Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater
Abstract
:1. Introduction
2. Results
2.1. Material Characterization
2.2. Removal of Ciprofloxacin by Fe/Ni-MOFs
3. Discussion
3.1. Synthesis of Fe/Ni-MOFs
3.2. CIP Removal by Fe/Ni-MOFs
4. Research Methods
4.1. Experimental Raw Material
4.2. Preparation of Fe/Ni-MOFs
4.3. Characterization of Fe/Ni-MOFs
4.4. Removal of Ciprofloxacin
4.5. Effect of pH on Adsorption of Ciprofloxacin by Fe/Ni-MOFs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- El Messaoudi, N.; El Khomri, M.; El Mouden, A.; Bouich, A.; Jada, A.; Lacherai, A.; Iqbal, H.M.N.; Mulla, S.I.; Kumar, V.; Americo-Pinheiro, J.H.P. Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption-desorption cycles: A review. Biomass Convers. Biorefinery 2022, in press. [CrossRef]
- El Mouden, A.; El Messaoudi, N.; El Guerraf, A.; Bouich, A.; Mehmeti, V.; Lacherai, A.; Jada, A.; Sher, F. Multifunctional cobalt oxide nanocomposites for efficient removal of heavy metals from aqueous solutions. Chemosphere 2023, 317, 137922. [Google Scholar] [CrossRef]
- Wei, F.H.; Liu, H.Y.; Ren, Q.H.; Yang, L.; Qin, L.; Chen, H.L.; Ma, Y.F.; Liang, Z.; Wang, S.Y. Preparation of Zr-MOF for the removal of Norfloxacin from an aqueous Solution. Inorg. Chem. Commun. 2023, 156, 110819. [Google Scholar] [CrossRef]
- Gotore, O.; Munodawafa, A.; Rameshprabu, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar]
- Leal, R.M.P.; Figueira, R.F.; Tornisielo, V.L.; Regitano, J.B. Occurrence and sorption of fluoroquinolones in poultry litters and soils from sao Paulo State, Brazi. Sci. Total Environ. 2012, 432, 344–349. [Google Scholar] [CrossRef]
- Wang, J.N.; Xu, Y.P.; Li, X.Y. Environmental impact of livestock and poultry manures with antibiotic residues. Anim. Husb. Vet. Med. 2017, 49, 140–144. [Google Scholar]
- Ji, Y.F.; Ferronato, C.; Salvador, A.; Yang, X.; Chovelon, J.M. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ. 2014, 472, 800–808. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, D.; Wei, F.H.; Liang, Z. Synthesis of Cu-BTC Metal-Organic Framework by Ultrasonic Wave-Assisted Ball Milling with Enhanced Congo Red Removal Property. Chemistryselect 2018, 3, 11435–11440. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and application of Granular activated carbon from biomass waste materials for water treatment: A review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep. Purif. Technol. 2015, 156, 891–914. [Google Scholar] [CrossRef]
- Cao, B.; Yu, X.L.; Wang, C.; Lu, S.; Xing, D.; Hu, X. Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release. Biomaterials 2020, 262, 120341. [Google Scholar] [CrossRef] [PubMed]
- Alnajrani, M.N.; Alsager, O.A. Removal of Antibiotics fromWater by Polymer of Intrinsic Microporosity:Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism. Sci. Rep. 2020, 10, 794. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; et al. Antibiotic resistance: A rundown of a global crisis. Infect.Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Cao, B.; Wang, C.; Lu, S.; Hu, X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. Nanoscale 2020, 12, 7651–7659. [Google Scholar]
- Ren, Q.H.; Ma, Y.F.; Wei, F.H.; Qin, L.; Chen, H.L.; Liang, Z.; Wang, S.Y. Preparation of Zr-MOFs for the adsorption of doxycycline hydrochloride from wastewater. Green Process. Synth. 2023, 12, 20228127. [Google Scholar] [CrossRef]
- Chen, D.; Feng, P.F.; Wei, F.H. Preparation of Fe(III)-MOFs by microwave-assisted ball for efficiently removing organic dyes in aqueous solutions under natural light. Chem. Eng. Process. 2019, 135, 63–67. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Shukla, S.; Khan, I.; Kang, S.-M.; Haldorai, Y.; Tripathi, K.M.; Jung, S.; Chen, L.; Kim, T.; Huh, Y.S.; et al. A Sustainable Graphene Aerogel Capable of the Adsorptive Elimination of Biogenic Amines and Bacteria from Soy Sauce and Highly Efficient Cell Proliferation. ACS Appl. Mater. Interfaces 2019, 11, 43949–43963. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Zhuang, S.T.; Liu, Y.; Wang, J.L. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution. J. Hazard. Mater. 2020, 383, 121126. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, S.Z. Microbial degradation of sulfamethoxazole in the environment. Appl. Microbiol. Biotechnol. 2018, 102, 3573–3582. [Google Scholar] [CrossRef]
- Tang, J.T.; Wang, J.L. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation. Chem. Eng. J. 2019, 375, 122007. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhuan, R.; Chu, L.B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ. 2019, 646, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Dong, H.; Chen, X.; Leng, L.; Wu, Z.; Peng, L. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl. Catal. B Environ. 2016, 186, 19–29. [Google Scholar] [CrossRef]
- Wei, F.H.; Ren, Q.H.; Zhang, H.; Yang, L.L.; Chen, H.L.; Liang, Z.; Chen, D. Removal of tetracycline hydrochloride from wastewater by Zr/Fe-MOFs/GO composites. RSC Adv. 2021, 11, 9977–9984. [Google Scholar] [CrossRef] [PubMed]
- El Messaoudi, N.; El Mouden, A.; Fernine, Y.; El Khomri, M.; Bouich, A.; Faska, N.; Cigeroglu, Z.; Americo-Pinheiro, J.H.P.; Jada, A.; Lacherai, A. Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: Characterization, experimental study, modeling, and DFT calculation. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Della Rocca, J.; Liu, D.M.; Lin, W.B. Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery. Acc. Chem. Res. 2011, 44, 957–968. [Google Scholar] [CrossRef]
- Sun, C.Y.; Qin, C.; Wang, X.L. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 2013, 10, 89–101. [Google Scholar] [CrossRef]
- Wei, F.H.; Chen, D.; Liang, Z.; Zhao, S.Q.; Luo, Y. Preparation of Fe-MOFs by microwave-assisted ball milling for reducing Cr(VI) in wastewater. Dalton Trans. 2017, 46, 16525–16531. [Google Scholar] [CrossRef]
- El Mouden, A.; El Guerraf, A.; El Messaoudi, N.; Haounati, R.; El Fakir, A.A.; Lacherai, A. Date Stone Functionalized with 3-Aminopropyltriethoxysilane as a Potential Biosorbent for Heavy Metal Ions Removal from Aqueous Solution. Chem. Afr. A J. Tunis. Chem. Soc. 2022, 5, 745–759. [Google Scholar] [CrossRef]
- Messaoudi, N.; El Khomri, M.; Chegini, Z.G.; Chlif, N.; Dbik, A.; Bentahar, S.; Iqbal, M.; Jada, A.; Lacherai, A. Desorption study and reusability of raw and H2SO4 modified jujube shells (Zizyphus lotus) for the methylene blue adsorption. Int. J. Environ. Anal. Chem. 2021. [Google Scholar] [CrossRef]
- El Khomri, M.; El Messaoudi, N.; Dbik, A.; Bentahar, S.; Lacherai, A.; Chegini, Z.G.; Bouich, A. Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment Resin Technol. 2021, 51, 477–488. [Google Scholar] [CrossRef]
- El Messaoudi, N.; El Mouden, A.; El Khomri, M.; Bouich, A.; Fernine, Y.; Ciğeroğlu, Z.; Américo-Pinheiro, J.H.P.; Labjar, N.; Jada, A.; Sillanpää, M.; et al. Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf. Fluid Phase Equilibria 2022, 563, 113585. [Google Scholar] [CrossRef]
- El Khomri, M.; El Messaoudi, N.; Dbik, A.; Bentahar, S.; Fernine, Y.; Lacherai, A.; Jada, A. Optimization Based on Response Surface Methodology of Anionic Dye Desorption from two Agricultural Solid Wastes. Chem. Afr. A J. Tunis. Chem. Soc. 2022, 5, 1083–1095. [Google Scholar] [CrossRef]
- El Khomri, M.; El Messaoudi, N.; Dbik, A.; Bentahar, S.; Fernine, Y.; Bouich, A.; Lacherai, A.; Jada, A. Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye. Emergent Mater. 2022, 5, 1679–1688. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Ma, X.F.; Xiong, Y.; Liu, Y.S.; Han, J.Q.; Duan, G.G.; Chen, Y.M.; He, S.J.; Mei, C.T.; Jiang, S.H.; Zhang, K. When MOFs meet wood: From opportunities toward applications. Chem 2022, 8, 2342–2361. [Google Scholar] [CrossRef]
- Wei, F.; Ren, Q.; Liang, Z.; Chen, D. Synthesis of Graphene Oxide/Metal-Organic Frameworks Composite Materials for Removal of Congo Red from Wastewater. Chemistryselect 2019, 4, 5755–5762. [Google Scholar] [CrossRef]
- Millward, A.R.; Yaghi, O.M. Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999. [Google Scholar] [CrossRef]
- Wei, F.H.; Xiao, L.; Ren, Q.H.; Wang, K.; Qin, L.; Chen, H.L.; Ma, Y.F.; Liang, Z. The application of Bimetallic metal-organic frameworks for antibiotics adsorption. J. Saudi Chem. Soc. 2022, 10, 101562. [Google Scholar] [CrossRef]
- Ren, Q.H.; Wei, F.H.; Chen, H.K.; Chen, D.; Ding, B. Preparation of Zn-MOFs by microwave-assisted ball milling for removal of tetracycline hydrochloride and Congo red from wastewater. Green Process. Synth. 2021, 10, 125–133. [Google Scholar] [CrossRef]
- Wei, F.; Zheng, T.; Ren, Q.; Chen, H.; Peng, J.; Ma, Y.; Liu, Z.; Liang, Z.; Chen, D. Preparation of metal–organic frameworks by microwave-assisted ball milling for the removal of CR from wastewater. Green Process. Synth. 2022, 11, 595–603. [Google Scholar] [CrossRef]
- Sriram, G.; Bendre, A.; Mariappan, E.; Altalhi, T.; Kigga, M.; Ching, Y.C.; Jung, H.-Y.; Bhaduri, B.; Kurkuri, M. Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review. Sustain. Mater. Technol. 2022, 31, e00378. [Google Scholar] [CrossRef]
- Zhu, H.W. Structural Spectrum Analysis of Organic Molecules; Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- Nguyen, V.T.; Nguyen, T.B.; Chen, C.W.; Hung, C.M.; Vo, T.D.H.; Chang, J.H.; Dong, C.D. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresour. Technol. 2019, 284, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Chen, D.; Wei, F.; Chen, N.; Liang, Z.; Luo, Y. Synthesis of graphene oxide/metal–organic frameworks hybrid materials for enhanced removal of Methylene blue in acidic and alkaline solutions. J. Chem. Technol. Biotechnol. 2017, 93, 698–709. [Google Scholar] [CrossRef]
- El Messaoudi, N.; El Khomri, M.; Chegini, Z.G.; Dbik, A.; Bentahar, S.; Iqbal, M.; Jada, A.; Lacherai, A. Desorption of crystal violet from alkali-treated agricultural material waste: An experimental study, kinetic, equilibrium and thermodynamic modeling. Pigment Resin Technol. 2021, 51, 309–319. [Google Scholar] [CrossRef]
- Ren, Q.; Nie, M.; Yang, L.L.; Wei, F.H.; Ding, B.; Chen, H.L.; Liu, Z.J.; Liang, Z. Synthesis of MOFs for RhB Adsorption from Wastewater. Inorganics 2022, 10, 27. [Google Scholar] [CrossRef]
- Cigeroglu, Z.; Kazan-Kaya, E.S.; El Messaoudi, N.; Fernine, Y.; Americo-Pinheiro, J.H.P.; Jada, A. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: Optimization, modeling, and theoretical calculation. J. Mol. Liq. 2022, 369, 120866. [Google Scholar] [CrossRef]
- Şenol, Z.M.; El Messaoudi, N.; Fernine, Y.; Keskin, Z.S. Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): Experimental and DFT modeling studies. Biomass Convers. Biorefinery 2023, 13, 194. [Google Scholar] [CrossRef]
- Hu, J.; Yu, H.; Dai, W.; Yan, X.; Hu, X.; Huang, H. Enhanced adsorptive removal of hazardous anionic dye Congo red by a Ni/Cu mixed-component metal–organic porous material. RSC Adv. 2014, 4, 35124. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, H.; Ren, Q.; Chen, H.; Yang, L.; Ding, B.; Yu, M.; Liang, Z. Removal of organic contaminants from wastewater with GO/MOFs composites. PLoS ONE 2021, 16, e0253500. [Google Scholar] [CrossRef]
- Dehghan, A.; Mohammadi, A.A.; Yousefi, M.; Najafpoor, A.A.; Shams, M.; Rezania, S. Enhanced Kinetic Removal of Ciprofloxacin onto Metal-Organic Frameworks by Sonication, Process Optimization and Metal Leaching Study. Nanomaterials 2019, 9, 1422. [Google Scholar] [CrossRef]
- Shi, S.; Fan, Y.W.; Huang, Y.M. Facile Low Temperature Hydrothermal Synthesis of Magnetic Mesoporous Carbon Nanocomposite for Adsorption Removal of Ciprofloxacin Antibiotics. Ind. Eng. Chem. Res. 2013, 52, 2604–2612. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Ahmed, I.S.; Abo-Raya, M.A. A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J. Mol. Liq. 2019, 282, 251–263. [Google Scholar] [CrossRef]
- Hou, X.; Sun, L.; Hu, Y.; An, X.; Qian, X. De-Doped Polyaniline as a Mediating Layer Promoting In-Situ Growth of Metal–Organic Frameworks on Cellulose Fiber and Enhancing Adsorptive-Photocatalytic Removal of Ciprofloxacin. Polymers 2021, 13, 3298. [Google Scholar] [CrossRef] [PubMed]
Con (ppm) | Mass (mg) | Pseudo-Second-Order Kinetics | Pseudo-First-Order Kinetics | ||
---|---|---|---|---|---|
K(g·(mg·min)−1) | R2 | K(L·min−1) | R2 | ||
5 | 30 | 0.02874 | 0.99824 | −0.00382 | 0.97152 |
40 | 0.03831 | 0.99973 | −0.00513 | 0.93588 | |
50 | 0.04643 | 0.99882 | −0.00432 | 0.81166 | |
100 | 0.10336 | 0.99983 | 0.00111 | 0.89982 | |
10 | 30 | 0.01357 | 0.9997 | −0.00421 | 0.92322 |
40 | 0.01861 | 0.99955 | −0.00402 | 0.50108 | |
50 | 0.02282 | 0.99637 | −0.00404 | 0.98182 | |
100 | 0.05111 | 0.99993 | −0.000273 | - | |
20 | 30 | 0.00657 | 0.99348 | −0.00528 | 0.99668 |
40 | 0.00924 | 0.99914 | −0.00765 | 0.9167 | |
50 | 0.01895 | 0.98909 | −0.00162 | 0.97983 | |
100 | 0.03144 | 0.98959 | −0.0023 | 0.9383 | |
30 | 30 | 0.00573 | 0.99967 | −0.00339 | 0.96968 |
40 | 0.00739 | 0.99588 | −0.00765 | 0.9167 | |
50 | 0.00872 | 0.99683 | −0.00454 | 0.97988 | |
100 | 0.01774 | 0.99940 | −0.0063 | 0.88405 |
T (K) | Langmuir Isotherm | Freundlich Isotherm | |||
---|---|---|---|---|---|
k | R2 | Kf (mg/g (L/mg)1/n) | n | R2 | |
293 (linear) | 0.06343 | 0.62107 | 40.9355 | 1.1267 | 0.89451 |
293 (non-linear) | - | 0.59199 | - | - | 0.90406 |
T (K) | ΔG0 (KJ/mol) | ΔH0 (−Slope × R) (KJ/mol) | S0 (Intercept × R) (J/mol/K) |
---|---|---|---|
298 | −46.2 | −414.6 | −1236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F.; Wang, K.; Li, W.; Ren, Q.; Qin, L.; Yu, M.; Liang, Z.; Nie, M.; Wang, S. Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater. Molecules 2023, 28, 4411. https://doi.org/10.3390/molecules28114411
Wei F, Wang K, Li W, Ren Q, Qin L, Yu M, Liang Z, Nie M, Wang S. Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater. Molecules. 2023; 28(11):4411. https://doi.org/10.3390/molecules28114411
Chicago/Turabian StyleWei, Fuhua, Kui Wang, Wenxiu Li, Qinhui Ren, Lan Qin, Mengjie Yu, Zhao Liang, Meng Nie, and Siyuan Wang. 2023. "Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater" Molecules 28, no. 11: 4411. https://doi.org/10.3390/molecules28114411
APA StyleWei, F., Wang, K., Li, W., Ren, Q., Qin, L., Yu, M., Liang, Z., Nie, M., & Wang, S. (2023). Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater. Molecules, 28(11), 4411. https://doi.org/10.3390/molecules28114411