Triethylamine-Promoted Oxidative Cyclodimerization of 2H-Azirine-2-carboxylates to Pyrimidine-4,6-dicarboxylates: Experimental and DFT Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Pyrimidines
2.2. Study of the Reaction Mechanism
3. Materials and Methods
3.1. General Instrumentation
3.2. Synthesis and Characterization of 5-Methoxyisoxazoles
- 5-Methoxy-3-(naphthalen-2-yl)isoxazole [32]. Obtained as a pink solid (320 mg, 31%) according to the general procedure. Mp: 129–130 °C (lit. 128–129 °C [32]). 1H NMR (400 MHz, CDCl3), δ, ppm: 8.21 (s, 1H), 8.00–7.84 (m, 4H), 7.63–7.50 (m, 2H), 5.69 (s, 1H), 4.09 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 174.6, 164.3, 134.1, 133.2, 128.6, 128.5, 127.8, 127.0 (2C), 126.6, 126.3, 123.5, 75.5, 58.9.
- 3-(Biphenyl-4-yl)-5-methoxyisoxazole. Obtained as a colorless solid (740 mg, 64%) according to the general procedure. Mp: 147–148 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 7.88–7.83 (m, 2H), 7.73–7.68 (m, 2H), 7.67–7.63 (m, 2H), 7.52–7.46 (m, 2H), 7.43–7.38 (m, 1H), 5.59 (s, 1H), 4.09 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 174.5, 163.9, 142.9, 140.3, 128.9, 128.5, 127.8, 127.5, 127.1, 126.9, 75.4, 58.8. HRMS (ESI-TOF) calculated for C16H13NO2 [M + Na]+ 274.0838; found 274.0843.
- 5-Methoxy-3-(quinolin-2-yl)isoxazole. Obtained as a colorless solid (730 mg, 70%) according to the general procedure. Mp: 109–110 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 8.25 (d, J = 8.6 Hz, 1H), 8.20–8.04 (m, 2H), 7.87 (d, J = 8.1, 1H), 7.83–7.71 (m, 1H), 7.66–7.54 (m, 1H), 6.13 (s, 1H), 4.12 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 174.9, 165.3, 148.9, 148.0, 136.8, 129.9, 129.7, 128.4, 127.7, 127.3, 118.5, 76.3, 59.2. HRMS (ESI-TOF) calculated for C13H10N2NaO2 [M + Na]+ 249.0634; found 249.0638.
3.3. Synthesis and Characterization of 2H-Azirines 1
- Methyl 3-(3,4-dimethoxyphenyl)-2H-azirine-2-carboxylate (1c). Obtained as a colorless solid (97 mg, yield 97%) from 3-(3,4-dimethoxyphenyl)-5-methoxyisoxazole [33] according to the general procedure (40 mol% FeCl2·4H2O, 1.5 mL of acetonitrile). Mp: 96–97 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 7.46–7.42 (m, 2H), 7.02 (d, J = 8.8 Hz, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 3.75 (s, 3H), 2.84 (s, 1H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 172.3, 157.5, 153.8, 149.7, 125.4, 114.6, 111.6, 111.1, 56.18, 56.17, 52.2, 29.6. HRMS (ESI-TOF) calculated for C12H13NNaO4 [M + Na]+ 258.0737; found 258.0743.
- Methyl 3-(4-chlorophenyl)-2H-azirine-2-carboxylate (1e) [34]. Obtained as a colorless solid (49 mg, yield 98%) from 3-(4-chlorophenyl)-5-methoxyisoxazole [35] according to the general procedure (10 mol% FeCl2·4H2O, 1.0 mL of acetonitrile). Mp: 66–67 °C (lit. 63.4–64.2 °C [34]). 1H NMR (400 MHz, CDCl3), δ, ppm: 7.88–7.82 (m, 2H), 7.61–7.56 (m, 2H), 3.77 (s, 3H), 2.89 (s, 1H).
- Methyl 3-(4-(dimethylamino)phenyl)-2H-azirine-2-carboxylate (1f). Obtained as a yellow solid (256 mg, yield 80%) from 3-(4-(dimethylamino)phenyl)-5-methoxyisoxazole [36] according to the general procedure (10 mol% FeCl2·4H2O, 5 mL of acetonitrile). Mp: 120–121 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 7.76–7.71 (m, 2H), 6.81–6.76 (m, 2H), 3.74 (s, 3H), 3.11 (s, 6H), 2.76 (s, 1H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 173.1, 156.2, 153.8, 132.4, 111.6, 108.4, 52.1, 40.1, 28.9. HRMS (ESI-TOF) calculated for C12H14N2NaO2 [M + Na]+ 241.0947; found 241.0951.
- Methyl 3-(naphthalen-2-yl)-2H-azirine-2-carboxylate (1g) [37]. Obtained as a colorless solid (600 mg, yield 90%) from 5-methoxy-3-(naphthalen-2-yl)isoxazole according to the general procedure (40 mol% FeCl2·4H2O, 15 mL of acetonitrile). Mp: 67–68 °C (lit. 69–70 °C [37]). 1H NMR (400 MHz, CDCl3), δ, ppm: 8.33 (s, 1H), 8.04–7.93 (m, 4H), 7.69–7.60 (m, 2H), 3.79 (s, 3H), 2.97 (s, 1H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 172.1, 158.5, 135.8, 132.9, 132.6, 129.4, 129.12, 129.08, 128.1, 127.3, 124.7, 119.5, 52.3, 29.7. HRMS (ESI-TOF) calculated for C14H11NNaO2 [M + Na]+ 248.0682; found 248.0685.
- Methyl 3-(biphenyl-4-yl)-2H-azirine-2-carboxylate (1h). Obtained as a colorless solid (195 mg, yield 99%) from 3-(biphenyl-4-yl)-5-methoxyisoxazole according to the general procedure (40 mol% FeCl2·4H2O, 6 mL of acetonitrile). Mp: 104–105 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 8.03–7.93 (m, 2H), 7.87–7.79 (m, 2H), 7.72–7.62 (m, 2H), 7.55–7.49 (m, 2H), 7.49–7.39 (m, 1H), 3.78 (s, 3H), 2.91 (s, 1H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 172.1, 158.2, 146.8, 139.5, 131.0, 129.1, 128.6, 128.0, 127.3, 120.9, 52.3, 29.5. HRMS (ESI-TOF) calculated for C16H13NNaO2 [M + Na]+ 274.0838; found 274.0839.
- Methyl 3-(quinolin-2-yl)-2H-azirine-2-carboxylate (1k). Obtained as a brown solid (50 mg, yield 40%) from 5-methoxy-3-(quinolin-2-yl)isoxazole according to the general procedure (10 mol% FeCl2·4H2O, 3 mL of acetonitrile). Mp: 110–111 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 8.40 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 8.5 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.87–7.83 (m, 1H), 7.74–7.70 (m, 1H), 3.80 (s, 3H), 3.17 (s, 1H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 171.6, 160.9, 148.5, 142.7, 137.5, 130.8, 130.6, 129.4, 129.3, 127.8, 121.7, 52.5, 31.5. HRMS (ESI-TOF) calculated for C13H10N2NaO2 [M + Na]+ 249.0634; found 249.0632.
3.4. Reaction of Azirine 1a with Triethylamine
- Dimethyl 2,5-diphenyl-1,6-dihydropyrimidine-4,6-dicarboxylate (2a). Colorless oil. 1H NMR (400 MHz, CDCl3), δ, ppm: 7.90–7.86 (m, 2H), 7.76 (br.s, 1H), 7.54–7.46 (m, 3H), 7.40–7.28 (m, 5H), 5.29 (br.s, 1H), 3.71 (s, 3H), 3.63 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 171.0, 163.6, 153.9, 137.2, 133.6, 131.1, 128.8 (2C), 128.0, 127.8, 126.8, 124.3, 118.9, 65.8, 52.41, 52.36. HRMS (ESI-TOF) calculated for C20H19N2O4 [M + H]+ 351.1339; found 351.1350.
- Dimethyl 2,5-diphenylpyrimidine-4,6-dicarboxylate (3a) [38]. Mp: 160–161 °C (lit. 161–163 °C [38]). 1H NMR (400 MHz, CDCl3), δ, ppm: 8.58–8.52 (m, 2H), 7.55–7.50 (m, 3H), 7.49–7.42 (m, 3H), 7.37–7.32 (m, 2H), 3.76 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 165.4, 163.5, 158.6, 135.8, 132.8, 131.6, 128.9, 128.7, 128.61, 128.58, 128.4, 127.8, 52.8.
3.5. Synthesis and Characterization of Pyrimidines 3
- Dimethyl 2,5-diphenylpyrimidine-4,6-dicarboxylate (3a) [38]. Obtained as a colorless solid (42 mg, yield 70%) according to the general procedure (initiator: ACHN, 3 days, eluent: benzene–ethylacetate, 5:1).
- Dimethyl 2,5-di(p-tolyl)pyrimidine-4,6-dicarboxylate (3b) [38]. Obtained as a colorless solid (6 mg, yield 9%) according to the general procedure (initiator: AIBN, 7 days, eluent: hexane–ethylacetate, 2:1). Mp: 145–146 °C (lit. 144–146 °C [38]). 1H NMR (400 MHz, CDCl3), δ, ppm: 8.47–8.40 (m, 2H), 7.36–7.30 (m, 2H), 7.27–7.19 (m, 4H), 3.78 (s, 6H), 2.46 (s, 3H), 2.43 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 165.7, 163.4, 158.6, 142.0, 138.8, 133.2, 129.8, 129.4, 129.2, 128.7, 128.5, 127.5, 52.8, 21.6, 21.4. HRMS (ESI-TOF) calculated for C22H20N2NaO4 [M + Na]+ 399.1315; found 399.1318.
- Dimethyl 2,5-di(3,4-dimethoxyphenyl)pyrimidine-4,6-dicarboxylate (3c) [38]. Obtained as a pale yellow solid (20 mg, yield 27%) according to the general procedure (initiator: AIBN, 7 days, eluent: hexane–ethylacetate, 3:1). Mp: 163–165 °C (lit. 164–166 °C [38]). 1H NMR (400 MHz, CDCl3), δ, ppm: 8.18 (dd, J = 8.5, 2.0 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.95–6.86 (m, 3H), 4.03 (s, 3H), 3.99 (s, 3H), 3.95 (s, 3H), 3.90 (s, 3H), 3.79 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 165.8, 162.9, 158.7, 152.2, 149.5, 149.1, 148.9, 128.7, 126.3, 125.0, 122.6, 121.5, 111.8, 111.1, 111.0, 110.8, 56.1, 56.00, 55.96, 55.8, 52.9.
- Dimethyl 2,5-di(3,4-dimethylphenyl)pyrimidine-4,6-dicarboxylate (3d). Obtained as a colorless solid (25 mg, yield 36%) according to the general procedure (initiator: AIBN, 7 days, eluent: benzene–ethylacetate, 5:1). Mp: 173–174 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 8.30 (s, 1H), 8.29–8.24 (m, 1H), 7.31–7.25 (m, 1H), 7.19 (d, J = 7.7 Hz, 1H), 7.10 (s, 1H), 7.09–7.04 (m, 1H), 3.79 (s, 6H), 2.39 (s, 3H), 2.36 (s, 3H), 2.33 (s, 3H), 2.31 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3), δ, ppm: 165.8, 163.4, 158.6, 140.7, 137.4, 136.9, 136.8, 133.5, 130.2, 130.0, 129.8, 129.7, 129.6, 127.3, 126.3, 126.0, 52.8, 19.9, 19.80, 19.76, 19.7. HRMS (ESI-TOF) calculated for C24H24N2NaO4 [M + Na]+ 427.1628; found 427.1631.
- Dimethyl 2,5-di(4-chlorophenyl)pyrimidine-4,6-dicarboxylate (3e) [38]. Obtained as a bright-yellow solid (18 mg, yield 25%) according to the general procedure (initiator: AIBN, 4 days, eluent: hexane–ethylacetate, 3:1). Mp: 137–138 °C (lit. 139–140 °C [38]). 1H NMR (400 MHz, CDCl3), δ, ppm: 8.52–8.49 (m, 2H), 7.51–7.49 (m, 2H), 7.46–7.44 (m, 2H), 7.28–7.26 (m, 2H), 3.80 (s, 6H).
- Dimethyl 2,5-di(4-dimethylaminophenyl)pyrimidine-4,6-dicarboxylate (3f). Obtained as a bright-yellow solid (22 mg, yield 30%) according to the general procedure (initiator: AIBN, 7 days, eluent: hexane–ethylacetate, 2:1). Mp: 216–217 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 8.41–8.38 (m, 2H), 7.19–7.17 (m, 2H), 6.77–6.73 (m, 4H), 3.79 (s, 6H), 3.08 (s, 6H), 3.02 (s, 6H). 13C{1H} NMR (125 MHz, CDCl3), δ, ppm: 166.4, 162.9, 158.5, 152.5, 150.3, 130.1, 129.5, 125.8, 123.7, 120.2, 112.0, 111.4, 52.7, 40.24, 40.29. HRMS (ESI-TOF) calculated for C24H26N4NaO4 [M + Na]+ 457.1846; found 457.1852.
- Dimethyl 2,5-di(naphthalen-2-yl)pyrimidine-4,6-dicarboxylate (3g) [38]. Obtained as a pale-yellow solid (15 mg, yield 20%) according to the general procedure (initiator: ACHN, 6 days, eluent: benzene–ethylacetate, 5:1). Mp: 196–197 °C (lit. 197–198 °C [38]). 1H NMR (400 MHz, CDCl3), δ, ppm: 9.15 (s, 1H), 8.66 (dd, J = 8.6, 1.8 Hz, 1H), 8.10–8.03 (m, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.97–7.88 (m, 4H), 7.84 (s, 1H), 7.63–7.53 (m, 4H), 7.48 (dd, J = 8.6, 1.8 Hz, 1H), 3.74 (s, 6H). 13C{1H} NMR (125 MHz, CDCl3), δ, ppm: 165.6, 163.6, 158.9, 135.2, 133.2, 133.14, 133.09, 133.0, 130.4, 129.7, 129.5, 128.5, 128.3 (2C), 128.0, 127.89, 127.87, 127.8, 127.7, 127.0, 126.8, 126.5, 126.3, 125.2, 53.0. HRMS (ESI-TOF) calculated for C28H20N2NaO4 [M + Na]+ 471.1315; found 471.1307.
- Dimethyl 2,5-di(4-biphenyl)pyrimidine-4,6-dicarboxylate (3h). Obtained as a colorless solid (30 mg, yield 36%) according to the general procedure (initiator: ACHN, 6 days, eluent: benzene–ethylacetate, 1:1). Mp: 222–223 °C. 1H NMR (400 MHz, CDCl3), δ, ppm: 8.67–8.61 (m, 2H), 7.80–7.75 (m, 2H), 7.74–7.66 (m, 6H), 7.54–7.48 (m, 4H), 7.46–7.39 (m, 4H), 3.81 (s, 6H). 13C{1H} NMR (125 MHz, CDCl3), δ, ppm: 165.6, 163.3, 158.7, 144.3, 141.6, 140.3, 140.0, 134.7, 131.7, 129.3, 129.1, 128.92, 128.88, 127.9, 127.8, 127.5, 127.4, 127.2, 127.13, 127.09, 53.0. HRMS (ESI-TOF) calculated for C32H24N2NaO4 [M + Na]+ 523.1628; found 523.1616.
- Di-tert-butyl 2,5-diphenylpyrimidine-4,6-dicarboxylate (3i) [38]. Obtained as a colorless solid (25 mg, yield 34%) according to the general procedure (initiator: ACHN, 3 days, eluent: benzene–ethylacetate, 5:1). Mp: 128–129 °C (lit. 124–125 °C [38]). 1H NMR (400 MHz, CDCl3), δ, ppm: 8.61–8.57 (m, 2H), 7.56–7.49 (m, 3H), 7.49–7.43 (m, 3H), 7.41–7.34 (m, 2H), 1.28 (s, 18H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 164.3, 163.6, 159.5, 136.2, 133.7, 131.3, 129.5, 128.8, 128.53, 128.49, 128.2, 126.6, 83.8, 27.6.
3.6. Reaction of Azirine 1a with N,N-Diethylhydroxylamine
- Methyl 2-benzamidoacetate (4a) [39]. 1H NMR (400 MHz, CDCl3), δ, ppm: 7.86–7.82 (m, 2H), 7.58–7.52 (m, 1H), 7.50–7.44 (m, 2H), 6.69 (br.s, 1H), 4.28 (d, J = 5.1 Hz, 2H), 3.83 (s, 3H).
- Methyl 2-benzamido-2-((diethylamino)oxy)acetate (4b). Yellow oil. 1H NMR (400 MHz, CDCl3), δ, ppm: 7.93–7.82 (m, 2H), 7.59–7.53 (m, 1H), 7.51–7.44 (m, 2H), 7.23 (br.d, J = 9.3 Hz, 1H), 6.07 (d, J = 9.3 Hz, 1H), 3.85 (s, 3H), 2.86 (m, 4H), 1.12 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3), δ, ppm: 168.8 (C(O)O), 166.6 (C(O)N), 133.5 (ipso-C), 132.2 (para-C), 128.7 (meta-C), 127.2 (ortho-C), 79.6 (CH), 52.6 (CH3O), 52.2 (CH2N), 11.7 (CH3). HRMS (ESI-TOF) calculated for C14H20N2NaO4 [M + Na]+ 303.1315; found 303.1311.
- Methyl 2-benzamido-2-(diethylamino)acetate (4c). Yellow oil. 1H NMR (400 MHz, CDCl3), δ, ppm: 7.85–7.80 (m, 2H), 7.58–7.51 (m, 1H), 7.50–7.42 (m, 2H), 6.99 (br.d, J = 8.3 Hz, 1H), 5.71 (d, J = 8.3 Hz, 1H), 3.83 (s, 3H), 2.76–2.60 (m, 4H), 1.18 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (125 MHz, CDCl3), δ, ppm: 171.2 (C(O)O), 167.7 (C(O)N), 133.9 (ipso-C), 131.8 (para-C), 128.6 (meta-C), 127.1 (ortho-C), 66.5 (CH), 52.8 (CH3O), 44.1 (CH2N), 13.4 (CH3). HRMS (ESI-TOF) calculated for C14H20N2NaO3 [M + Na]+ 287.1366; found 287.1371.
3.7. NMR Detection of Aziridine 8
- Methyl 3-(diethylaminooxy)-3-phenylaziridine-2-carboxylate (8). 1H NMR (500 MHz, CDCl3,–40 °C), δ, ppm: 7.58–7.53 (m, 2.5H, ortho-H, dia-2), 7.45–7.33 (m, 8.5H), 3.61 (s, 3H, CH3O, dia-1), 3.45 (s, 3.5H, CH3O, dia-2), 3.43 (d, J = 8.9 Hz, 1H, CH, dia-1), 3.36 (d, J = 10.2 Hz, 1.2H, CH, dia-2), 2.85–2.56 (m), 2.44 (d, J = 10.2 Hz, 1.2H, NH, dia-2), 2.19 (d, J = 8.9 Hz, 1H, NH, dia-1), 1.24–1.07 (m), 0.99 (t, J = 7.1 Hz, 3H, CH3, dia-1). 13C{1H} NMR (125 MHz, CDCl3,–40 °C), δ, ppm: aziridine carbons 78.0 (C, dia-1), 77.8 (C, dia-2), 38.7 (CH, dia-1), 37.2 (CH, dia-2).
3.8. EPR Detection of Nitroxyl Radical Et2N-O·
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khlebnikov, A.F.; Novikov, M.S.; Rostovskii, N.V. Advances in 2H-Azirine Chemistry: A Seven-Year Update. Tetrahedron 2019, 75, 2555–2624. [Google Scholar] [CrossRef]
- Darbandizadeh, S.A.; Amiri, K.; Rominger, F.; Balalaie, S. Synthesis of Naphthyridine and Azepine Backbones through Formal [4 + 3] and [4 + 2] Annulation via Cascade Ring-Opening/Cyclization Reaction of 2H-Azirines. Eur. J. Org. Chem. 2023, 26, e202201109. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z.; Ma, W.; Bao, G.; Li, Y.; Yu, C.; Li, J.; E, R.; Xu, Z.; Wang, R.; et al. Copper(I)-Catalyzed Late-Stage Introduction of Oxime Ethers into Peptides at the Carboxylic Acid Site. Org. Lett. 2022, 24, 9248–9253. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, Y.; Ding, L.; Zhang, C.; Wang, X.-N.; Chang, J. Synthesis of 2-Aminopyrroles Via Metal-Free Annulation of Ynamides with 2H-Azirines. J. Org. Chem. 2022, 87, 15564–15570. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Fang, T.; Lin, Z.; Qin, L.; Jiang, M.; Wu, W.; You, Y.; Weng, Z. Ring-expansion reaction for the synthesis of 2-(trifluoromethyl)oxazoles and 3-(trifluoromethyl)-1,2,4-triazines. Tetrahedron Lett. 2022, 107, 154100. [Google Scholar] [CrossRef]
- Sakharov, P.A.; Rostovskii, N.V.; Khlebnikov, A.F.; Novikov, M.S. Copper(II)-Catalyzed (3+2) Cycloaddition of 2H-Azirines to Six-Membered Cyclic Enols as a Route to Pyrrolo[3,2-c]quinolone, Chromeno[3,4-b]pyrrole, and Naphtho[1,8-ef]indole Scaffolds. Molecules 2022, 27, 5681. [Google Scholar] [CrossRef]
- Alves, M.J.; Teixeira e Costa, F. 2H-Azirines as Electrophiles in Heterocyclic Targets in Advanced Organic Synthesis; Research Signpost: Trivandrum, India, 2011; pp. 145–172. [Google Scholar]
- Eremeev, A.V.; Él’kinson, R.S.; Myagi, M.Y.; Liepin’sh, É.É. Reactions of 2,2-dimethyl-3-phenylazirine with amines. Chem. Heterocycl. Compd. 1979, 15, 1088–1090. [Google Scholar] [CrossRef]
- Alves, M.J.; Gil Fortes, A.; Gonçalves, L.F. Optically active aziridine esters by nucleophilic addition of nitrogen heterocycles to a chiral 2H-azirine-2-carboxylic ester. Tetrahedron Lett. 2003, 44, 6277–6279. [Google Scholar] [CrossRef]
- Nakamura, S. Enantioselective Reaction of 2H-Azirines. Chem. Asian J. 2019, 14, 1323–1330. [Google Scholar] [CrossRef]
- Callebaut, G.; Meiresonne, T.; De Kimpe, N.; Mangelinckx, S. Synthesis and Reactivity of 2-(Carboxymethyl)aziridine Derivatives. Chem. Rev. 2014, 114, 7954–8015. [Google Scholar] [CrossRef]
- Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small Heterocycles in Multicomponent Reactions. Chem. Rev. 2014, 114, 8323–8359. [Google Scholar] [CrossRef]
- Singh, G.S.; D’hooghe, M.; De Kimpe, N. Synthesis and Reactivity of C-Heteroatom-Substituted Aziridines. Chem. Rev. 2007, 107, 2080–2135. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, P.A.; Rostovskii, N.V.; Khlebnikov, A.F.; Khoroshilova, O.V.; Novikov, M.S. Transition Metal-Catalyzed Synthesis of 3-Coumaranone-Containing NH-Aziridines from 2H-Azirines: Nickel(II) versus Gold(I). Adv. Synth. Catal. 2019, 361, 3359–3372. [Google Scholar] [CrossRef]
- Hu, H.; Xu, J.; Liu, W.; Dong, S.; Lin, L.; Feng, X. Copper-Catalyzed Asymmetric Addition of Tertiary Carbon Nucleophiles to 2H-Azirines: Access to Chiral Aziridines with Vicinal Tetrasubstituted Stereocenters. Org. Lett. 2018, 20, 5601–5605. [Google Scholar] [CrossRef] [PubMed]
- Vélez del Burgo, A.; Ochoa de Retana, A.M.; de los Santos, J.M.; Palacios, F. Reaction of 2H-Azirine-Phosphine Oxides and -Phosphonates with Enolates Derived from β-Keto Esters. J. Org. Chem. 2016, 81, 100–108. [Google Scholar] [CrossRef]
- Nakamura, S.; Hayama, D. Enantioselective Reaction of 2H-Azirines with Phosphite Using Chiral Bis(imidazoline)/Zinc(II) Catalysts. Angew. Chem. Int. Ed. 2017, 56, 8785–8789. [Google Scholar] [CrossRef]
- Pusch, S.; Kowalczyk, D.; Opatz, T. A Photoinduced Cobalt-Catalyzed Synthesis of Pyrroles through in Situ-Generated Acylazirines. J. Org. Chem. 2016, 81, 4170–4178. [Google Scholar] [CrossRef]
- Galenko, A.V.; Khlebnikov, A.F.; Novikov, M.S.; Avdontseva, M.S. Synthesis of 3-(1,2-dioxoethyl)- and 2,3-dicarbonyl-containing pyrroles. Tetrahedron 2015, 71, 1940–1951. [Google Scholar] [CrossRef]
- Barroso, M.T.; Kascheres, A. Electronically Mediated Selectivity in Ring Opening of 1-Azirines. The 3-Z Mode: Convenient Route to 2-Aza-1,3-dienes. J. Org. Chem. 1999, 64, 49–53. [Google Scholar] [CrossRef]
- Auricchio, S.; Grassi, S.; Malpezzi, L.; Sartori, A.S.; Truscello, A.M. New Cleavage of the Azirine Ring by Single Electron Transfer: The Synthesis of 2H-Imidazoles, Pyridazines and Pyrrolines. Eur. J. Org. Chem. 2001, 2001, 1183–1187. [Google Scholar] [CrossRef]
- Hossain, A.; Pagire, S.K.; Reiser, O. Visible-Light-Mediated Synthesis of Pyrazines from Vinyl Azides Utilizing a Photocascade Process. Synlett 2017, 28, 1707–1714. [Google Scholar] [CrossRef]
- Okamoto, K.; Mashida, A.; Watanabe, M.; Ohe, K. An unexpected disproportional reaction of 2H-azirines giving (1E,3Z)-2-aza-1,3-dienes and aromatic nitriles in the presence of nickel catalysts. Chem. Commun. 2012, 48, 3554–3556. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.; Titov, G.D.; Khoroshilova, O.V.; Kinzhalov, M.A.; Rostovskii, N.V. Light-induced one-pot synthesis of pyrimidine derivatives from vinyl azides. Org. Biomol. Chem. 2020, 18, 4971–4982. [Google Scholar] [CrossRef] [PubMed]
- Kascheres, A.; Oliveira, C.M.A.; De Azevedo, M.B.M.; Nobre, C.M.S. Reaction of methyl (E)-2-phenyl-1-azirine-3-acrylates with hydrazines and amidines. Synthetic and mechanistic implications. J. Org. Chem. 1991, 56, 7–9. [Google Scholar] [CrossRef]
- Pinho e Melo, T.M.V.D.; Cardoso, A.L.; Gomes, C.S.B.; Rocha Gonsalves, A.M. d’A. 2H-Azirines as dipolarophiles. Tetrahedron Lett. 2003, 44, 6313–6315. [Google Scholar] [CrossRef]
- Sun, S.; Huang, J.; Yuan, C.; Wang, G.; Guo, D.; Wang, J. Switchable assembly of substituted pyrimidines and 2H-imidazoles via Cu(i)-catalysed ring expansion of 2 methoxyl-2H-azirines. Org. Chem. Front. 2022, 9, 3006–3011. [Google Scholar] [CrossRef]
- Muzart, J. DBU: A Reaction Product Component. ChemistrySelect 2020, 5, 11608–11620. [Google Scholar] [CrossRef]
- Grossi, L. Base-catalyzed autoxidation of trialkylamines. An e.s.r study. Tetrahedron Lett. 1987, 28, 3387–3390. [Google Scholar] [CrossRef]
- Motyakin, M.V.; Wasserman, A.M.; Stott, P.E.; Zaikov, G.E. Possible mediators of the “living” radical polymerization. Spectrochim. Acta A 2006, 63, 802–815. [Google Scholar] [CrossRef]
- Funt, L.D.; Tomashenko, O.A.; Novikov, M.S.; Khlebnikov, A.F. An Azirine Strategy for the Synthesis of Alkyl 4-Amino-5-(trifluoromethyl)-1H-pyrrole-2-carboxylates. Synthesis 2018, 50, 4809–4822. [Google Scholar]
- Purkayastha, M.L.; Bhat, L.; Ila, H.; Junjappa, H. 4-Alkoxy-3-cyano-2(1H)-pyridones and 5-Alkoxyisoxazoles and Their Aryl Substituted and Annulated Derivatives from Acylketene O,S-Acetals. Synthesis 1995, 6, 641–643. [Google Scholar] [CrossRef]
- Agafonova, A.V.; Smetanin, I.A.; Rostovskii, N.V.; Khlebnikov, A.F.; Novikov, M.S. Easy Access to 2-Fluoro- and 2-Iodo-2H-azirines via the Halex Reaction. Synthesis 2019, 51, 4582–4589. [Google Scholar] [CrossRef]
- An, D.; Guan, X.; Guan, R.; Jin, L.; Zhang, G.; Zhang, S. Organocatalyzed nucleophilic addition of pyrazoles to 2H-azirines: Asymmetric synthesis of 3,3-disubstituted aziridines and kinetic resolution of racemic 2H-azirines. Chem. Commun. 2016, 52, 11211–11214. [Google Scholar] [CrossRef] [PubMed]
- Smetanin, I.A.; Novikov, M.S.; Agafonova, A.V.; Rostovskii, N.V.; Khlebnikov, A.F.; Kudryavtsev, I.V.; Terpilowski, M.A.; Serebriakova, M.K.; Trulioff, A.S.; Goncharov, N.V. A novel strategy for the synthesis of thermally stable and apoptosis-inducing 2,3-dihydroazetes. Org. Biomol. Chem. 2016, 14, 4479–4487. [Google Scholar] [CrossRef] [PubMed]
- Galenko, E.E.; Galenko, A.V.; Khlebnikov, A.F.; Novikov, M.S. Domino transformation of isoxazoles to 2,4-dicarbonylpyrroles under Fe/Ni relay catalysis. RSC Adv. 2015, 5, 18172–18176. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Xu, J.; Sun, J.; Sun, F.; Zhang, Y.; Zhang, C.; Du, Y. A new hypervalent iodine(iii/v) oxidant and its application to the synthesis of 2H-azirines. Chem. Sci. 2020, 11, 947–953. [Google Scholar] [CrossRef]
- Zhou, N.; Xie, T.; Li, Z.; Xie, Z. CuII/TEMPO-Promoted One-Pot Synthesis of Highly Substituted Pyrimidines from Amino Acid Esters. Chem. Eur. J. 2014, 20, 17311–17314. [Google Scholar] [CrossRef]
- Mei, C.; Hu, Y.; Lu, W. Visible-Light-Driven Oxidation of N-Alkylamides to Imides Using Oxone/H2O and Catalytic KBr. Synthesis 2018, 50, 2999–3005. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. (Eds.) Gaussian 09, Revision C.01 & D.01; Gaussian: Wallingford, CT, USA, 2013. [Google Scholar]
Entry | Solvent | Base | Additive | T, °C | Time b | Yield of 3a, %/ Conversion of 1a, % |
---|---|---|---|---|---|---|
1 | MeCN | NEt3 (2 eqv) | - | 70 | 4.5 days | 48/100 |
2 | MeCN | NEt3 (2 eqv) | - | 100 | 34 h | 22/100 |
3 | MeCN | NEt3 (2 eqv) | - | 40 | 5 days | 0/0 |
4 | MeCN | - | - | 70 | 4.5 days | 0/0 |
5 | MeCN | NEt3 (1 eqv) | - | 70 | 3 weeks | 41/100 |
6 | MeCN | DBU (1 eqv) | - | 70 | 18 h | 27/100 |
7 | MeCN | tBuOK (1 eqv) | - | rt | 1 h | 0/100 |
8 | PhMe | NEt3 (2 eqv) | - | 70 | 6 days | 0/85 (1H NMR) |
9 | Acetone | NEt3 (2 eqv) | - | 70 | 1 week | 0/19 (1H NMR) |
10 | DCE | NEt3 (2 eqv) | - | 70 | 8 days | 0/66 (1H NMR) |
11 | 1,4-Dioxane | NEt3 (2 eqv) | - | 70 | 5 days | 0/0 |
12 | MeCN | NEt3 (2.6 eqv) | TEMPO (1 eqv) | 70 | 5 days | 0/0 |
13 | MeCN | NEt3 (2.6 eqv) | AIBN (1 eqv) | 70 | 5 days | 70/100 |
14 | MeCN | NEt3 (2.6 eqv) | ACHN (1 eqv) | 70 | 3 days | 70/100 |
15 | MeCN | - | AIBN (1 eqv) | 70 | 24 h | 0/0 |
16 | MeCN | NEt3 (2.6 eqv) | (BzO)2 (1 eqv) | 70 | 3 days | 0/100 |
17 | MeCN | NEt3 (2 eqv) | under Ar | 70 | 5 days | 0/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharov, T.N.; Sakharov, P.A.; Novikov, M.S.; Khlebnikov, A.F.; Rostovskii, N.V. Triethylamine-Promoted Oxidative Cyclodimerization of 2H-Azirine-2-carboxylates to Pyrimidine-4,6-dicarboxylates: Experimental and DFT Study. Molecules 2023, 28, 4315. https://doi.org/10.3390/molecules28114315
Zakharov TN, Sakharov PA, Novikov MS, Khlebnikov AF, Rostovskii NV. Triethylamine-Promoted Oxidative Cyclodimerization of 2H-Azirine-2-carboxylates to Pyrimidine-4,6-dicarboxylates: Experimental and DFT Study. Molecules. 2023; 28(11):4315. https://doi.org/10.3390/molecules28114315
Chicago/Turabian StyleZakharov, Timofei N., Pavel A. Sakharov, Mikhail S. Novikov, Alexander F. Khlebnikov, and Nikolai V. Rostovskii. 2023. "Triethylamine-Promoted Oxidative Cyclodimerization of 2H-Azirine-2-carboxylates to Pyrimidine-4,6-dicarboxylates: Experimental and DFT Study" Molecules 28, no. 11: 4315. https://doi.org/10.3390/molecules28114315
APA StyleZakharov, T. N., Sakharov, P. A., Novikov, M. S., Khlebnikov, A. F., & Rostovskii, N. V. (2023). Triethylamine-Promoted Oxidative Cyclodimerization of 2H-Azirine-2-carboxylates to Pyrimidine-4,6-dicarboxylates: Experimental and DFT Study. Molecules, 28(11), 4315. https://doi.org/10.3390/molecules28114315