On Enable Signal for Sensitive Cell Detection. ACS Appl. Mater. Interfaces 2018, 10, 6618–6623. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wei, L.; Guo, S.; Jiang, J.; Zhang, P.; Han, J.; Ma, Y.; Zhao, Q. Anionic iridium(III) complexes and their conjugated polymer soft salts for time-resolved luminescent detection of intracellular oxygen levels. Sens. Actuators B Chem. 2018, 262, 436–443. [Google Scholar] [CrossRef]
- Bao, B.; Su, P.; Yang, Z.; Zhai, X.; Zhang, J.; Xu, Y.; Liu, Y.; Gu, B.; Wang, L. Highly Stable Core-Shell Structured Semiconducting Polymer Nanoparticles for FRET-Based Intracellular pH Imaging. Adv. Healthc. Mater. 2019, 8, e1900255. [Google Scholar] [CrossRef]
- Roy, S.; Gunukula, A.; Ghosh, B.; Chakraborty, C. A folic acid-sensitive polyfluorene based “turn-off” fluorescence nanoprobe for folate receptor overexpressed cancer cell imaging. Sens. Actuators B Chem. 2019, 291, 337–344. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Q.; Ramachandran, S.; Pembouong, G.; Pansu, R.B.; Leray, I.; Lebental, B.; Zucchi, G. Optical chemosensors for metal ions in aqueous medium with polyfluorene derivatives: Sensitivity, selectivity and regeneration. Sens. Actuators B Chem. 2019, 286, 521–532. [Google Scholar] [CrossRef]
- Xu, Q.; Lv, F.; Liu, L.; Wang, S. Development of A Thermo-Responsive Conjugated Polymer with Photobleaching-Resistance Property and Tunable Photosensitizing Performance. Macromol. Rapid Commun. 2020, 41, e2000249. [Google Scholar] [CrossRef]
- Chen, H.; Yu, J.; Men, X.; Zhang, J.; Ding, Z.; Jiang, Y.; Wu, C.; Chiu, D.T. Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angew. Chem. Int. Ed. Engl. 2021, 60, 12007–12012. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Huang, S.; Jia, T.; Peng, Y.; Wei, X.; Wang, M. Sub-10 nm Theranostic Unimolecular Micelles with High Tumor-Specific Accumulation, Retention, and Inhibitory Effect. ACS Appl. Bio Mater. 2019, 2, 4142–4153. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Li, L.; Tsao, H.K.; Sheng, Y.J.; Chen, S.; Jiang, S. Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophys. J. 2005, 89, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Liu, M.; Zhou, J. Molecular dynamics simulations of peptide adsorption on self-assembled monolayers. Appl. Surf. Sci. 2012, 258, 8153–8159. [Google Scholar] [CrossRef]
- Wei, Q.; Becherer, T.; Angioletti-Uberti, S.; Dzubiella, J.; Wischke, C.; Neffe, A.T.; Lendlein, A.; Ballauff, M.; Haag, R. Protein interactions with polymer coatings and biomaterials. Angew. Chem. Int. Ed. Engl. 2014, 53, 8004–8031. [Google Scholar] [CrossRef]
- Yu, G.; Liu, J.; Zhou, J. Mesoscopic coarse-grained simulations of lysozyme adsorption. J. Phys. Chem. B 2014, 118, 4451–4460. [Google Scholar] [CrossRef]
- Jeon, S.I.; Lee, J.H.; Andrade, J.D.; De Gennes, P.G. Protein—surface interactions in the presence of polyethylene oxide. J. Colloid Interface Sci. 1991, 142, 149–158. [Google Scholar] [CrossRef]
- Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 2003, 55, 403–419. [Google Scholar] [CrossRef]
- Lowe, A.B.; McCormick, C.L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev. 2002, 102, 4177–4189. [Google Scholar] [CrossRef]
- Shao, Q.; Jiang, S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 2015, 27, 15–26. [Google Scholar] [CrossRef]
- Tsai, Y.-L.; Tseng, Y.-C.; Chen, Y.-M.; Wen, T.-C.; Jan, J.-S. Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: Synthesis, self-assembly, and their interactions with proteins. Polym. Chem. 2018, 9, 1178–1189. [Google Scholar] [CrossRef]
- Wu, A.; Gao, Y.; Zheng, L. Zwitterionic amphiphiles: Their aggregation behavior and applications. Green Chem. 2019, 21, 4290–4312. [Google Scholar] [CrossRef]
- Li, D.; Wei, Q.; Wu, C.; Zhang, X.; Xue, Q.; Zheng, T.; Cao, M. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv. Colloid Interface Sci. 2020, 278, 102141. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, X.; Xie, M.; Wu, H.-C.; Yoshioka, T.; Saeki, D.; Matsuyama, H. Antifouling thin-film composite membranes with multi-defense properties by controllably constructing amphiphilic diblock copolymer brush layer. J. Membr. Sci. 2020, 614, 118515. [Google Scholar] [CrossRef]
- Saha, P.; Santi, M.; Emondts, M.; Roth, H.; Rahimi, K.; Grosskurth, J.; Ganguly, R.; Wessling, M.; Singha, N.K.; Pich, A. Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatings. ACS Appl. Mater. Interfaces 2020, 12, 58223–58238. [Google Scholar] [CrossRef]
- Peng, W.; Liu, P.; Zhang, X.; Peng, J.; Gu, Y.; Dong, X.; Ma, Z.; Liu, P.; Shen, J. Multi-functional zwitterionic coating for silicone-based biomedical devices. Chem. Eng. J. 2020, 398, 125663. [Google Scholar] [CrossRef]
- Peng, S.; Ouyang, B.; Men, Y.; Du, Y.; Cao, Y.; Xie, R.; Pang, Z.; Shen, S.; Yang, W. Biodegradable zwitterionic polymer membrane coating endowing nanoparticles with ultra-long circulation and enhanced tumor photothermal therapy. Biomaterials 2020, 231, 119680. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, H.; Wu, X.; Yan, Z.; Tang, C.; Qin, Z.; Yao, M.; Che, P.; Yao, F.; Li, J. In Situ Clickable Purely Zwitterionic Hydrogel for Peritoneal Adhesion Prevention. Chem. Mater. 2020, 32, 6347–6357. [Google Scholar] [CrossRef]
- Zhao, W.; Zhu, Y.; Zhang, J.; Xu, T.; Li, Q.; Guo, H.; Zhang, J.; Lin, C.; Zhang, L. A comprehensive study and comparison of four types of zwitterionic hydrogels. J. Mater. Sci. 2018, 53, 13813–13825. [Google Scholar] [CrossRef]
- Kwon, H.J.; Lee, Y.; Phuong, L.T.; Seon, G.M.; Kim, E.; Park, J.C.; Yoon, H.; Park, K.D. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomater. 2017, 61, 169–179. [Google Scholar] [CrossRef]
- Yu, B.Y.; Zheng, J.; Chang, Y.; Sin, M.C.; Chang, C.H.; Higuchi, A.; Sun, Y.M. Surface zwitterionization of titanium for a general bio-inert control of plasma proteins, blood cells, tissue cells, and bacteria. Langmuir 2014, 30, 7502–7512. [Google Scholar] [CrossRef]
- An, J.; Guo, Q.; Zhang, P.; Sinclair, A.; Zhao, Y.; Zhang, X.; Wu, K.; Sun, F.; Hung, H.C.; Li, C.; et al. Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging. Nanoscale 2016, 8, 9318–9327. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Mao, J.; Yang, M.; Wang, D.; Bo, S.; Ji, X. Phase behavior of poly(sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in protein solutions. Langmuir 2011, 27, 15282–15291. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Brown, A.A.; Azzaroni, O.; Huck, W.T.S. Thickness-Dependent Properties of Polyzwitterionic Brushes. Macromolecules 2008, 41, 6317–6321. [Google Scholar] [CrossRef]
- Braga, C.B.; Pilli, R.A.; Ornelas, C.; Weck, M. Near-Infrared Fluorescent Micelles from Poly(norbornene) Brush Triblock Copolymers for Nanotheranostics. Biomacromolecules 2021, 22, 5290–5306. [Google Scholar] [CrossRef]
- Cheng, H.; Fan, X.; Ye, E.; Chen, H.; Yang, J.; Ke, L.; You, M.; Liu, M.; Zhang, Y.W.; Wu, Y.L.; et al. Dual Tumor Microenvironment Remodeling by Glucose-Contained Radical Copolymer for MRI-Guided Photoimmunotherapy. Adv. Mater. 2021, 33, 2107674. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Hu, J.; Feng, X.; Zhang, M.; Duan, G.; Zhang, R.; Li, Y. Self-Assembly of Poly(Janus particle)s into Unimolecular and Oligomeric Spherical Micelles. ACS Macro Lett. 2021, 10, 1563–1569. [Google Scholar] [CrossRef]
- Liberman-Martin, A.L.; Chang, A.B.; Chu, C.K.; Siddique, R.H.; Lee, B.; Grubbs, R.H. Processing Effects on the Self-Assembly of Brush Block Polymer Photonic Crystals. ACS Macro Lett. 2021, 10, 1480–1486. [Google Scholar] [CrossRef]
- Xiao, S.; Ren, B.; Huang, L.; Shen, M.; Zhang, Y.; Zhong, M.; Yang, J.; Zheng, J. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr. Opin. Chem. Eng. 2018, 19, 86–93. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Shen, M.; Chen, F.; Fan, P.; Zhong, M.; Ren, B.; Yang, J.; Zheng, J. Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. Langmuir 2018, 34, 97–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Ren, B.; Zhang, D.; Xie, S.; Chang, Y.; Yang, J.; Wu, J.; Xu, L.; Zheng, J. Fundamentals and applications of zwitterionic antifouling polymers. J. Phys. D Appl. Phys. 2019, 52, 403001. [Google Scholar] [CrossRef]
- Choi, W.; Park, S.; Kwon, J.S.; Jang, E.Y.; Kim, J.Y.; Heo, J.; Hwang, Y.; Kim, B.S.; Moon, J.H.; Jung, S.; et al. Reverse Actuation of Polyelectrolyte Effect for In Vivo Antifouling. ACS Nano 2021, 15, 6811–6828. [Google Scholar] [CrossRef] [PubMed]
- Gopikrishna, P.; Das, D.; Iyer, P.K. Synthesis and characterization of color tunable, highly electroluminescent copolymers of polyfluorene by incorporating the N-phenyl-1,8-naphthalimide moiety into the main chain. J. Mater. Chem. C 2015, 3, 9318–9326. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, X.; Zhang, X.; Zhang, X.; Peng, J.; Yang, H.; Deng, K.; Ma, L.; Chang, C.; Wei, H. Fabrication of theranostic amphiphilic conjugated bottlebrush copolymers with alternating heterografts for cell imaging and anticancer drug delivery. Polym. Chem. 2018, 9, 4866–4874. [Google Scholar] [CrossRef]
- Tu, X.Y.; Meng, C.; Wang, Y.F.; Ma, L.W.; Wang, B.Y.; He, J.L.; Ni, P.H.; Ji, X.L.; Liu, M.Z.; Wei, H. Fabrication of Thermosensitive Cyclic Brush Copolymer with Enhanced Therapeutic Efficacy for Anticancer Drug Delivery. Macromol. Rapid Commun. 2018, 39, 1700744. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, D.; Zhang, M.; Ma, L.; Yu, C.-Y.; Wei, H. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery. Acta Biomater. 2022, in press. [Google Scholar] [CrossRef]
Entry | Polymer a | Mn, NMRb (kDa) | Mn, SEC-MALLSc (kDa) | Ðc |
---|---|---|---|---|
I1 | PFONPN9-g-N3 | — | 6.5 | 1.18 |
I2 | alkyne-PHEMA15 | 2.2 | 4.2 | 1.11 |
I3 | PFONPN9-g-PHEMA15 | 21.7 | 34.4 | 1.27 |
I4 | PFONPN9-g-(PHEMA15-g-NH2) | 36.6 | — | — |
I5 | PFONPN9-g-(PHEMA15-g-(PTyr16-NH2)) | 310.4 | — | — |
I6 | PFONPN9-g-(PHEMA15-g-(PTyr16-Br2)) | 366.3 | — | — |
P1 | PFONPN9-g-(PHEMA15-g-(PTyr16-b-(POEGMA11)2)) | 1057.8 | 516.3 | 1.39 |
P2 | PFONPN9-g-(PHEMA15-g-(PTyr16-b-P(OEGMA6-co-SBMA6)2)) | 1094.4 | — | — |
P3 | PFONPN9-g-(PHEMA15-g-(PTyr16-b-(POEGMA20)2)) | 1624.8 | 923.8 | 1.41 |
P4 | PFONPN9-g-(PHEMA15-g-(PTyr16-b-P(OEGMA12-co-SBMA13)2)) | 1882.5 | — | — |
P5 | PFONPN9-g-(PHEMA15-g-(PTyr16-b-P(OEGMA34-co-SBMA12)2)) | 3126.7 | 232.3 | 1.20 |
Dh (nm)/PDI | P1 | P2 | P3 | P4 |
---|---|---|---|---|
DMSO | 143.9/0.278 | 131.8/0.314 | 162.9/0.288 | 156.8/0.365 |
Water | 206.7/0.365 | 89.02/0.262 | 116.0/0.248 | 97.91/0.279 |
HEMES (pH = 7.4) | 204.5/0.112 | 97.09/0.231 | 118.0/0.259 | 106.7/0.301 |
SSC (pH = 5.0) | 206.3/0.144 | 111.3/0.280 | 119.0/0.227 | 130.0/0.242 |
Entry | DOX@P2-1 | DOX@P2-2 | DOX@P3 | DOX@P4 |
---|---|---|---|---|
Feed ratio of DOX/% | 10 | 20 | 20 | 20 |
Dh (nm)/PDI in water | 91.56/0.178 | 98.42/0.247 | 122.4/0.262 | 98.22/0.328 |
Dh (nm)/PDI in 10% FBS | 80.42/0.260 | 94.55/0.188 | 128.5/0.228 | 89.49/0.272 |
DLC/% | 8.36 | 15.39 | 8.85 | 9.41 |
EE/% | 88.2 | 90.62 | 50.99 | 54.51 |
Sample | Solvent | λmax, ex a (nm) | λmax, em a (nm) | Φ b/% |
---|---|---|---|---|
I1 | DMSO | 423 | 542 | 32.07 |
P1 | DMSO | 374 | 521 | 4.21 |
P1 | Water | 394 | 487 | 2.98 |
P2 | DMSO | 375 | 526 | 3.54 |
P2 | Water | 389 | 486 | 2.49 |
P3 | DMSO | 370 | 522 | 5.04 |
P3 | Water | 392 | 485 | 3.24 |
P4 | DMSO | 373 | 522 | 2.82 |
P4 | Water | 392 | 486 | 1.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Wang, D.; Wang, J.; Ma, L.; Yu, C.; Wei, H. Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery. Molecules 2022, 27, 3016. https://doi.org/10.3390/molecules27093016
Liu F, Wang D, Wang J, Ma L, Yu C, Wei H. Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery. Molecules. 2022; 27(9):3016. https://doi.org/10.3390/molecules27093016
Chicago/Turabian StyleLiu, Fangjun, Dun Wang, Jiaqi Wang, Liwei Ma, Cuiyun Yu, and Hua Wei. 2022. "Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery" Molecules 27, no. 9: 3016. https://doi.org/10.3390/molecules27093016
APA StyleLiu, F., Wang, D., Wang, J., Ma, L., Yu, C., & Wei, H. (2022). Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery. Molecules, 27(9), 3016. https://doi.org/10.3390/molecules27093016