The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract (Hippophae rhamnoides L.) in Breast Cancer Cell Lines
Abstract
:1. Introduction
2. Results
2.1. Chromatographic Characterization of Carotenoids from LSBE by HPLC-PDA
2.2. Cytotoxic and Antiproliferative Effects of Total Carotenoids from LSBE and Zeaxanthin in Human Breast Cancer Cell Lines
2.3. Antioxidant Activity
2.3.1. Extracellular Antioxidant Capacity of LSBE
2.3.2. Intracellular Antioxidant Capacity of LSBE and Zeaxanthin through the DCFDA Method
2.4. Apoptosis Activity Evaluated through Flow Cytometry
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Preparation
4.2. Isolation of Total Carotenoids from Sea buckthorn Berries
4.3. HPLC-DAD Analysis of Total Carotenoids
4.4. Cell Lines and Culture Conditions
4.5. Cytotoxicity Assay
4.6. Antioxidant Capacity
4.6.1. ABTS Assay
4.6.2. DPPH Assay
4.6.3. FRAP Assay
4.6.4. General ROS Assay
4.7. Apoptosis Rate Evaluation through Flow Cytometry
4.8. Image Acquisition and Processing of 2′,7′-Dichlorofluorescein Diacetate (DCFDA) Stained Cells
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S. Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Bouchmaa, N.; Mrid, R.B.; Kabach, I.; Zouaoui, Z.; Karrouchi, K.; Chtibi, H.; Zyad, A.; Cacciola, F.; Nhiri, M. Beta vulgaris Subsp. maritima: A Valuable Food with High Added Health Benefits. Appl. Sci. 2022, 12, 1866. [Google Scholar] [CrossRef]
- Jaśniewska, A.; Diowksz, A. Wide Spectrum of Active Compounds in Sea buckthorn (Hippophae rhamnoides) for Disease Prevention and Food Production. Antioxidants 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.-P.; Gruppen, H. Carotenoid Composition of Berries and Leaves from Six Romanian Sea buckthorn (Hippophae rhamnoides L.) Varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef]
- Hempel, J.; Schädle, C.N.; Sprenger, J.; Heller, A.; Carle, R.; Schweiggert, R.M. Ultrastructural Deposition Forms and Bioaccessibility of Carotenoids and Carotenoid Esters from Goji Berries (Lycium barbarum L.). Food Chem. 2017, 218, 525–533. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, M.-J.; Ma, Q.; Liu, S.-F. Supercritical CO2 Extraction of Chinese Lantern: Experimental and OEC Modeling. Sep. Purif. Technol. 2016, 159, 23–34. [Google Scholar] [CrossRef]
- Wen, X.; Hempel, J.; Schweiggert, R.M.; Ni, Y.; Carle, R. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces. J. Agric. Food Chem. 2017, 65, 6140–6151. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A Comprehensive Review on Carotenoids in Foods and Feeds: Status quo, Applications, Patents, and Research Needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef]
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced Research on the Antioxidant Activity and Mechanism of Polyphenols from Hippophae Species—A Review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef]
- Chen, A.; Feng, X.; Dorjsuren, B.; Chimedtseren, C.; Damda, T.-A.; Zhang, C. Traditional Food, Modern Food and Nutritional Value of Sea buckthorn (Hippophae rhamnoides L.): A Review. J. Future Foods 2023, 3, 191–205. [Google Scholar] [CrossRef]
- Olas, B.; Skalski, B.; Ulanowska, K. The Anticancer Activity of Sea buckthorn [Elaeagnus rhamnoides (L.) A. Nelson]. Front Pharmacol 2018, 9, 232. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, B.; Kontek, R.; Żuchowski, J.; Stochmal, A. Novel Bioactive Properties of Low-Polarity Fractions from Sea-Buckthorn Extracts (Elaeagnus rhamnoides (L.) A. Nelson)–(in Vitro). Biomed. Pharmacother. 2021, 135, 111141. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Noberasco, C.; Picchi, M.; Stefano, M.D.; Rossi, A.; Nurra, L.; Ventura, L. Complementary and Integrative Medicine to Reduce Adverse Effects of Anticancer Therapy. J. Altern. Complement. Med. 2018, 24, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Pintea, A.; Varga, A.; Stepnowski, P.; Socaciu, C.; Culea, M.; Diehl, H.A. Chromatographic Analysis of Carotenol Fatty Acid Esters in Physalis alkekengi and Hippophae rhamnoides. Phytochem. Anal. 2005, 16, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, D.; Pintea, A.; Dugo, P.; Torre, G.; Pop, R.M.; Mondello, L. Determination of Carotenoids and Their Esters in Fruits of Sea buckthorn (Hippophae rhamnoides L.) by HPLC-DAD-APCI-MS. Phytochem. Anal. 2012, 23, 267–273. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid. Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- Tanaka, T.; Shnimizu, M.; Moriwaki, H. Cancer Chemoprevention by Carotenoids. Molecules 2012, 17, 3202–3242. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Rudzińska, M.; Oszmiański, J.; Golis, T. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea buckthorn (Hippophaë rhamnoides L.) Berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why Is Sea buckthorn (Hippophae rhamnoides L.) so Exceptional? A Review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.C.; Olsson, M.E.; Johansson, E.; Rumpunen, K. Carotenoids in Sea buckthorn (Hippophae rhamnoides L.) Berries during Ripening and Use of Pheophytin a as a Maturity Marker. J. Agric. Food. Chem. 2009, 57, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, G.; Czaplicki, S.; Szustak, M.; Cichońska, E.; Gendaszewska-Darmach, E.; Konopka, I. Composition of Flesh Lipids and Oleosome Yield Optimization of Selected Sea buckthorn (Hippophae rhamnoides L.) Cultivars Grown in Poland. Food Chem. 2022, 369, 130921. [Google Scholar] [CrossRef]
- Olsson, M.E.; Gustavsson, K.-E.; Andersson, S.; Nilsson, Å.; Duan, R.-D. Inhibition of Cancer Cell Proliferation in Vitro by Fruit and Berry Extracts and Correlations with Antioxidant Levels. J. Agric. Food Chem. 2004, 52, 7264–7271. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, F.; Ouyang, J.; Wang, X.; Ma, X. Inhibitory Effects of Sea buckthorn Procyanidins on Fatty Acid Synthase and MDA-MB-231 Cells. Tumor Biol. 2014, 35, 9563–9569. [Google Scholar] [CrossRef]
- Cenariu, D.; Fischer-Fodor, E.; Bogdan, A.; Bunea, A.; Virág, P.; Perde-Schrepler, M.; Toma, V.-A.; Mocan, A.; Berindan-Neagoe, I.; Pintea, A.; et al. Molecules Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro. Molecules 2021, 26, 333. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of Measurement and Evaluation of Natural Antioxidant Capacity/Activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-Oxidant and Anti-Enzymatic Activities of Sea buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef]
- Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea buckthorn (Hippophae rhamnoides L.) Varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef]
- Michel, T.; Destandau, E.; Le Floch, G.; Lucchesi, M.E.; Elfakir, C. Antimicrobial, Antioxidant and Phytochemical Investigations of Sea buckthorn (Hippophaë rhamnoides L.) Leaf, Stem, Root and Seed. Food Chem. 2012, 131, 754–760. [Google Scholar] [CrossRef]
- Ficzek, G.; Mátravölgyi, G.; Furulyás, D.; Rentsendavaa, C.; Jócsák, I.; Papp, D.; Simon, G.; Végvári, G.; Stéger-Máté, M. Analysis of Bioactive Compounds of Three Sea buckthorn Cultivars (Hippophaë rhamnoides L. ‘Askola’, ‘Leikora’, and ‘Orangeveja’) with HPLC and Spectrophotometric Methods. Eur. J. Hortic. Sci. 2019, 84, 31–38. [Google Scholar] [CrossRef]
- Sharma, U.K.; Sharma, K.; Sharma, N.; Sharma, A.; Singh, H.P.; Sinha, A.K. Microwave-Assisted Efficient Extraction of Different Parts of Hippophae rhamnoides for the Comparative Evaluation of Antioxidant Activity and Quantification of Its Phenolic Constituents by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC). J. Agric. Food Chem. 2008, 56, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative Antioxidant Activities of Carotenoids Measured by Ferric Reducing Antioxidant Power (FRAP), ABTS Bleaching Assay (ATEAC), DPPH Assay and Peroxyl Radical Scavenging Assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Mrid, R.B.; Bouchmaa, N.; Kabach, I.; Zouaoui, Z.; Chtibi, H.; Maadoudi, M.E.; Kounnoun, A.; Cacciola, F.; Oulad, Y.; Majdoub, E.; et al. Dittrichia viscosa L. Leaves: A Valuable Source of Bioactive Compounds with Multiple Pharmacological Effects. Molecules 2022, 27, 2108. [Google Scholar] [CrossRef]
- Guo, R.; Chang, X.; Guo, X.; Brennan, C.S.; Li, T.; Fu, X.; Liu, R.H. Phenolic Compounds, Antioxidant Activity, Antiproliferative Activity and Bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) Berries as Affected by in Vitro Digestion. Food Funct. 2017, 8, 4229–4240. [Google Scholar] [CrossRef]
- Reczek, C.R.; Chandel, N.S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. Is Online 2016, 1, 79–98. [Google Scholar] [CrossRef]
- Shin, J.; Song, M.-H.; Oh, J.-W.; Keum, Y.-S.; Saini, R.K. Pro-Oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence. Antioxidants 2020, 9, 532. [Google Scholar] [CrossRef] [PubMed]
- Bouchmaa, N.; Mrid, R.B.; Boukharsa, Y.; Bouargalne, Y.; Nhiri, M.; Idir, A.; Taoufik, J.; Ansar, M.; Zyad, A. Reactive Oxygen Species-Mediated Apoptosis and Cytotoxicity of Newly Synthesized Pyridazin-3-Ones In P815 (Murin mastocytoma) Cell Line. Drug Res. 2019, 69, 528–536. [Google Scholar] [CrossRef] [PubMed]
- El-Agamey, A.; Lowe, G.M.; McGarvey, D.J.; Mortensen, A.; Phillip, D.M.; Truscott, T.G.; Young, A.J. Carotenoid Radical Chemistry and Antioxidant/pro-Oxidant Properties. Arch. Biochem. Biophys. 2004, 430, 37–48. [Google Scholar] [CrossRef]
- Palozza, P. Prooxidant Actions of Carotenoids in Biologic Systems. Nutr. Rev. 2009, 56, 257–265. [Google Scholar] [CrossRef]
- Edge, R.; Truscott, T.G. Prooxidant and Antioxidant Reaction Mechanisms of Carotene and Radical Interactions with Vitamins E and C. Nutrition 1997, 13, 992–994. [Google Scholar] [CrossRef] [PubMed]
- Vijay, K.; Sowmya, P.R.-R.; Arathi, B.P.; Shilpa, S.; Shwetha, H.J.; Raju, M.; Baskaran, V.; Lakshminarayana, R. Low-Dose Doxorubicin with Carotenoids Selectively Alters Redox Status and Upregulates Oxidative Stress-Mediated Apoptosis in Breast Cancer Cells. Food Chem. Toxicol. 2018, 118, 675–690. [Google Scholar] [CrossRef]
- Kim, K.-N.; Heo, S.-J.; Kang, S.-M.; Ahn, G.; Jeon, Y.-J. Fucoxanthin Induces Apoptosis in Human Leukemia HL-60 Cells through a ROS-Mediated Bcl-XL Pathway. Toxicol. Vitr. 2010, 24, 1648–1654. [Google Scholar] [CrossRef]
- Arathi, B.P.; Sowmya, P.R.-R.; Kuriakose, G.C.; Vijay, K.; Baskaran, V.; Jayabaskaran, C.; Lakshminarayana, R. Enhanced Cytotoxic and Apoptosis Inducing Activity of Lycopene Oxidation Products in Different Cancer Cell Lines. Food Chem. Toxicol. 2016, 97, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Health Protective Effects of Carotenoids and Their Interactions with Other Biological Antioxidants. Eur. J. Med. Chem. 2013, 70, 102–110. [Google Scholar] [CrossRef]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.; Freitas, M.; Silva, A.M.S.; Carvalho, F.; Fernandes, E. Antioxidant and Pro-Oxidant Activities of Carotenoids and Their Oxidation Products. Food Chem. Toxicol. 2018, 120, 681–699. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, P.R.-R.; Arathi, B.P.; Vijay, K.; Baskaran, V.; Lakshminarayana, R. Astaxanthin from Shrimp Efficiently Modulates Oxidative Stress and Allied Cell Death Progression in MCF-7 Cells Treated Synergistically with β-Carotene and Lutein from Greens. Food Chem. Toxicol. 2017, 106, 58–69. [Google Scholar] [CrossRef]
- Gong, X.; Smith, J.; Swanson, H.; Rubin, L. Carotenoid Lutein Selectively Inhibits Breast Cancer Cell Growth and Potentiates the Effect of Chemotherapeutic Agents through ROS-Mediated Mechanisms. Molecules 2018, 23, 905. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Cai, Z.-W.; Ye, T.; Jiang, P.-W.; Liao, Y.-J.; Wang, L.; Zhang, Q.-L.; Du, W.-Q.; Huang, M.; Yang, P.; Li, M.-H. MAPK Cascade Signaling Is Involved in α-MMC Induced Growth Inhibition of Multiple Myeloma MM.1S Cells via G2 Arrest and Mitochondrial-Pathway-Dependent Apoptosis In Vitro. Pharmaceuticals 2023, 16, 124. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.N.H.; Safuwan, N.A.M.; Yaacob, N.S.; Fauzi, A.N. Regulatory Mechanism on Anti-Glycolytic and Anti-Metastatic Activities Induced by Strobilanthes crispus in Breast Cancer, In Vitro. Pharmaceuticals 2023, 16, 153. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Ouassou, H.; Aherkou, M.; Kharchoufa, L.; Meskali, N.; Baraich, A.; Mechchate, H.; Bouhrim, M.; Idir, A.; Hano, C.; et al. LC–MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals 2022, 15, 1156. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Li, X.; Han, S.; Zhou, L.; Li, W. Targeting Mcl-1 Degradation by Bergenin Inhibits Tumorigenesis of Colorectal Cancer Cells. Pharmaceuticals 2023, 16, 241. [Google Scholar] [CrossRef]
- Kuete, V.; Karaosmanoğlu, O.; Sivas, H. Anticancer Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 271–297. [Google Scholar]
- Lenzi, M.; Turrini, E.; Catanzaro, E.; Cocchi, V.; Guerrini, A.; Hrelia, P.; Gasperini, S.; Stefanelli, C.; Abdi Bellau, M.L.; Pellicioni, V.; et al. In Vitro Investigation of the Anticancer Properties of Ammodaucus leucotrichus Coss. & Dur. Pharmaceuticals 2022, 15, 1491. [Google Scholar] [CrossRef]
- Kim, H.; Xue, X. Detection of Total Reactive Oxygen Species in Adherent Cells by 2′,7′-Dichlorodihydrofluorescein Diacetate Staining. J. Vis. Exp. 2020, 160, e60682. [Google Scholar] [CrossRef]
- Marcelino, S.; Mandim, F.; Taofiq, O.; Pires, T.C.S.P.; Finimundy, T.C.; Prieto, M.A.; Barros, L. Valorization of Punica granatum L. Leaves Extracts as a Source of Bioactive Molecules. Pharmaceuticals 2023, 16, 342. [Google Scholar] [CrossRef]
- Kis, B.; Pavel, I.Z.; Avram, S.; Moaca, E.A.; Herrero San Juan, M.; Schwiebs, A.; Radeke, H.H.; Muntean, D.; Diaconeasa, Z.; Minda, D.; et al. Antimicrobial Activity, in Vitro Anticancer Effect (MCF-7 Breast Cancer Cell Line), Antiangiogenic and Immunomodulatory Potentials of Populus nigra L. Buds Extract. BMC Complement. Med. Ther. 2022, 22, 74. [Google Scholar] [CrossRef]
- Peng, X.; He, X.; Tang, J.; Xiang, J.; Deng, J.; Kan, H.; Zhang, Y.; Zhang, G.; Zhao, P.; Liu, Y. Evaluation of the in Vitro Antioxidant and Antitumor Activity of Extracts from Camellia fascicularis Leaves. Front. Chem. 2022, 10, 1035949. [Google Scholar] [CrossRef]
- Masoodi, K.Z.; Wani, W.; Dar, Z.A.; Mansoor, S.; Anam-ul-Haq, S.; Farooq, I.; Hussain, K.; Wani, S.A.; Nehvi, F.A.; Ahmed, N. Sea buckthorn (Hippophae rhamnoides L.) Inhibits Cellular Proliferation, Wound Healing and Decreases Expression of Prostate Specific Antigen in Prostate Cancer Cells in Vitro. J. Funct. Foods 2020, 73, 104102. [Google Scholar] [CrossRef]
- Tudor, C.; Bohn, T.; Iddir, M.; Dulf, F.V.; Focşan, M.; Rugină, D.O.; Pintea, A. Sea buckthorn Oil as a Valuable Source of Bioaccessible xanthophylls. Nutrients 2019, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Su, S.; Liou, B.; Lin, C.; Lee, K. Sulbactam-Enhanced Cytotoxicity of Doxorubicin in Breast Cancer Cells. Cancer Cell Int. 2018, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (Resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Böhm, V.; Lietz, G.; Olmedilla-Alonso, B.; Phelan, D.; Reboul, E.; Bánati, D.; Borel, P.; Corte-Real, J.; de Lera, A.R.; Desmarchelier, C.; et al. From Carotenoid Intake to Carotenoid Blood and Tissue Concentrations–Implications for Dietary Intake Recommendations. Nutr. Rev. 2021, 79, 544–573. [Google Scholar] [CrossRef]
- Roach, P.D.; Golding, J.B.; Stathopoulos, C.E.; Goldsmith, C.D. Fate of the Phenolic Compounds during Olive Oil Production with the Traditional Press Method. Int. Food Res. J. 2014, 21, 101–109. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kalantzakis, G.; Blekas, G.; Pegklidou, K.; Boskou, D. Stability and Radical-scavenging Activity of Heated Olive Oil and Other Vegetable Oils. Eur. J. Lipid Sci. Technol. 2006, 108, 329–335. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
ID | Identification | UV-Vis Maxima | Concentration (mg/100 g F.W) | % of Total Carotenoids |
---|---|---|---|---|
1 | Neoxanthin | 416,439.468 | 0.40 ± 0.07 | 1.96 |
2 | not identified | 400, 422, 448 | 0.39 ± 0.04 | 1.92 |
3 | cis-Lutein | 330, 420, 441, 472 | 0.80 ± 0.16 | 3.96 |
4 | all-trans-Lutein | 422, 444, 473 | 1.80 ± 0.43 | 8.93 |
5 | Zeaxanthin | 427, 450, 477 | 8.61 ± 0.81 | 42.62 |
6 | β-Cryptoxanthin | 428, 451, 476 | 0.94 ± 0.22 | 4.64 |
7 | cis-β-Carotene | 338, 420, 449,472 | 0.49 ± 0.19 | 2.42 |
8 | all trans β-Carotene | 421, 451, 478 | 4.14 ± 0.23 | 20.52 |
9 | cis-β-Carotene | 345, 421, 447, 473 | 0.39 ± 0.13 | 1.95 |
10 | not identified | 420, 441, 465 | 0.28 ± 0.11 | 1.42 |
11 | cis-γ-Carotene | 361, 433, 460, 491 | 0.26 ± 0.09 | 1.31 |
12 | all trans γ-Carotene | 434, 461, 492 | 1.65 ± 0.21 | 8.15 |
13 | cis-γ-Carotene | 358, 431, 458, 489 | 0.04 ± 0.03 | 0.18 |
Total | 20.19 ± 2.72 |
Treatment | LSBE | Zeaxanthin | Doxorubicin | |||
---|---|---|---|---|---|---|
Cell Line | T47D | BT-549 | T47D | BT-549 | T47D | BT-549 |
IC50 (μM) | 19.45 | 12.62 | 81.62 | 68.48 | 1.774 | 3.183 |
IC50 (µg/mL) | 34.87 | 22.63 | 143.47 | 120.37 | 3.06 | 5.49 |
HillSlope | −10.44 | −5.357 | −3.403 | −1.909 | −0.3771 | −0.743 |
logIC50 | 1.289 | 1.101 | 1.912 | 1.836 | 0.5028 | 0.248 |
R2 | 0.9132 | 0.9014 | 0.9514 | 0.9798 | 0.900 | 0.8904 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatment | LSBE | Zeaxanthin (ZEA) | Doxorubicin (DOXO) | ||||||
---|---|---|---|---|---|---|---|---|---|
Cell Line | T47D | BT-549 | T47D | BT-549 | T47D | BT-549 | |||
Concentration | p-Value | p-Value | p-Value | p-Value | p-Value | p-Value | |||
(μM) | LSBE (µg/mL) | ZEA (µg/mL) | DOXO (µg/mL) | ||||||
1 | 1.79 | 1.76 | 1.72 | >0.9999 | >0.9999 | >0.9999 | 0.6252 | >0.9999 | >0.9999 |
2 | 3.45 | >0.9999 | >0.9999 | ||||||
4 | 6.90 | 0.3178 | 0.1003 | ||||||
6 | 10.35 | 0.0970 | 0.4696 | ||||||
8 | 13.79 | 0.2557 | 0.1932 | ||||||
10 | 17.93 | 17.58 | 17.24 | >0.9999 | >0.9999 | >0.9999 | 0.7982 | 0.0266 | 0.0007 |
12 | 20.69 | 0.0004 | 0.0005 | ||||||
14 | 24.14 | 0.0001 | 0.0462 | ||||||
15 | 26.89 | >0.9999 | 0.0407 | ||||||
16 | 27.59 | 0.0012 | 0.0149 | ||||||
25 | 44.82 | 0.1745 | 0.0030 | ||||||
50 | 89.65 | 87.89 | <0.0001 | <0.0001 | >0.9999 | >0.9999 | |||
100 | 179.29 | 175.78 | <0.0001 | <0.0001 | 0.0292 | 0.3206 | |||
150 | 263.67 | 0.0001 | 0.0459 | ||||||
200 | 351.56 | <0.0001 | 0.0015 |
Concentration | % ABTS Inhibition | % DPPH Inhibition | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(µM) | (µg/mL) | Ascorbic Acid (AA) | LSBE | Zeaxanthin (ZEA) | Ascorbic Acid | LSBE | Zeaxanthin | ||||||||
AA | LSBE | ZEA | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
1000 | 176 | 557.75 | 568.9 | 92.8 | 0.57 | 56.80 | 0.28 | 58.60 | 0.85 | 87.13 | 1.24 | 68.65 | 0.07 | 41.75 | 1.06 |
750 | 132 | 418.31 | 426.7 | 65.7 | 0.99 | 46.88 | 0.45 | 42.55 | 0.78 | 60.73 | 0.39 | 52.90 | 0.28 | 32.13 | 1.59 |
500 | 88 | 278.874 | 284.49 | 43.3 | 0.42 | 37.21 | 0.30 | 30.60 | 0.85 | 42.50 | 0.71 | 37.05 | 0.07 | 23.75 | 0.35 |
250 | 44 | 139.42 | 142.225 | 27.2 | 0.28 | 13.80 | 0.64 | 14.65 | 0.49 | 23.85 | 0.21 | 23.57 | 0.62 | 14.25 | 0.49 |
100 | 17.6 | 55.775 | 56.89 | 12.2 | 0.28 | 7.48 | 0.25 | 7.58 | 0.11 | 10.90 | 0.57 | 10.87 | 0.47 | 5.55 | 0.35 |
50 | 8.8 | 27.88 | 28.45 | 5.3 | 0.14 | 3.38 | 0.11 | 3.63 | 0.11 | 6.13 | 0.18 | 5.68 | 0.11 | 3.00 | 0.28 |
Compound | IC50 ABTS | IC50 DPPH | ||||
---|---|---|---|---|---|---|
% Inhibition | µM | µg/mL | % Inhibition | µM | µg/mL | |
Ascorbic acid | 46.43 | 500.42 | 88.05 | 43.8 | 502.7 | 88.48 |
LSBE | 25.92 | 456.45 | 272.98 | 32.14 | 468.23 | 261.12 |
Zeaxanthin | 27.8 | 490.18 | 262.16 | 20.05 | 480.23 | 279.34 |
DCF Fluorescence (% of Control) | ||||||
---|---|---|---|---|---|---|
T47D | BT-549 | |||||
Treatment | Mean | SD | p-Value | Mean | SD | p-Value |
control | 100 | 0 | - | 100 | 0 | - |
LSBE 1 µM | 89.36 | 12.15 | 0.1194 | 81.89 | 15.93 | 0.0725 |
LSBE IC50 | 79.22 | 21.36 | 0.0279 | 43.86 | 48.05 | 0.0188 |
Zeaxanthin 1 µM | 94.58 | 4.075 | 0.1694 | 94.60 | 5.875 | 0.3815 |
Zeaxanthin IC50 | 99.21 | 3.489 | 0.7140 | 91.56 | 13.29 | 0.2311 |
H2O2 | 100 | 0 | - | 100 | 0 | - |
H2O2+ LSBE 1 µM | 104.6 | 11.08 | 0.7834 | 94.36 | 8.747 | 0.6140 |
H2O2+ LSBE IC50 | 101.7 | 23.37 | 0.7834 | 70.23 | 31.57 | 0.3592 |
H2O2+ Zeaxanthin 1 µM | 103.7 | 20.43 | 0.8546 | 99.63 | 3.932 | 0.6466 |
H2O2+ Zeaxanthin IC50 | 103.5 | 12.35 | 0.8546 | 121.8 | 35.45 | 0.3356 |
Treatment | Early Apoptosis (%) | Late Apoptosis (%) | Necrosis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
T47D | |||||||||
Mean | SD | p-Value | Mean | SD | p-Value | Mean | SD | p-Value | |
control | 2.620 | 3.200 | - | 7.367 | 5.398 | - | 3.970 | 3.294 | - |
LSBE 1 µM | 2.490 | 3.479 | 0.9626 | 13.370 | 7.821 | 0.3988 | 5.525 | 3.500 | 0.4255 |
LSBE 20 µM | 5.803 | 3.278 | 0.2084 | 80.290 | 8.922 | 0.0119 | 5.177 | 2.988 | 0.5294 |
Zeaxanthin 1 µM | 5.140 | 7.212 | 0.4255 | 8.090 | 6.746 | 0.6731 | 2.395 | 1.563 | 0.5422 |
Zeaxanthin 80 µM | 2.750 | 4.254 | >0.9999 | 10.680 | 6.891 | 0.5294 | 3.223 | 1.977 | 0.7532 |
BT-549 | |||||||||
Mean | SD | p-Value | Mean | SD | p-Value | Mean | SD | p-Value | |
control | 3.370 | 2.675 | - | 2.857 | 0.2272 | - | 1.757 | 0.8977 | - |
LSBE 1 µM | 4.020 | 1.438 | 0.8551 | 6.547 | 0.9659 | 0.2012 | 6.720 | 8.011 | 0.3798 |
LSBE 13 µM | 15.440 | 9.525 | 0.0552 | 40.600 | 31.19 | 0.0137 | 8.290 | 8.048 | 0.3291 |
Zeaxanthin 1 µM | 3.483 | 1.926 | >0.9999 | 3.443 | 2.309 | 0.9273 | 2.287 | 1.181 | 0.6256 |
Zeaxanthin 70 µM | 5.120 | 1.779 | 0.2733 | 4.137 | 3.252 | 0.6481 | 2.955 | 3.656 | 0.8273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visan, S.; Soritau, O.; Tatomir, C.; Baldasici, O.; Balacescu, L.; Balacescu, O.; Muntean, P.; Gherasim, C.; Pintea, A. The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract (Hippophae rhamnoides L.) in Breast Cancer Cell Lines. Molecules 2023, 28, 4486. https://doi.org/10.3390/molecules28114486
Visan S, Soritau O, Tatomir C, Baldasici O, Balacescu L, Balacescu O, Muntean P, Gherasim C, Pintea A. The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract (Hippophae rhamnoides L.) in Breast Cancer Cell Lines. Molecules. 2023; 28(11):4486. https://doi.org/10.3390/molecules28114486
Chicago/Turabian StyleVisan, Simona, Olga Soritau, Corina Tatomir, Oana Baldasici, Loredana Balacescu, Ovidiu Balacescu, Patricia Muntean, Cristina Gherasim, and Adela Pintea. 2023. "The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract (Hippophae rhamnoides L.) in Breast Cancer Cell Lines" Molecules 28, no. 11: 4486. https://doi.org/10.3390/molecules28114486
APA StyleVisan, S., Soritau, O., Tatomir, C., Baldasici, O., Balacescu, L., Balacescu, O., Muntean, P., Gherasim, C., & Pintea, A. (2023). The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract (Hippophae rhamnoides L.) in Breast Cancer Cell Lines. Molecules, 28(11), 4486. https://doi.org/10.3390/molecules28114486