Can Rare Earth Elements Be Considered as Markers of the Varietal and Geographical Origin of Wines?
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Research Objects
3.2. Procedures
3.2.1. Wine Clarification and Stabilization Using BT
3.2.2. Elemental and X-ray Diffraction Analysis of BT
3.2.3. Determination of REE in Wines
3.2.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ranaweera, R.K.R.; Gilmore, A.M.; Capone, D.L.; Bastian, S.E.P.; Jeffery, D.W. Spectrofluorometric analysis combined with machine learning for geographical and varietal authentication, and prediction of phenolic compound concentrations in red wine. Food Chem. 2021, 361, 130149. [Google Scholar] [CrossRef] [PubMed]
- Popîrdă, A.; Luchian, C.E.; Cotea, V.V.; Colibaba, L.C.; Scutarașu, E.C.; Toader, A.M. A Review of Representative Methods Used in Wine Authentication. Agriculture 2021, 11, 225. [Google Scholar] [CrossRef]
- Tahir, H.E.; Arslan, M.; Komla Mahunu, G.; Adam Mariod, A.; Hashim, S.; Xiaobo, Z.; Jiyong, S.; El-Seedi, H.R.; Musa, T.H. The use of analytical techniques coupled with chemometrics for tracing the geographical origin of oils: A systematic review (2013–2020). Food Chem. 2022, 366, 130633. [Google Scholar] [CrossRef] [PubMed]
- Ranaweera, R.K.R.; Capone, D.L.; Bastian, S.E.P.; Cozzolino, D.; Jeffery, D.W. A Review of Wine Authentication Using Spectroscopic Approaches in Combination with Chemometrics. Molecules 2021, 26, 4334. [Google Scholar] [CrossRef]
- Arslan, M.; Tahir, H.E.; Zareef, M.; Shi, J.; Rakha, A.; Bilal, M.; Xiaowei, H.; Zhihua, L.; Xiaobo, Z. Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends Food Sci. Technol. 2021, 107, 80–113. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Khalafyan, A.; Kaunova, A.; Abakumov, A.; Titarenko, V.; Akin’shina, V. Using neural networks to identify the regional and varietal origin of Cabernet and Merlot dry red wines produced in Krasnodar region. Foods Raw Mater. 2019, 7, 124–130. [Google Scholar] [CrossRef]
- Urvieta, R.; Buscema, F.; Bottini, R.; Coste, B.; Fontana, A. Phenolic and sensory profiles discriminate geographical indications for Malbec wines from different regions of Mendoza, Argentina. Food Chem. 2018, 265, 120–127. [Google Scholar] [CrossRef]
- Catarino, S.; Madeira, M.; Monteiro, F.; Caldeira, I.; Bruno de Sousa, R.; Curvelo-Garcia, A. Mineral Composition through Soil-Wine System of Portuguese Vineyards and Its Potential for Wine Traceability. Beverages 2018, 4, 85. [Google Scholar] [CrossRef]
- Khalafyan, A.A.; Temerdashev, Z.A.; Kaunova, A.A.; Abakumov, A.G.; Titarenko, V.O.; Akin’shina, V.A.; Ivanovets, E.A. Determination of the Wine Variety and Geographical Origin of White Wines Using Neural Network Technologies. J. Anal. Chem. 2019, 74, 617–624. [Google Scholar] [CrossRef]
- Temerdashev, Z.A.; Abakumov, A.G.; Khalafyan, A.A.; Ageeva, N.M. Correlations between the elemental composition of grapes, soils of the viticultural area and wine. Ind. Lab. Diagn. Mater. 2021, 87, 11–18. [Google Scholar] [CrossRef]
- Pepi, S.; Grisenti, P.; Sansone, L.; Chicca, M.; Vaccaro, C. Chemical elements as fingerprints of geographical origin in cultivars of Vitis vinifera L. raised on the same SO4 rootstock. Environ. Sci. Pollut. Res. 2018, 25, 490–506. [Google Scholar] [CrossRef]
- D’Antone, C.; Punturo, R.; Vaccaro, C. Rare earth elements distribution in grapevine varieties grown on volcanic soils: An example from Mount Etna (Sicily, Italy). Environ. Monit. Assess. 2017, 189, 160. [Google Scholar] [CrossRef]
- Mihucz, V.G.; Done, C.J.; Tatár, E.; Virág, I.; Záray, G.; Baiulescu, E.G. Influence of different bentonites on the rare earth element concentrations of clarified Romanian wines. Talanta 2006, 70, 984–990. [Google Scholar] [CrossRef]
- Bronzi, B.; Brilli, C.; Beone, G.M.; Fontanella, M.C.; Ballabio, D.; Todeschini, R.; Consonni, V.; Grisoni, F.; Parri, F.; Buscema, M. Geographical identification of Chianti red wine based on ICP-MS element composition. Food Chem. 2020, 315, 126248. [Google Scholar] [CrossRef]
- Punturo, R.; D’Antone, C.; Pepi, S.; Vaccaro, C. Rare earth elements absorption patterns in grapevine “Vitis vinifera L.” cultivated in carbonate terrains (south-eastern Sicily, Italy). Environ. Earth Sci. 2018, 77, 801. [Google Scholar] [CrossRef]
- Cerutti, C.; Sánchez, R.; Sánchez, C.; Ardini, F.; Grotti, M.; Todolí, J.-L. Prospect on Rare Earth Elements and Metals Fingerprint for the Geographical Discrimination of Commercial Spanish Wines. Molecules 2020, 25, 5602. [Google Scholar] [CrossRef]
- Magdas, D.A.; Marincas, O.; Cristea, G.; Feher, I.; Vedeanu, N. REEs—A possible tool for geographical origin assessment? Environ. Chem. 2020, 17, 148. [Google Scholar] [CrossRef]
- Galgano, F.; Favati, F.; Caruso, M.; Scarpa, T.; Palma, A. Analysis of trace elements in southern Italian wines and their classification according to provenance. LWT Food Sci. Technol. 2008, 41, 1808–1815. [Google Scholar] [CrossRef]
- Aceto, M.; Robotti, E.; Oddone, M.; Baldizzone, M.; Bonifacino, G.; Bezzo, G.; Di Stefano, R.; Gosetti, F.; Mazzucco, E.; Manfredi, M.; et al. A traceability study on the Moscato wine chain. Food Chem. 2013, 138, 1914–1922. [Google Scholar] [CrossRef]
- Baxter, M.; Crews, H.; John Dennis, M.; Goodall, I.; Anderson, D. The determination of the authenticity of wine from its trace element composition. Food Chem. 1997, 60, 443–450. [Google Scholar] [CrossRef]
- Augagneur, S.; Médina, B.; Szpunar, J.; Lobiński, R. Determination of rare earth elements in wine by inductively coupled plasma mass spectrometry using a microconcentric nebulizer. J. Anal. At. Spectrom. 1996, 11, 713–721. [Google Scholar] [CrossRef]
- Jakubowski, N.; Brandt, R.; Stuewer, D.; Eschnauer, H.R.; Görtges, S. Analysis of wines by ICP-MS: Is the pattern of the rare earth elements a reliable fingerprint for the provenance? Fresenius. J. Anal. Chem. 1999, 364, 424–428. [Google Scholar] [CrossRef]
- Hopfer, H.; Nelson, J.; Collins, T.S.; Heymann, H.; Ebeler, S.E. The combined impact of vineyard origin and processing winery on the elemental profile of red wines. Food Chem. 2015, 172, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.E.; Watling, R.J.; Lee, G.S. The multi-element determination and regional discrimination of Australian wines. Food Chem. 2012, 133, 1081–1089. [Google Scholar] [CrossRef]
- Bentlin, F.R.S.; dos Santos, C.M.M.; Flores, É.M.M.; Pozebon, D. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS. Anal. Chim. Acta 2012, 710, 33–39. [Google Scholar] [CrossRef]
- Catarino, S.; Madeira, M.; Monteiro, F.; Rocha, F.; Curvelo-Garcia, A.S.; de Sousa, R.B. Effect of Bentonite Characteristics on the Elemental Composition of Wine. J. Agric. Food Chem. 2008, 56, 158–165. [Google Scholar] [CrossRef]
- Castiñeira, M.D.M.; Brandt, R.; Jakubowski, N.; Andersson, J.T. Changes of the Metal Composition in German White Wines through the Winemaking Process. A Study of 63 Elements by Inductively Coupled Plasma−Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 2953–2961. [Google Scholar] [CrossRef]
- Nicolini, G.; Larcher, R.; Pangrazzi, P.; Bontempo, L. Changes in the contents of micro- and trace elements in wine due to winemaking treatments. Vitis 2004, 43, 41–45. [Google Scholar]
- Temerdashev, Z.; Abakumov, A.; Bolshov, M.; Khalafyan, A.; Ageeva, N.; Vasilyev, A.; Ramazanov, A. Instrumental assessment of the formation of the elemental composition of wines with various bentonite clays. Microchem. J. 2022, 175, 107145. [Google Scholar] [CrossRef]
- Tatár, E.; Mihucz, V.G.; Virág, I.; Rácz, L.; Záray, G. Effect of four bentonite samples on the rare earth element concentrations of selected Hungarian wine samples. Microchem. J. 2007, 85, 132–135. [Google Scholar] [CrossRef]
- Orellana, S.; Johansen, A.M.; Gazis, C. Geographic classification of U.S. Washington State wines using elemental and water isotope composition. Food Chem. X 2019, 1, 100007. [Google Scholar] [CrossRef]
- Tomoko, V. Thermo Scientific iCAP RQ ICP-MS: Typical Limits of Detection. Available online: http://tools.thermofisher.com/content/sfs/brochures/TN-43427-ICP-MS-Detection-Limits-iCAP-RQ-TN43427-EN.pdf (accessed on 3 May 2023).
- Dabakh, E.V. Rare earth elements in soils and plants of meadow biocenoses. Theor. Appl. Ecol. 2021, 104–111. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Abakumov, A.; Bolshov, M.; Khalafyan, A.; Ageeva, N.; Vasilyev, A. Data on the influence of clarification and stabilization with bentonite clays on the elemental composition of red wines determining their varietal affiliation. Data Br. 2022, 42, 108163. [Google Scholar] [CrossRef]
- Wucherpfennig, K.; Wines. Production of Table Wines. Food Sci. Nutr. 2003, 6195–6203. [Google Scholar] [CrossRef]
- Lambri, M.; Colangelo, D.; Dordoni, R.; Torchio, F.; De Faveri, D.M. Innovations in the Use of Bentonite in Oenology: Interactions with Grape and Wine Proteins, Colloids, Polyphenols and Aroma Compounds. In Grape and Wine Biotechnology; InTech: Rijeka, Croatia, 2016; pp. 381–400. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology—The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons: Chichester, West Sussex, UK, 2006; pp. 301–332. [Google Scholar]
- Microwave Digestion of Clay. Available online: https://cemcontenttype.s3.amazonaws.com/content/media-library/attachments/MetNote_MARS6_Clay_2.pdf (accessed on 3 May 2023).
- Alonso Gonzalez, P.; Parga-Dans, E.; Arribas Blázquez, P.; Pérez Luzardo, O.; Zumbado Peña, M.L.; Hernández González, M.M.; Rodríguez-Hernández, Á.; Andújar, C. Elemental composition, rare earths and minority elements in organic and conventional wines from volcanic areas: The Canary Islands (Spain). PLoS ONE 2021, 16, e0258739. [Google Scholar] [CrossRef]
- Grainger, C.; Yeh, A.; Byer, S.; Hjelmeland, A.; Lima, M.M.M.; Runnebaum, R.C. Vineyard site impact on the elemental composition of Pinot noir wines. Food Chem. 2021, 334, 127386. [Google Scholar] [CrossRef]
- Aceto, M.; Gulino, F.; Calà, E.; Robotti, E.; Petrozziello, M.; Tsolakis, C.; Cassino, C. Authentication and Traceability Study on Barbera d’Asti and Nizza DOCG Wines: The Role of Trace- and Ultra-Trace Elements. Beverages 2020, 6, 63. [Google Scholar] [CrossRef]
- Hill, T.; Lewicki, P. Statistics Methods and Applications, 1st ed.; StatSoft: Tulsa, OK, USA, 2007; 800p. [Google Scholar]
Element | Concentration, µg/g | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | |||||||||
Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | |
Y | 0.84 | 2.43 | 4.31 | 0.55 | 1.15 | 1.86 | 0.54 | 1.34 | 3.21 | 0.64 | 0.91 | 1.17 |
La | 0.73 | 1.12 | 1.91 | 0.37 | 1.64 | 3.06 | 0.78 | 1.67 | 2.83 | 0.37 | 0.52 | 0.67 |
Ce | 1.25 | 3.28 | 7.19 | 0.91 | 3.69 | 10.16 | 0.91 | 3.82 | 7.70 | 2.14 | 3.35 | 4.56 |
Pr | 0.07 | 0.42 | 1.24 | 0.18 | 0.57 | 1.48 | 0.21 | 0.63 | 1.89 | 0.10 | 0.35 | 0.59 |
Nd | 0.32 | 1.39 | 2.57 | 0.34 | 0.79 | 1.50 | 0.41 | 1.77 | 3.08 | 0.44 | 0.99 | 1.53 |
Sm | 0.05 | 0.46 | 1.06 | 0.12 | 0.44 | 1.03 | 0.07 | 0.49 | 1.20 | 0.07 | 0.30 | 0.52 |
Eu | 0.03 | 0.16 | 0.68 | 0.04 | 0.12 | 0.37 | 0.01 | 0.16 | 0.66 | 0.02 | 0.08 | 0.13 |
Gd | 0.19 | 0.69 | 1.68 | 0.06 | 0.45 | 0.94 | 0.10 | 0.74 | 2.14 | 0.08 | 0.50 | 0.91 |
Tb | 0.01 | 0.10 | 0.38 | 0.01 | 0.04 | 0.08 | 0.04 | 0.09 | 0.37 | 0.01 | 0.05 | 0.08 |
Dy | 0.05 | 0.47 | 1.62 | 0.13 | 0.26 | 0.36 | 0.06 | 0.49 | 1.53 | 0.18 | 0.23 | 0.28 |
Ho | 0.01 | 0.14 | 0.49 | 0.07 | 0.16 | 0.40 | 0.03 | 0.13 | 0.31 | 0.08 | 0.09 | 0.10 |
Er | 0.10 | 0.33 | 0.85 | 0.10 | 0.26 | 0.37 | 0.04 | 0.24 | 0.58 | 0.14 | 0.14 | 0.14 |
Tm | 0.01 | 0.09 | 0.19 | 0.01 | 0.03 | 0.06 | 0.01 | 0.06 | 0.17 | 0.01 | 0.01 | 0.01 |
Yb | 0.21 | 0.61 | 1.13 | 0.24 | 0.37 | 0.62 | 0.08 | 0.57 | 1.29 | 0.30 | 0.35 | 0.40 |
Lu | 0.02 | 0.14 | 0.31 | 0.01 | 0.06 | 0.15 | 0.01 | 0.12 | 0.35 | 0.01 | 0.06 | 0.11 |
Total | 3.89 | 11.83 | 25.61 | 3.14 | 10.03 | 22.44 | 3.30 | 12.32 | 27.31 | 4.59 | 7.93 | 11.2 |
REE | REE Content in Wine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cabernet Sauvignon | Merlot | Moldova | ||||||||||
Untreated | After BT Treatment | Untreated | After BT Treatment | Untreated | After BT Treatment | |||||||
Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | ||||
Y | 0.29 ± 0.04 | 0.64 | 2.16 | 5.54 | 0.11 ± 0.02 | 0.54 | 1.65 | 4.31 | 0.07 ± 0.01 | 0.47 | 1.97 | 4.97 |
La | 0.18 ± 0.03 | 0.64 | 1.81 | 4.27 | 0.05 ± 0.01 | 0.37 | 1.40 | 3.06 | 0.05 ± 0.01 | 0.20 | 1.24 | 2.72 |
Ce | 0.19 ± 0.03 | 1.55 | 4.51 | 12.36 | 0.08 ± 0.01 | 0.91 | 3.58 | 10.12 | 0.04 ± 0.01 | 0.75 | 2.99 | 9.50 |
Pr | <LOQ | 0.12 | 0.66 | 2.55 | <LOQ | <LOQ | 0.53 | 1.89 | <LOQ | <LOQ | 0.37 | 1.25 |
Nd | <LOQ | 0.34 | 1.75 | 3.84 | <LOQ | 0.32 | 1.41 | 3.08 | <LOQ | 0.22 | 0.99 | 2.33 |
Sm | <LOQ | 0.09 | 0.51 | 1.56 | <LOQ | <LOQ | 0.46 | 1.20 | <LOQ | 0.07 | 0.41 | 1.23 |
Eu | <LOQ | 0.07 | 0.17 | 0.52 | <LOQ | 0.01 | 0.15 | 0.68 | <LOQ | <LOQ | 0.12 | 0.36 |
Gd | <LOQ | 0.20 | 0.95 | 2.41 | <LOQ | 0.06 | 0.65 | 2.14 | <LOQ | 0.05 | 0.51 | 1.28 |
Tb | <LOQ | 0.04 | 0.14 | 0.42 | <LOQ | <LOQ | 0.08 | 0.38 | <LOQ | <LOQ | 0.04 | 0.16 |
Dy | <LOQ | 0.09 | 0.56 | 1.99 | <LOQ | 0.05 | 0.42 | 1.62 | <LOQ | 0.03 | 0.31 | 0.93 |
Ho | <LOQ | 0.05 | 0.19 | 0.67 | <LOQ | <LOQ | 0.11 | 0.49 | <LOQ | <LOQ | 0.14 | 0.63 |
Er | <LOQ | 0.10 | 0.32 | 0.87 | <LOQ | 0.04 | 0.27 | 0.85 | <LOQ | 0.10 | 0.44 | 1.08 |
Tm | <LOQ | 0.05 | 0.11 | 0.22 | <LOQ | <LOQ | 0.06 | 0.19 | <LOQ | <LOQ | 0.06 | 0.18 |
Yb | <LOQ | 0.10 | 0.37 | 0.88 | <LOQ | 0.08 | 0.53 | 1.29 | <LOQ | 0.03 | 0.33 | 0.87 |
Lu | <LOQ | 0.04 | 0.14 | 0.33 | <LOQ | <LOQ | 0.10 | 0.35 | <LOQ | 0.04 | 0.24 | 0.70 |
Element | Concentration Range of Elements, mg/L | ||||
---|---|---|---|---|---|
Untreated Wine | Group 1 | Group 2 | Group 3 | Group 4 | |
Cabernet Sauvignon | |||||
REE, µg/L | 0.66 ± 0.10 | 6.5–24.5 | 6.1–24.3 | 7.1–29.1 | 7.3–15.2 |
Microelements, mg/L | 3.9 ± 0.6 | 4.1–6.5 | 4.2–6.0 | 4.2–6.1 | 4.1–4.6 |
Merlot | |||||
REE, µg/L | 0.24 ± 0.04 | 4.7–19.5 | 3.5–19.0 | 6.0–25.0 | 5.5–10.4 |
Microelements, mg/L | 3.8 ± 0.6 | 4.2–6.6 | 4.0–5.8 | 4.1–6.1 | 4.1–4.7 |
Moldova | |||||
REE, µg/L | 0.16 ± 0.02 | 4.1–19.0 | 3.3–19.7 | 5.4–22.2 | 4.7–9.4 |
Microelements, mg/L | 5.1 ± 0.8 | 5.5–8.0 | 5.1–7.4 | 5.3–7.8 | 5.4–6.0 |
Element | Cabernet Sauvignon | Merlot | Moldova |
---|---|---|---|
Y | 0.876 | 0.841 | 0.902 |
La | 0.831 | 0.863 | 0.899 |
Ce | 0.893 | 0.866 | 0.845 |
Pr | 0.898 | 0.891 | 0.898 |
Nd | 0.913 | 0.894 | 0.895 |
Sm | 0.855 | 0.847 | 0.853 |
Eu | 0.820 | 0.803 | 0.826 |
Gd | 0.966 | 0.804 | 0.780 |
Tb | 0.911 | 0.901 | 0.874 |
Dy | 0.902 | 0.901 | 0.920 |
Ho | 0.934 | 0.902 | 0.940 |
Er | 0.904 | 0.870 | 0.907 |
Tm | 0.896 | 0.920 | 0.845 |
Yb | 0.952 | 0.902 | 0.919 |
Lu | 0.869 | 0.902 | 0.924 |
N = 96 | Discriminant Function Analysis Summary No. of Vars in Model: 15; Grouping: Sort (3 grps) Wilks’ Lambda: 0.169; Approx. F (30.158) = 7.55, p < 0.05 | |||||
---|---|---|---|---|---|---|
Wilks’ Lambda | Partial Lambda | F-Remove (2.78) | p-Value | Tolerance | 1-Tolerance (R-Sqr.) | |
Yb | 0.233 | 0.726 | 14.903 | 0.000 | 0.285 | 0.715 |
Lu | 0.208 | 0.811 | 9.214 | 0.000 | 0.287 | 0.713 |
Sm | 0.190 | 0.889 | 4.923 | 0.010 | 0.136 | 0.864 |
Gd | 0.190 | 0.889 | 4.919 | 0.010 | 0.418 | 0.582 |
Er | 0.189 | 0.895 | 4.651 | 0.012 | 0.247 | 0.753 |
Dy | 0.186 | 0.906 | 4.098 | 0.020 | 0.238 | 0.762 |
Tb | 0.181 | 0.935 | 2.746 | 0.070 | 0.155 | 0.845 |
La | 0.180 | 0.935 | 2.724 | 0.072 | 0.438 | 0.562 |
Ce | 0.180 | 0.936 | 2.691 | 0.074 | 0.242 | 0.758 |
Tm | 0.180 | 0.936 | 2.690 | 0.074 | 0.172 | 0.828 |
Y | 0.179 | 0.941 | 2.462 | 0.092 | 0.314 | 0.686 |
Nd | 0.171 | 0.985 | 0.616 | 0.543 | 0.334 | 0.666 |
Pr | 0.171 | 0.985 | 0.602 | 0.550 | 0.155 | 0.845 |
Eu | 0.171 | 0.986 | 0.545 | 0.582 | 0.263 | 0.737 |
Ho | 0.170 | 0.991 | 0.377 | 0.687 | 0.318 | 0.682 |
No | BT Name | Country | Lightening Quality * | No | BT Name | Country | Lightening Quality |
---|---|---|---|---|---|---|---|
BT1 | Electra | Italy | +++ | BT17 | BentoVinumGold (particle size 0.05 mm) | Kazakhstan | +++ |
BT2 | Azerbaijan | Azerbaijan | ++ | BT18 | Bentovin (particle size 0.07 mm) | Azerbaijan | +++ |
BT3 | Claris P | Bosnia and Herzegovina | ++ | BT19 | Bentovin (particle size 0.05 mm) | Azerbaijan | ++ |
BT4 | ClarisP70 | Bosnia and Herzegovina | ++ | BT20 | Vinobent field “10 Khutor” (particle size 0.07 mm) | Russia | ++ |
BT5 | GranuBent Pore-Tec | Germany | +++ | BT21 | Vinobent field “10 Khutor” (particle size 0.05 mm) | Russia | ++ |
BT6 | Aktivit | Germany | cloudy wine | BT22 | Vinobent field “10 Khutor” production lot | Russia | ++ |
BT7 | Ca-Granulat | Germany | cloudy wine | BT23 | Bentovin production lot | Azerbaijan | ++ |
BT8 | NaCalitPore-Tec | Germany | ++ | BT24 | KaliNat Erbslöh | Germany | + |
BT9 | Gumbrin | Georgia | ++ | BT25 | Aktivit Erbslöh | Germany | +++ |
BT10 | Granula | France | +++ | BT26 | Extrabent | France | +++ |
BT11 | Askangel | Georgia | + | BT27 | Crimean bentonite | Russia | ++ |
BT12 | Ijevan bentonite | Armenia | + | BT28 | Inobent | France | ++ |
BT13 | Khakass field | Russia | ++ | BT29 | Seporit Pore-Tec | Germany | +++ |
BT14 | Khakassia Sigma-Trade | Russia | ++ | BT30 | Extrabent Super | France | +++ |
BT15 | Dagestan field | Russia | ++ | BT31 | ClarisP70 «Meridian» | Bosnia and Herzegovina | + |
BT16 | BentoVinumGold (particle size 0.07 mm) | Kazakhstan | +++ | BT32 | Kurtsevskoe field | Russia | + |
ICP–MS (iCAP RQ) | ||
---|---|---|
Plasma gas flowrate, L/min | 15.0 | |
Nebulizer gas flowrate, L/min | 1.0 | |
Auxiliary gas flowrate, L/min | 0.8 | |
Applied power, W | 1400 | |
Integration time, s | 0.01 | |
Nebulizer type, sample rate | MicroMist concentric nebulizer, 0.4 mL/min | |
Isotopes, (LOQ *, µg/L) | ||
89Y, (0.001); 139La, (0.001); 140Ce, (0.001); 141Pr, (0.011); 146Nd, (0.014); 152Sm, (0.006); 151Eu, (0.003); 157Gd, (0.002); | 159Tb, (0.005); 163Dy, (0.003); 165Ho, (0.006); 166Er, (0.003); 169Tm, (0.002); 174Yb, (0.002); 175Lu, (0.002); | Interference correction equations Sm = I(152Sm) − 0.012780 × I(157Gd) Yb = I(174Yb) − 0.005934 × I(178Hf) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temerdashev, Z.; Bolshov, M.; Abakumov, A.; Khalafyan, A.; Kaunova, A.; Vasilyev, A.; Sheludko, O.; Ramazanov, A. Can Rare Earth Elements Be Considered as Markers of the Varietal and Geographical Origin of Wines? Molecules 2023, 28, 4319. https://doi.org/10.3390/molecules28114319
Temerdashev Z, Bolshov M, Abakumov A, Khalafyan A, Kaunova A, Vasilyev A, Sheludko O, Ramazanov A. Can Rare Earth Elements Be Considered as Markers of the Varietal and Geographical Origin of Wines? Molecules. 2023; 28(11):4319. https://doi.org/10.3390/molecules28114319
Chicago/Turabian StyleTemerdashev, Zaual, Mikhail Bolshov, Aleksey Abakumov, Alexan Khalafyan, Anastasia Kaunova, Alexander Vasilyev, Olga Sheludko, and Arsen Ramazanov. 2023. "Can Rare Earth Elements Be Considered as Markers of the Varietal and Geographical Origin of Wines?" Molecules 28, no. 11: 4319. https://doi.org/10.3390/molecules28114319
APA StyleTemerdashev, Z., Bolshov, M., Abakumov, A., Khalafyan, A., Kaunova, A., Vasilyev, A., Sheludko, O., & Ramazanov, A. (2023). Can Rare Earth Elements Be Considered as Markers of the Varietal and Geographical Origin of Wines? Molecules, 28(11), 4319. https://doi.org/10.3390/molecules28114319