Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Quantification of Polyphenolic Compounds by HPLC
2.2. UHPLC–QTOFMS Analysis
2.3. α-Glucosidase and α-Amylase Inhibitory Assay Determination
3. Materials and Methods
3.1. Sample Extraction
3.2. Ultrasonic-Assisted Extraction (Method A)
3.3. Solid-Phase Extraction (Method B)
3.4. Ethyl Acetate Extraction (Method C)
3.5. High-Performance Liquid Chromatography (HPLC) Analysis
3.6. UHPLC–QTOFMS Analysis
3.7. α-Amylase Inhibitory Assay
3.8. α-Glucosidase Inhibitory Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrera, N.; Betoret, L.; Seguí, L. Phenolic Profile of Cane Sugar Derivatives Exhibiting Antioxidant and Antibacterial Properties. Sugar Technol. 2020, 22, 798–811. [Google Scholar] [CrossRef]
- Abbas, S.R.; Sabir, S.M.; Ahmad, S.D.; Boligon, A.A.; Athayde, M.L. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem. 2014, 147, 10–16. [Google Scholar] [CrossRef] [PubMed]
- El-Abasy, M.; Motobu, M.; Nakamura, K.; Koge, T.; Onodera, O.; Vainio, P.; Toivanen, Y. Hirota, Preventive and therapeutic effects of sugar cane extract on cyclophosphamide-induced immunosuppression in chickens. Int. Immunopharmacol. 2004, 4, 983–990. [Google Scholar] [CrossRef]
- Molina-Cortés, A.; Quimbaya, M.; Toro-Gomez, A.; Tobar-Tosse, F. Bioactive compounds as an alternative for the sugarcane industry: Towards an integrative approach. Heliyon 2023, 9, e13276. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Lal, U.; Mukhtar, H.; Singh, P.; Shah, R. Dhawan, Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev. 2015, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Takara, K.; Ushijima, K.; Wada, H.; Iwasaki, M.; Yamashita, M. Phenolic Compounds from Sugarcane Molasses Possessing Antibacterial Activity against Cariogenic Bacteria. J. Oleo Sci. 2007, 56, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Azlan, A.; Khoo, H.E.; Sajak, A.A.B.; Aizan, N.A.; Kadir, A.; Yusof, B.N.M.; Mahmood, Z.; Sultana, S. Antioxidant activity, nutritional and physicochemical characteristics, and toxicity of minimally refined brown sugar and other sugars. Food Sci. Nutr. 2020, 8, 5048–5062. [Google Scholar] [CrossRef]
- Payet, B.; Sing, A.S.C.; Smadja, J. Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities. J. Agric. Food Chem. 2006, 54, 7270–7276. [Google Scholar] [CrossRef]
- Duarte-Almeida, J.M.; Salatino, A.; Genovese, M.I.; Lajolo, F.M. Phenolic composition and antioxidant activity of culms and sugarcane (Saccharum officinarum L.) products. Food Chem. 2011, 125, 660–664. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Yu, S. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem. 2015, 172, 543–550. [Google Scholar] [CrossRef]
- Preet, A. Metabolomics: Approaches and Applications to Diabetes Research. J. Diabetes Metab. 2013, 1, 1–8. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. Int. J. Biol. Macromol. 2014, 64, 213–223. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Lee Chelyn, J.; Md Noh, M.; Ahmad, S.; Brownlee, I.; Ismail, A. Alpha-amylase, antioxidant, and anti-inflammatory activities of Eucheuma denticulatum (N.L. Burman) F.S. Collins and Hervey. J. Appl. Phycol. 2015, 28, 1965–1974. [Google Scholar] [CrossRef]
- Khaleeda, N.; Zolkeflee, Z.; Ramli, N.S.; Azlan, A. In Vitro Anti-Diabetic Activities and UHPLC-ESI-MS/MS Profile of Muntingia calabura Leaves Extract. Molecules 2022, 27, 287. [Google Scholar]
- Tombari, G.; Salvetti, C.; Ferrari, G.P. Johari, Kinetics and thermodynamics of sucrose hydrolysis from real-time enthalpy and heat capacity measurements. J. Phys. Chem. B 2007, 111, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Asikin, Y.; Hirose, N.; Tamaki, H.; Ito, S.; Oku, H.; Wada, K. Effects of different drying–solidification processes on physical properties, volatile fraction, and antioxidant activity of non-centrifugal cane brown sugar. LWT Food Sci. Technol. 2016, 66, 340–347. [Google Scholar] [CrossRef]
- Seguí, L.; Calabuig-Jiménez, N.; Betoret, N.; Fito, P. Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. Int. J. Food Sci. Technol. 2015, 50, 2579–2588. [Google Scholar] [CrossRef]
- Azizan, A.; Ahamad Bustamam, M.S.; Maulidiani, M.; Shaari, K.; Ismail, I.S.; Nagao, N.; Abas, F. Metabolite Profiling of the Microalgal Diatom Chaetoceros Calcitrans and Correlation with Antioxidant and Nitric Oxide Inhibitory Activities via 1H NMR-Based Metabolomics. Mar. Drugs 2018, 16, 154. [Google Scholar] [CrossRef]
- Duarte, I.F.; Marques, J.; Ladeirinha, A.F.; Rocha, C.; Lamego, I.; Calheiros, R.; Silva, T.M.; Marques, M.P.M.; Melo, J.B.; Carreira, I.M.; et al. Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal. Chem. 2009, 81, 5023–5032. Available online: http://pubs.acs.org/doi/pdfplus/10.1021/ac900545q%5Cnhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2009297146 (accessed on 1 April 2017).
- Hird, S.J.; Lau, B.P.-Y.; Schuhmacher, R.; Krska, R. Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. TrAC Trends Anal. Chem. 2014, 59, 59–72. [Google Scholar] [CrossRef]
- Keharom, S.; Mahachai, R.; Chanthai, S. The optimisation study of α-amylase activity based on central composite design-response surface methodology by dinitrosalicylic acid method. Int. Food Res. J. 2016, 23, 10–17. [Google Scholar]
- Adisakwattana, S.; Chantarasinlapin, P.; Thammarat, H.; Yibchok-Anun, S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. J. Enzyme Inhib. Med. Chem. 2004, 24, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Jaffé, W.R. Health Effects of Non-Centrifugal Sugar (NCS): A Review. Sugar Technol. 2012, 14, 87–94. [Google Scholar] [CrossRef]
- Mondal, S.C.; Lee, W.H.; Eun, J.B. Ultrasonic extraction of reducing sugar and polyphenols from burdock (Arctium lappa L.) root waste and evaluation of antioxidants and α-glucosidase inhibition activity. Biomass Convers. Biorefinery 2023, 9, 1–8. [Google Scholar] [CrossRef]
Compounds | Retention Time | Ultrasonic-Assisted Extraction (A) | Solid-Phase Extraction (B) | Ethyl Acetate Extraction (C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LRS | BS | RS | LRS | BS | RS | LRS | BS | RS | ||
5-HMF | 5.858 | 14.76 | 6.9 | 5.54 | ND | ND | ND | ND | ND | ND |
Syringic acid | 10.632 | ND | ND | ND | Trace | Trace | ND | Trace | Trace | ND |
Caffeic acid | 11.247 | 24.03 | 15.53 | 8.4 | ND | ND | ND | Trace | Trace | ND |
p-coumaric acid | 14.414 | 15.68 | 2.36 | 1.56 | 9.9 | 4.24 | ND | 18.63 | 10.61 | ND |
Ferulic acid | 15.135 | 3.25 | 17.4 | 6.7 | 1.26 | 0.24 | ND | 7.36 | 5.6 | ND |
TOTAL | 57.72 | 42.19 | 22.06 | 11.16 | 4.48 | 25.99 | 16.21 |
Compounds | RT(min) | [M-H]− | Ultrasonic-Assisted Extraction (A) | Solid-Phase Extraction (B) | Ethyl Acetate Extraction (C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LRS | BS | RS | LRS | BS | RS | LRS | BS | RS | |||
Phenolic acids | |||||||||||
Syringic acid | 1.93 | 197 | * | * | * | * | * | - | * | * | - |
Caffeic acid | 2.07 | 179 | * | * | * | * | * | * | * | * | * |
p-coumaric acid | 20.76 | 163 | * | * | * | * | * | * | * | * | - |
Ferulic acid | 21.49 | 193 | * | * | * | * | * | * | * | * | * |
Chlorogenic acid | 42.89 | 353 | * | * | * | * | * | * | - | - | - |
3,4-hydroxybenzoic acid | 11.13 | 153 | * | * | * | * | * | * | - | - | - |
Vanilic acid | 16.86 | 167 | * | * | * | * | * | * | - | - | - |
Flavonoids | |||||||||||
Tricin | 32.37 | 329 | - | - | - | * | * | - | - | - | - |
Apigenin | 22.90 | 269 | - | - | - | * | * | - | - | - | - |
Luteolin | 35.23 | 285 | - | - | - | * | * | - | - | - | - |
Vanillin | 15.53 | 151 | - | - | - | * | * | - | - | - | - |
Sample | Inhibition (%) α-Amylase | Inhibition (%) α-Glucosidase |
---|---|---|
LRS | 4.12 ± 0.70 a | 25.16 ± 0.80 c |
BS | 4.51 ± 0.26 b | 21.22 ± 0.51 d |
RS | No inhibition | No inhibition |
Acarbose (IC50) | 0.40 ± 0.21 µg/mL | 2.25 ± 0.63 µg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azlan, A.; Sultana, S.; Mahmod, I.I. Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products. Molecules 2023, 28, 4403. https://doi.org/10.3390/molecules28114403
Azlan A, Sultana S, Mahmod II. Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products. Molecules. 2023; 28(11):4403. https://doi.org/10.3390/molecules28114403
Chicago/Turabian StyleAzlan, Azrina, Sharmin Sultana, and Ilya Iryani Mahmod. 2023. "Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products" Molecules 28, no. 11: 4403. https://doi.org/10.3390/molecules28114403
APA StyleAzlan, A., Sultana, S., & Mahmod, I. I. (2023). Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products. Molecules, 28(11), 4403. https://doi.org/10.3390/molecules28114403