Study of the Effect of Antibiotics in Drinking Water on the Content of Antioxidant Compounds in Red Wines
Abstract
:1. Introduction
2. Results
2.1. Effect of the Concentration of Antibiotics on Total Polyphenol Content and Antioxidant Capacity
2.2. Effect of the Concentration of Antibiotics on the Content of Monomeric Anthocyanins
2.3. Diffusion Kinetics of Polyphenols during the Fermentation Process
2.4. Diffusion Kinetics of the Monomeric Anthocyanins
2.5. Impact of the Presence of Antibiotics on the Alcoholic Degrees in Wine
3. Methodology
3.1. Sample
3.2. Reactives
3.3. Preparation of Wine with the Addition of Antibiotics in Drinking Water
3.4. Total Polyphenol Content
3.5. Monomeric Anthocyanin Content
3.6. Determination of Antioxidant Capacity (ABTS)
3.7. Determination of Alcoholic Degrees and Sugar Content
3.8. Evaluation of the Diffusion Kinetics of Polyphenols in the Wine Must
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muñoz Lucas, S.; Sanchez García, R. El Agua En La Industria Alimentaria. Bol. Soc. Española Hidrol. Med. 2018, 33, 157–171. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Water Treatment. Available online: https://www.cdc.gov/healthywater/drinking/public/regulations.html (accessed on 23 July 2022).
- Pooi, C.K. Review of Low-Cost Point-of-Use Water Treatment Systems for Developing Communities. NPJ Clean Water 2018, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.R.; Al-Haideri, H.H.; Hassan, F.M. Detection of Antibiotics in Drinking Water Treatment Plants in Baghdad City, Iraq. Adv. Public Health 2019, 2019, 7851354. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, C.M.; Kogevinas, M.; Cordier, S.; Templeton, M.R.; Vermeulen, R.; Nuckols, J.R.; Nieuwenhuijsen, M.J.; Levallois, P. Assessing Exposure and Health Consequences of Chemicals in Drinking Water: Current State of Knowledge and Research Needs. Environ. Health Perspect. 2014, 122, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Tan, L.; Zhang, L.; Tian, W.; Ma, L. A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Front. Environ. Sci. 2021, 9, 692298. [Google Scholar] [CrossRef]
- Lima-Morales, R.; Méndez-Hernández, P.; Flores, Y.N.; Osorno-Romero, P.; Cuecuecha-Rugerio, E.; Nava-Zamora, A.; Hernández-Galdamez, D.R.; Romo-Dueñas, D.K.; Salmerón, J. Effectiveness of a Multidrug Therapy Consisting of Ivermectin, Azithromycin, Montelukast, and Acetylsalicylic Acid to Prevent Hospitalization and Death among Ambulatory COVID-19 Cases in Tlaxcala, Mexico. Int. J. Infect. Dis. 2021, 105, 598–605. [Google Scholar] [CrossRef]
- Boleda, M.R.; Alechaga, É.; Moyano, E.; Galceran, M.T.; Ventura, F. Survey of the Occurrence of Pharmaceuticals in Spanish Finished Drinking Waters. Environ. Sci. Pollut. Res. 2014, 21, 10917–10939. [Google Scholar] [CrossRef]
- Nippes, R.P.; Macruz, P.D.; da Silva, G.N.; Neves Olsen Scaliante, M.H. A Critical Review on Environmental Presence of Pharmaceutical Drugs Tested for the COVID-19 Treatment. Process Saf. Environ. Prot. 2021, 152, 568–582. [Google Scholar] [CrossRef]
- Unger, C.; Al-Jashaami, L.S. Ciprofloxacin Exposure Leading to Fatal Hepatotoxicity: An Unusual Correlation. Am. J. Case Rep. 2016, 17, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Merma, D.; Maldonado, I.; Vilca, F.Z. Environmental and Ecotoxicological Effects of Drugs Used for the Treatment of COVID 19. Front. Environ. Sci. 2022, 10, 940975. [Google Scholar] [CrossRef]
- Vilca, F.Z.; Galarza, N.C.; Tejedo, J.R.; Cuba, W.A.Z.; Quiróz, C.N.C.; Tornisielo, V.L. Occurrence of Residues of Veterinary Antibiotics in Water, Sediment and Trout Tissue (Oncorhynchus Mykiss) in the Southern Area of Lake Titicaca, Peru. J. Great Lakes Res. 2021, 47, 1219–1227. [Google Scholar] [CrossRef]
- Boselli, E.; Boulton, R.B.; Thorngate, J.H.; Frega, N.G. Chemical and Sensory Characterization of DOC Red Wines from Marche (Italy) Related to Vintage and Grape Cultivars. J. Agric. Food Chem. 2004, 52, 3843–3854. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, M.; Durazzo, A.; Lombardi-Boccia, G.; Souto, E.B.; Cecchini, F.; Santini, A. Wine Polyphenols and Health: Quantitative Research Literature Analysis. Appl. Sci. 2021, 11, 4762. [Google Scholar] [CrossRef]
- Vejarano, R.; Luján-Corro, M. Red Wine and Health: Approaches to Improve the Phenolic Content During Winemaking. Front. Nutr. 2022, 9, 890066. [Google Scholar] [CrossRef]
- Duek, A.E.; Fasciolo, G.E. Uso de Agua En Las Bodegas de Mendoza. Rev. Fac. Ciencias Agrar. 2012, 44, 263–268. [Google Scholar]
- Baiano, A.; Scrocco, C.; Sepielli, G.; Del Nobile, M.A. Wine Processing: A Critical Review of Physical, Chemical, and Sensory Implications of Innovative Vinification Procedures. Crit. Rev. Food Sci. Nutr. 2016, 56, 2391–2407. [Google Scholar] [CrossRef]
- Schelezki, O.J.; Smith, P.A.; Hranilovic, A.; Bindon, K.A.; Jeffery, D.W. Comparison of Consecutive Harvests versus Blending Treatments to Produce Lower Alcohol Wines from Cabernet Sauvignon Grapes: Impact on Polysaccharide and Tannin Content and Composition. Food Chem. 2018, 244, 50–59. [Google Scholar] [CrossRef]
- Wine Australia. Winemaking Treatment—Water Addition. Available online: https://www.wineaustralia.com/news/articles/adding-water-to-grape-must?utm_source=Wine+Australia+RD%26E+News&utm_campaign=c88f139d8d-RD_E_News_February_2019&utm_medium=email&utm_term=0_440931c1c7-c88f139d8d-210375317 (accessed on 15 August 2022).
- Maicas, S. The Role of Yeasts in Fermentation Processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef]
- Alimardani-Theuil, P.; Gainvors-Claisse, A.; Duchiron, F. Yeasts: An Attractive Source of Pectinases—From Gene Expression to Potential Applications: A Review. Process Biochem. 2011, 46, 1525–1537. [Google Scholar] [CrossRef]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A Review of the Effect of Winemaking Techniques on.Pdf. Am. J. Enol. Vitic. 2005, 48, 197–206. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of Solid-Liquid Extraction Kinetics of Total Polyphenols from Grape Seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Comitini, F.; Agarbati, A.; Canonico, L.; Ciani, M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 7754. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.J.; Ross, B.C.; Reade, P.C. Candida Albicans: A Review of Its History, Taxonomy, Epidemiology Virulence Attributes, and Methods of Strain Differentiation. Int. J. Oral Maxillofac. Surg. 1996, 25, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.S.N.; Palanisamy, S.K.A.; Lee, S.A. Susceptibility of Candida Albicans Biofilms to Azithromycin, Tigecycline and Vancomycin and the Interaction between Tigecycline and Antifungals. Int. J. Antimicrob. Agents 2010, 36, 441–446. [Google Scholar] [CrossRef]
- Li, Y.; Wan, Z.; Liu, W.; Li, R. Synergistic Activity of Chloroquine with Fluconazole against Fluconazole-Resistant Isolates of Candida Species. Antimicrob. Agents Chemother. 2015, 59, 1365–1369. [Google Scholar] [CrossRef] [Green Version]
- Stergiopoulou, T.; Meletiadis, J.; Sein, T.; Papaioannidou, P.; Tsiouris, I.; Roilides, E.; Walsh, T.J. Comparative Pharmacodynamic Interaction Analysis between Ciprofloxacin, Moxifloxacin and Levofloxacin and Antifungal Agents against Candida Albicans and Aspergillus Fumigatus. J. Antimicrob. Chemother. 2009, 63, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Huamán-Castilla, N.L.; Campos, D.; García-Ríos, D.; Parada, J.; Martínez-Cifuentes, M.; Mariotti-Celis, M.S.; Pérez-Correa, J.R. Chemical Properties of Vitis Vinifera Carménère Pomace Extracts Obtained by Hot Pressurized Liquid Extraction, and Their Inhibitory Effect on Type 2 Diabetes Mellitus Related Enzymes. Antioxidants 2021, 10, 472. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [Green Version]
- Ganjloo, A.; Rahman, R.A.; Bakar, J.; Osman, A.; Bimakr, M. Kinetics Modeling of Mass Transfer Using Peleg’s Equation During Osmotic Dehydration of Seedless Guava (Psidium guajava L.): Effect of Process Parameters. Food Bioprocess Technol. 2012, 5, 2151–2159. [Google Scholar] [CrossRef]
- Picot, S.; Beugnet, F.; Leboucher, G.; Bienvenu, A.L. Drug Resistant Parasites and Fungi from a One-Health Perspective: A Global Concern That Needs Transdisciplinary Stewardship Programs. One Health 2022, 14, 100368. [Google Scholar] [CrossRef] [PubMed]
- Crump, A. Ivermectin: Enigmatic Multifaceted “wonder” Drug Continues to Surprise and Exceed Expectations. J. Antibiot. 2017, 70, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela, C.; Dry, P.R.; Kutyna, D.R.; Francis, I.L.; Henschke, P.A.; Curtin, C.D.; Chambers, P.J. Strategies for Reducing Alcohol Concentration in Wine. Aust. J. Grape Wine Res. 2015, 21, 670–679. [Google Scholar] [CrossRef]
- Gombert, A.K.; van Maris, A.J.A. Improving Conversion Yield of Fermentable Sugars into Fuel Ethanol in 1st Generation Yeast-Based Production Processes. Curr. Opin. Biotechnol. 2015, 33, 81–86. [Google Scholar] [CrossRef]
- Seo, S.O.; Park, S.K.; Jung, S.C.; Ryu, C.M.; Kim, J.S. Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020, 8, 274. [Google Scholar] [CrossRef] [Green Version]
- Morales-Paredes, C.A.; Rodríguez-Díaz, J.M.; Boluda-Botella, N. Pharmaceutical Compounds Used in the COVID-19 Pandemic: A Review of Their Presence in Water and Treatment Techniques for Their Elimination. Sci. Total Environ. 2022, 814, 152691. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Pereira, A.L.D.; Barbero, G.F.; Martínez, J. Recovery of Anthocyanins from Residues of Rubus Fruticosus, Vaccinium Myrtillus and Eugenia Brasiliensis by Ultrasound Assisted Extraction, Pressurized Liquid Extraction and Their Combination. Food Chem. 2017, 231, 1–10. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The Hydrophilic and Lipophilic Contribution to Total Antioxidant Activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Instituto Nacional de Calidad (INACAL). Available online: https://cdn.www.gob.pe/uploads/document/file/1680426/Aprueban%20Normas%20T%C3%A9cnicas%20Peruanas%20sobre%20bebidas%20alcoh%C3%B3licas.pdf (accessed on 15 July 2022).
Description | k1 (h.mg/mg0) Mean CV | k2 (mg/mg0) Mean CV | |
---|---|---|---|
Azithromycin | 0.1 ng/mL | 21.76 c 0.01 | 1.07 b 0.01 |
0.3 ng/mL | 22.84 c 0.01 | 0.97 a,b 0.01 | |
Ivermectin | 0.01 ng/mL | 19.32 b 0.02 | 0.95 a 0.03 |
0.02 ng/mL | 26.22 d 0.01 | 0.99 a,b 0.02 | |
Hydroxychloroquine | 1 ng/mL | 19.27 b 0.02 | 0.94 a 0.03 |
3 ng/mL | 27.83 e 0.02 | 0.99 a,b 0.00 | |
Ciprofloxacin | 0.1 ng/mL | 17.39 a 0.03 | 0.92 a 0.02 |
0.2 ng/mL | 21.47 c ± 0.03 | 0.93 a ± 0.03 |
Description | k1 (h.mg/mg0) Mean CV | k2 (mg/mg0) Mean CV | |
---|---|---|---|
Azithromycin | 0.1 ng/mL | 32.95 b 0.01 | 2.00 c 0.01 |
0.3 ng/mL | 40.58 c 0.01 | 2.19 d 0.00 | |
Ivermectin | 0.01 ng/mL | 90.12 d 0.02 | 0.95 a 0.03 |
0.02 ng/mL | 278.32 e 0.00 | 1.51 b 0.01 | |
Hydroxychloroquine | 1 ng/mL | 28.45 a 0.02 | 1.93 c 0.02 |
3 ng/mL | 39.79 c 0.01 | 2.14 d 0.00 | |
Ciprofloxacin | 0.1 ng/mL | 34.81 b 0.01 | 2.05 c 0.01 |
0.2 ng/mL | 41.95 c 0.01 | 2.41 e 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calsin-Cutimbo, M.; Huamán-Castilla, N.L.; Mayta-Hancco, J.; Escobedo-Pacheco, E.; Zirena-Vilca, F. Study of the Effect of Antibiotics in Drinking Water on the Content of Antioxidant Compounds in Red Wines. Molecules 2023, 28, 206. https://doi.org/10.3390/molecules28010206
Calsin-Cutimbo M, Huamán-Castilla NL, Mayta-Hancco J, Escobedo-Pacheco E, Zirena-Vilca F. Study of the Effect of Antibiotics in Drinking Water on the Content of Antioxidant Compounds in Red Wines. Molecules. 2023; 28(1):206. https://doi.org/10.3390/molecules28010206
Chicago/Turabian StyleCalsin-Cutimbo, Marienela, Nils Leander Huamán-Castilla, Jhony Mayta-Hancco, Elías Escobedo-Pacheco, and Franz Zirena-Vilca. 2023. "Study of the Effect of Antibiotics in Drinking Water on the Content of Antioxidant Compounds in Red Wines" Molecules 28, no. 1: 206. https://doi.org/10.3390/molecules28010206
APA StyleCalsin-Cutimbo, M., Huamán-Castilla, N. L., Mayta-Hancco, J., Escobedo-Pacheco, E., & Zirena-Vilca, F. (2023). Study of the Effect of Antibiotics in Drinking Water on the Content of Antioxidant Compounds in Red Wines. Molecules, 28(1), 206. https://doi.org/10.3390/molecules28010206