Boron-Based Inverse Sandwich V2B7− Cluster: Double π/σ Aromaticity, Metal–Metal Bonding, and Chemical Analogy to Planar Hypercoordinate Molecular Wheels
Abstract
:1. Introduction
2. Results
2.1. Global-Minimum Structure
2.2. Bond Distances, Wiberg Bond Indices, and Natural Atomic Charges
3. Discussion
3.1. Chemical Bonding: CMO and AdNDP Analyses, ELF Analysis, and NICS Calculations
3.2. On the Metal–Metal Bonding in Inverse Sandwich Cluster: Evidence for a V−V dσ Bond
3.3. Electronic Transmutation: Analogy between an Inverse Sandwich Cluster and a Planar Molecular Wheel Cluster
4. Methods Section
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lipscomb, W.N. The boranes and their relatives. Science 1977, 196, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Hanley, L.; Whitten, J.L.; Anderson, S.L. Collision-induced dissociation and ab initio studies of boron cluster ions: Determination of structures and stabilities. J. Phys. Chem. 1988, 92, 5803–5812. [Google Scholar] [CrossRef]
- Zhai, H.-J.; Alexandrova, A.N.; Birch, K.A.; Boldyrev, A.I.; Wang, L.-S. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: Observation and confirmation. Angew. Chem. Int. Ed. 2003, 42, 6004–6008. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.-J.; Kiran, B.; Li, J.; Wang, L.-S. Hydrocarbon analogues of boron clusters—Planarity, aromaticity and antiaromaticity. Nat. Mater. 2003, 2, 827–833. [Google Scholar] [CrossRef]
- Alexandrova, A.N.; Boldyrev, A.I.; Zhai, H.-J.; Wang, L.-S. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 2006, 250, 2811–2866. [Google Scholar] [CrossRef]
- Zubarev, D.Y.; Boldyrev, A.I. Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 2007, 28, 251–268. [Google Scholar] [CrossRef] [PubMed]
- Sergeeva, A.P.; Zubarev, D.Y.; Zhai, H.-J.; Boldyrev, A.I.; Wang, L.-S. A photoelectron spectroscopic and theoretical study of B16− and B162−: An all-boron naphthalene. J. Am. Chem. Soc. 2008, 130, 7244–7246. [Google Scholar] [CrossRef]
- Huang, W.; Sergeeva, A.P.; Zhai, H.-J.; Averkiev, B.B.; Wang, L.-S.; Boldyrev, A.I. A concentric planar doubly π-aromatic B19− cluster. Nat. Chem. 2010, 2, 202–206. [Google Scholar] [CrossRef]
- Sergeeva, A.P.; Piazza, Z.A.; Romanescu, C.; Li, W.-L.; Boldyrev, A.I.; Wang, L.-S. B22− and B23−: All-boron analogues of anthracene and phenanthrene. J. Am. Chem. Soc. 2012, 134, 18065–18073. [Google Scholar] [CrossRef]
- Li, W.-L.; Zhao, Y.-F.; Hu, H.-S.; Li, J.; Wang, L.-S. [B30]−: A quasiplanar chiral boron cluster. Angew. Chem. Int. Ed. 2014, 53, 5540–5545. [Google Scholar] [CrossRef]
- Piazza, Z.A.; Hu, H.-S.; Li, W.-L.; Zhao, Y.-F.; Li, J.; Wang, L.-S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.-J.; Zhao, Y.-F.; Li, W.-L.; Chen, Q.; Bai, H.; Hu, H.-S.; Piazza, Z.A.; Tian, W.-J.; Lu, H.-G.; Wu, Y.-B.; et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-L.; Chen, Q.; Tian, W.-J.; Bai, H.; Zhao, Y.-F.; Hu, H.-S.; Li, J.; Zhai, H.-J.; Li, S.-D.; Wang, L.-S. The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257–12260. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Zhao, Y.-F.; Li, W.-L.; Jian, T.; Chen, Q.; You, X.-R.; Ou, T.; Zhao, X.-Y.; Zhai, H.-J.; Li, S.-D.; et al. Observation and characterization of the smallest borospherene: B28− and B28. J. Chem. Phys. 2016, 144, 064307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oger, E.; Crawford, N.R.M.; Kelting, R.; Weis, P.; Kappes, M.M.; Ahlrichs, R. Boron cluster cations: Transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 2007, 46, 8503–8506. [Google Scholar] [CrossRef]
- Kiran, B.; Bulusu, S.; Zhai, H.-J.; Yoo, S.; Zeng, X.-C.; Wang, L.-S. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. USA 2005, 102, 961–964. [Google Scholar] [CrossRef] [Green Version]
- Romanescu, C.; Galeev, T.R.; Li, W.-L.; Boldyrev, A.I.; Wang, L.-S. Aromatic metal-centered monocyclic boron rings: CoB8− and RuB9−. Angew. Chem. Int. Ed. 2011, 50, 9334–9337. [Google Scholar] [CrossRef]
- Popov, I.A.; Li, W.-L.; Piazza, Z.A.; Boldyrev, A.I.; Wang, L.-S. Complexes between planar boron clusters and transition metals: A photoelectron spectroscopy and ab initio study of CoB12− and RhB12−. J. Phys. Chem. A 2014, 118, 8098–8105. [Google Scholar] [CrossRef]
- Popov, I.A.; Jian, T.; Lopez, G.V.; Boldyrev, A.I.; Wang, L.-S. Cobalt-centerd boron molecular drums with the highest coordination number in the CoB16− cluster. Nat. Commun. 2015, 6, 8654. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-L.; Chen, X.; Jian, T.; Chen, T.-T.; Li, J.; Wang, L.-S. From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 2017, 1, 0071. [Google Scholar] [CrossRef]
- Jian, T.; Chen, X.; Li, S.-D.; Boldyrev, A.I.; Li, J.; Wang, L.-S. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 2019, 48, 3550–3591. [Google Scholar] [CrossRef]
- Romanescu, C.; Galeev, T.R.; Li, W.-L.; Boldyrev, A.I.; Wang, L.-S. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349–1358. [Google Scholar]
- Li, W.-L.; Romanescu, C.; Galeev, T.R.; Piazza, Z.A.; Boldyrev, A.I.; Wang, L.-S. Transition-metal-centered nine-membered boron rings: M©B9 and M©B9– (M = Rh, Ir). J. Am. Chem. Soc. 2012, 134, 165–168. [Google Scholar] [CrossRef]
- Galeev, T.R.; Romanescu, C.; Li, W.-L.; Wang, L.-S.; Boldyrev, A.I. Observation of the highest coordination number in planar species: Decacoordinated Ta©B10– and Nb©B10– anions. Angew. Chem. Int. Ed. 2012, 51, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.-J.; Wang, L.-S.; Zubarev, D.Y.; Boldyrev, A.I. Gold apes hydrogen. The structure and bonding in the planar B7Au2– and B7Au2 clusters. J. Phys. Chem. A 2006, 110, 1689–1693. [Google Scholar] [CrossRef]
- Xie, L.; Li, W.-L.; Romanescu, C.; Huang, X.; Wang, L.-S. A photoelectron spectroscopy and density functional study of di-tantalum boride clusters: Ta2Bx− (x = 2–5). J. Chem. Phys. 2013, 138, 034308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.-F.; Li, X.-R.; Li, Y.-A.; Ma, L.-J.; Wu, H.-S. Density functional theory investigation on the structure and stability of Sc2Bn (n = 1–10) clusters. Comput. Theo. Chem. 2014, 1027, 128–134. [Google Scholar] [CrossRef]
- Li, W.-L.; Xie, L.; Jian, T.; Romanescu, C.; Huang, X.; Wang, L.-S. Hexagonal bipyramidal [Ta2B6]−/0 clusters: B6 rings as structural motifs. Angew. Chem. Int. Ed. 2014, 53, 1288–1292. [Google Scholar] [CrossRef]
- Li, W.-L.; Chen, T.-T.; Xing, D.-H.; Chen, X.; Li, J.; Wang, L.-S. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proc. Natl. Acad. Sci. USA 2018, 115, E6972–E6977. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, X.Y.; Yan, M.; Li, S.-D. From inverse sandwich Ta2B7+ and Ta2B8 to spherical trihedral Ta3B12–: Prediction of the smallest metallo-borospherene. RSC Adv. 2020, 10, 29320–29325. [Google Scholar] [CrossRef]
- Olson, J.K.; Boldyrev, A.I. Electronic transmutation: Boron acquiring an extra electron becomes ‘carbon’. Chem. Phys. Lett. 2012, 523, 83–86. [Google Scholar] [CrossRef]
- Zhang, X.; Lundell, K.A.; Olson, J.K.; Bowen, K.H.; Boldyrev, A.I. Electronic transmutation (ET): Chemically turning one element into another. Chem. Eur. J. 2018, 24, 9200–9210. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: A summary. J. Phys. Chem. A 2015, 119, 2326–2337. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-D.; Zhai, H.-J.; Wang, L.-S. B2(BO)22–—Diboronyl diborene: A linear molecule with a triple boron-boron bond. J. Am. Chem. Soc. 2008, 130, 2573–2579. [Google Scholar] [CrossRef] [PubMed]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Zubarev, D.Y.; Boldyrev, A.I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217. [Google Scholar] [CrossRef]
- Chen, Z.; Wannere, C.S.; Corminboeuf, C.; Puchta, R.; Schleyer, P.v.R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842–3888. [Google Scholar] [CrossRef]
- Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem. Rev. 2005, 105, 3911–3947. [Google Scholar] [CrossRef]
- Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Wang, L.-M.; Huang, W.; Averkiev, B.B.; Boldyrev, A.I.; Wang, L.-S. CB7−: Experimental and theoretical evidence against hypercoordinate planar carbon. Angew. Chem. Int. Ed. 2007, 46, 4550–4553. [Google Scholar] [CrossRef]
- Saunders, M. Stochastic search for isomers on a quantum mechanical surface. J. Comput. Chem. 2004, 25, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Bera, P.P.; Sattelmeyer, K.W.; Saunders, M.; Schaefer, H.F., III; Schleyer, P.v.R. Mindless chemistry. J. Phys. Chem. A 2006, 110, 4287–4290. [Google Scholar] [CrossRef] [PubMed]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Landis, C.R.; Weinhold, F. NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2013. [Google Scholar]
- Lu, T.; Chen, F.-W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Varetto, U. Molekel 5.4.0.8; Swiss National Supercomputing Center: Manno, Switzerland, 2009. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, P.-F.; Sun, Q.; Zhai, H.-J. Boron-Based Inverse Sandwich V2B7− Cluster: Double π/σ Aromaticity, Metal–Metal Bonding, and Chemical Analogy to Planar Hypercoordinate Molecular Wheels. Molecules 2023, 28, 4721. https://doi.org/10.3390/molecules28124721
Han P-F, Sun Q, Zhai H-J. Boron-Based Inverse Sandwich V2B7− Cluster: Double π/σ Aromaticity, Metal–Metal Bonding, and Chemical Analogy to Planar Hypercoordinate Molecular Wheels. Molecules. 2023; 28(12):4721. https://doi.org/10.3390/molecules28124721
Chicago/Turabian StyleHan, Peng-Fei, Qiang Sun, and Hua-Jin Zhai. 2023. "Boron-Based Inverse Sandwich V2B7− Cluster: Double π/σ Aromaticity, Metal–Metal Bonding, and Chemical Analogy to Planar Hypercoordinate Molecular Wheels" Molecules 28, no. 12: 4721. https://doi.org/10.3390/molecules28124721
APA StyleHan, P. -F., Sun, Q., & Zhai, H. -J. (2023). Boron-Based Inverse Sandwich V2B7− Cluster: Double π/σ Aromaticity, Metal–Metal Bonding, and Chemical Analogy to Planar Hypercoordinate Molecular Wheels. Molecules, 28(12), 4721. https://doi.org/10.3390/molecules28124721