Physicochemical Aspects, Bioactive Compounds, Phenolic Profile and In Vitro Antioxidant Activity of Tropical Red Fruits and Their Blend
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization
2.2. Bioactive Compounds
2.3. Colorimetry
2.4. Identification and Quantification of Individual Phenolic Compounds
2.5. Antioxidant Activity
2.6. Pearson Correlation Analysis between Bioactive Compounds and Antioxidant Activity
3. Materials and Methods
3.1. Raw Material
3.2. Pulp Extraction and Blend Preparation
3.3. Characterization of Pulps and Blend
3.3.1. Physicochemical Characterization
3.3.2. Bioactive Compounds
3.3.3. Colorimetry
3.3.4. Identification and Quantification of Individual Phenolic Compounds via HPLC
3.3.5. Antioxidant Activity
Antioxidant Activity via Ferric Reducing Antioxidant Power (FRAP)
Antioxidant Activity via ABTS•+ Free Radical Scavenging
Antioxidant Activity via DPPH• Free Radical Scavenging
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Grobelna, A.; Kalisz, S.; Kieliszek, M. The effect of the addition of blue honeysuckle berry juice to apple juice on the selected quality characteristics, anthocyanin stability, and antioxidant properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef] [Green Version]
- Aadil, R.M.; Khalil, A.A.; Rehman, A.; Khalid, A.; Inam-Ur-Raheem, M.; Karim, A.; Afraz, M.T. Assessing the impact of ultra-sonication and thermo-ultrasound on antioxidant indices and polyphenolic profile of apple-grape juice blend. J. Food Process. Preserv. 2020, 44, e14406. [Google Scholar] [CrossRef]
- Xu, M.; Shen, C.; Zheng, H.; Xu, Y.; Xue, C.; Zhu, B.; Hu, J. Metabolomic analysis of acerola cherry (Malpighia emarginata) fruit during ripening development via UPLC-Q-TOF and contribution to the antioxidant activity. Food Res. Inter. 2020, 130, 108915. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.R.; Leonel, S.; Souza, J.M.A.; Garcia, E.L.; Leonel, M.; Monteiro, L.N.H.; Ferreira, R.B. Improving the nutritional value and extending shelf life of red guava by adding calcium chloride. LWT—Food Sci. Technol. 2020, 130, 109655. [Google Scholar] [CrossRef]
- Suwanwong, Y.; Boonpangrak, S. Phytochemical contents, antioxidant activity, and anticancer activity of three common guava cultivars in Thailand. Eur. J. Integr. Med. 2021, 42, 101290. [Google Scholar] [CrossRef]
- Moon, P.; Fu, Y.; Bai, J.; Plotto, A.; Crane, J.; Chambers, A. Assessment of fruit aroma for twenty-seven guava (Psidium guajava) accessions through three fruit developmental stages. Sci. Hortic. 2018, 238, 375–383. [Google Scholar] [CrossRef]
- Franzon, R.C.; Carpenedo, S.; Viñoly, M.D.; Raseira, M.C.B. Pitanga: Eugenia uniflora L. In Exotic Fruits; Rodrigues, S., Silva, E.O., Brito, E.S., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: London, UK, 2018; pp. 333–338. [Google Scholar]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020, 308, e125522. [Google Scholar] [CrossRef]
- Reis, D.S.; Figueiredo Neto, A.; Ferraz, A.V.; Freitas, S.T. Production and storage stability of acerola flour dehydrated at different temperatures. Braz. J. Food Technol. 2017, 20, e2015083. [Google Scholar] [CrossRef] [Green Version]
- Maia, G.L.; Sá, D.M.A.T.; Alencar, R.T.; Cisne, R.M.A.; Vasconcelos, B.O.; Fernandes, D.R.; Laurindo, J.B. Production and evaluation of guava (Psidium guajava L.) chips. Braz. J. Dev. 2020, 6, 62452–62460. [Google Scholar] [CrossRef]
- Lins, B.V.P.; Farias, F.P.M.; Canuto, M.F.C.S.; Meira, A.C.S. Prediction models applied to guava solar drying kinetics. Res. Soc. Dev. 2021, 10, e519101119761. [Google Scholar] [CrossRef]
- Rivas, J.C.; Cabral, L.M.C.; Rocha-Leão, M.H.M.D. Microencapsulation of guava pulp with prebiotic wall material. Braz. J. Food Technol. 2021, 24, e2020213. [Google Scholar] [CrossRef]
- Reis, L.C.R.; Facco, E.M.P.; Salvador, M.; Flôres, S.H.; Rios, A.O. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J. Food Sci. Technol. 2018, 55, 2679–2691. [Google Scholar] [CrossRef] [PubMed]
- Moraes, M.S.; Figueirêdo, R.M.F.; Queiroz, A.J.D.M.; Silva, L.P.R.; Gonçalves, M.G.; Oliveira, A.P.; Costa, M.M. Elaboration of blends of pitaya pulps with acerola. J. Agric. Sci. 2021, 13, 53–60. [Google Scholar] [CrossRef]
- Lemos, D.M.; Rocha, A.P.T.; Gouveia, J.P.G.; Oliveira, E.N.A.; Sousa, E.P.; Silva, S.F. Elaboration and characterization of jabuticaba and acerola prebiotic jelly. Braz. J. Food Technol. 2019, 22, e2018098. [Google Scholar] [CrossRef]
- Magalhães, D.S.; Rufini, J.C.M.; Fagundes, M.C.P.; Alburqueque, A.S.; Ramos, M.C.P. Descriptive analysis and genetic dissimilarity between accesses of acerola trees. Sci. Electron. Arch. 2018, 11, 10–16. [Google Scholar] [CrossRef]
- Brasil. National Instruction No. 37, of 1 October 2018. Available online: in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/44304943/do1-2018-10-08-instrucao-normativa-n-37-de-1-de-outubro-de-2018-44304612 (accessed on 28 May 2023).
- Oliveira, B.A.S.; Assis, A.M.; Schuch, M.W.; Fischer, D.L.O.; Mattos, M.G.; Fischer, L.O.; Bergmann, A.R. Physicochemical characterization of ‘Golden’ pitaya pulp and bark. Res. Soc. Dev. 2021, 10, e550101422540. [Google Scholar] [CrossRef]
- Dantas, R.L.; Bezerra, E.M.N.; Santos, L.T.; Alves, P.O.; Lima, L.P.; Oliveira, J.S. Quality attributes of pitanga fruits (Eugenia uniflora L.) during maturation. J. Health Sci. Nova Esperança 2021, 19, 146–154. [Google Scholar] [CrossRef]
- Schiassi, M.C.E.V.; Souza, V.R.; Lago, A.M.T.; Campos, L.G.; Queiroz, F. Fruits from the brazilian cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chem. 2018, 245, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.P.; Jesus, R.S.; Fonseca, A.A.O.; Hansen, D.S.; Costa, M.A.P.C.; Lima, J.G.F.; Cardoso, R.L. Development and acceptability of a Mango (mangifera indica L.) Variety “carlota” and Slumber Passion Fruit (Passiflora setacea) mixed nectar. Braz. J. Dev. 2020, 6, 37713–37727. [Google Scholar] [CrossRef]
- Lima, T.L.S.; Cavalcante, C.L.; Sousa, D.G.; Silva, P.H.A.; Andrade Sobrinho, L.G. Evaluation of physical and chemical compositionof fruit pulp marketedin five cities in the Paraiba state-Brazil. Green J. Agroecol. Sustain. Dev. 2015, 10, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Fernandino, C.M.; Nepomuceno, A.T.; Fonseca, H.C.; Bastos, R.A.; Lima, J.P.D. Physicochemical properties of tamarillo pulp (Solanum betaceum) and its applicability in the production of ice cream. Braz. J. Food Technol. 2021, 24, e2020090. [Google Scholar] [CrossRef]
- Costa, E.E.; Alecrim, A.L.; Lunguinho, B.F.; Barbosa, I.G.A.; Oliveira, S.C.P.L. Physicochemical characterization of frozen and freeze-dried pineapple pulp. Braz. J. Food Technol. 2022, 8, 11754–11759. [Google Scholar] [CrossRef]
- Sousa, Y.A.; Borges, M.A.; Viana, A.F.S.; Dias, A.L.; Sousa, J.J.V.; Silva, B.A.; Silva, S.K.R.; Aguiar, F.S. Physicochemical and microbiological assessment of frozen fruit pulps marketed in Santarém-PA. Braz. J. Food Technol. 2020, 23, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Kohli, D.; Vishmoi, S.; Kumar, S.; Badola, B. Quality evaluation of prepared guava-orange fruit bar. Int. J. Chem. Stud. 2019, 7, 1574–1581. [Google Scholar]
- Ribeiro, C.M.C.M.; Magliano, L.C.D.S.A.; Costa, M.M.A.D.; Bezerra, T.K.A.; Silva, F.L.H.D.; Maciel, M.I.S. Optimization of the spray drying process conditions for acerola and seriguela juice mix. Food Sci. Technol. 2018, 39, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Mariano-Nasser, F.A.C.; Nasser, M.D.; Furlaneto, K.A.; Ramos, J.A.; Vieites, R.L.; Pagliarini, M.K. Bioactive compounds in different acerola fruit cultivares. Semina Agric. Sci. 2017, 38, 2505–2514. [Google Scholar] [CrossRef] [Green Version]
- Nazareno, L.S.Q.; Acevedo, A.K.D.O.S.; Cardoso, E.R.C. Characterization and quality assessment of frozen tropical fruit pulp. Braz. J. Agroenviron. 2019, 13, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Pirola, K.; Dotto, M.; Júnior, A.W.; Cassol, D.A. Quality of the pirenic and apirenic fruits of surinam cherry tree accesses (Eugenia uniflora). Colloq. Agrar. 2021, 17, 55–65. [Google Scholar] [CrossRef]
- Matos, J.D.; Figueiredo, R.M.F.; Queiroz, A.J.M.; Silva, L.P.F.R.; Moraes, M.S.; Silva, S.N.; Costa, Z.R.T.; Rodrigues, L.M.S.; Vieira, A.F.; Leite, D.D.F.; et al. Physical-chemical and bioactive characterization of jambolan and acerola mixed pulp. Sylwan 2021, 165, 45–61. [Google Scholar]
- Freitas, B.M.V.A.; Silva, J.N.F. Physical-chemical characterization of soft drink, nectar and commercial tropical juice with guava flavor. Braz. J. Dev. 2021, 7, 95051–95058. [Google Scholar] [CrossRef]
- Shigematsu, E.; Felix, R.C.C.; Santos, G.P.; Rossato, T.A.; Oshiiwa, M.; Dorta, C. Study of the shelf life of the mixed drink of guava with coconut water, without the addition of sucrose and preservatives. Evid. Biosci. Health Innov. 2019, 19, 149–166. [Google Scholar] [CrossRef]
- Malegori, C.; Nascimento Marques, E.J.; Freitas, S.T.; Pimentel, M.F.; Pasquini, C.; Casiraghi, E. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 2017, 165, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, J.F.; Barroso, B.S.; Tostes, E.D.S.L.; Silva, A.D.S.S.; Silva Júnior, A.C.S. Physico-chemical analysis of pulps of western indian cherry (Malpighia glabra L.) handmade and industrial frozen. PubVet 2018, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Poletto, P.; Alvarez-Rivera, G.; López, G.-D.; Borges, O.M.A.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Recovery of ascorbic acid, phenolic compounds and carotenoids from acerola by-products: An opportunity for their valorization. LWT—Food Sci. Technol. 2021, 146, 111654. [Google Scholar] [CrossRef]
- Helt, K.M.P.; Navas, R.; Gonçalves, E.M. Physical-chemical characteristics and antioxidant compounds of pitanga fruits from the region of Capão Bonito, SP. J. Agro-Environ. Sci. 2018, 16, 96–102. [Google Scholar] [CrossRef]
- Souza, V.R.D.; Pereira, P.A.P.; Queiroz, F.; Borges, S.V.; Carneiro, J.D.D.S. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chem. 2012, 134, 381–386. [Google Scholar] [CrossRef]
- Silva, S.P.; Marques, T.S.; Lando, V.R.; Zani, V.T. Determination of total polyphenols and flavonoids in Eugenia uniflora L. (surinam cherry): Fresh fruit, frozen pulp and jelly. Braz. J. Health Rev. 2021, 4, 28471–28483. [Google Scholar] [CrossRef]
- Stafussa, A.P.; Maciel, G.M.; Bortolini, D.G.; Maroldi, W.V.; Ribeiro, V.R.; Fachi, M.M.; Haminiuk, C.W.I. Bioactivity and bioaccessibility of phenolic compounds from Brazilian fruit purees. Future Foods 2021, 4, 100066. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Santos, V.O.; Rodrigues, S. Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Res. Int. 2019, 115, 16–22. [Google Scholar] [CrossRef]
- Omayio, D.G.; Abong’, G.O.; Okoth, M.W.; Gachuiri, C.K.; Mwangombe, A.W. Physicochemical and processing qualities of guava varieties in Kenya. Int. J. Fruit Sci. 2022, 22, 329–345. [Google Scholar] [CrossRef]
- Halim, M.A.; Kanan, K.A.; Nahar, T.; Rahman, M.J.; Ahmed, K.S.; Hossain, H.; Mozumder, N.H.M.R.; Ahmed, M. Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. LWT—Food Sci. Technol. 2022, 167, 113813. [Google Scholar] [CrossRef]
- Singh, P.; Roy, T.K.; Kanupriya, C.; Tripathi, P.C.; Kumar, P.; Shivashankara, K.S. Evaluation of bioactive constituents of Garcinia indica (kokum) as a potential source of hydroxycitric acid, anthocyanin, and phenolic compounds. LWT—Food Sci. Technol. 2022, 156, e112999. [Google Scholar] [CrossRef]
- Pereira, D.M.; Oliveira, K.A.R.; Chantelle, L.; Sant’ana, A.M.S.; Guedes, J.P.S.; Carvalho, C.T.; Azerêdo, G.A.; Brito, I.L. Characterization of nutritional composition and content of pitanga pigments (Eugenia uniflora L.) in red and purple varieties. Braz. J. Dev. 2020, 6, 58026–58038. [Google Scholar] [CrossRef]
- Zaicovski, C.B.; Cardoso, L.A.; Fischer, D.L.O.; Karow, M.F.; Bauer, V.R.P. Caracterização físico-química e compostos bioativos de goiabas ensacados com TNT de diferentes cores. Rural Sci. J. 2021, 23, 121–131. [Google Scholar] [CrossRef]
- Leiton-Ramírez, Y.M.; Ayala-Aponte, A.; Ochoa-Martínez, C.I. Physicochemical properties of guava snacks as affected by drying technology. Processes 2020, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Menezes, P.E.; Dornelles, L.L.; Fogaça, A.O.; Boligon, A.A.; Athayde, M.L.; Bertagnolli, S.M.M. Centesimal composition, bioactive compounds, antioxidant activity and phenolic characterization of guava pulp. Discip. Sci. Ser. Health Sci. 2016, 17, 205–217. [Google Scholar]
- Viana, E.S.; Fonseca, M.D.; Reis, R.C.; Andrade, M.V.S.; Ritzinger, R. Physicochemical and bioactive compound evaluation of acerola genotypes. Virtual J. Chem. 2021, 13, 993–998. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Update on natural food pigments: A mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 2019, 124, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Kushwaha, R.; Singh, M.; Saroj, R.; Puranik, V.; Agarwal, R.; Kaur, D. Quantification of bioactive compounds in guava at different ripening stages. Food Res. 2021, 5, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Bagetti, M.; Facco, E.M.P.; Piccolo, J.; Hirsch, G.E.; Rodriguez-Amaya, D.; Kobori, C.N.; Emanuelli, T. Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Food Sci. Technol. 2011, 31, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Jaeschke, D.P.; Marczak, L.D.F.; Mercali, G.D. Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating. Food Chem. 2016, 199, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.S.; Rocha, A.P.T.; Santos, D.C.; Araújo, A.S.; Oliveira, M.N. Physical-chemical characterization of a pineapple and acerola blend obtained by the freeze-drying method. Green J. Agroecol. Sustain. 2016, 11, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, E.M.; Rodrigues, F.F.; Costa, W.D.; Teixeira, R.N.; Boligon, A.A.; Sousa, E.O.; Costa, J.G.M. HPLC and in vitro evaluation of antioxidant properties of fruit from Malpighia glabra (Malpighiaceae) at different stages of maturation. Food Chem. Toxicol. 2018, 119, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Celep, A.G.S.; Demirkaya, A.; Solak, E.K. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer. Curr. Appl. Phys. 2022, 40, 30–42. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Jilany Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Fangfang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Miao, M.; Xiang, L. Pharmacological action and potential targets of chlorogenic acid. Adv. Pharmacol. 2020, 87, 71–88. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Silva, V.P.; Vilvert, J.C.; Souza, F.F.; Freitas, S.T.; Lima, M.S. Brazilian varieties of acerola (Malpighia emarginata DC.) produced under tropical semi-arid conditions: Bioactive phenolic compounds, sugars, organic acids, and antioxidant capacity. J. Food Biochem. 2021, 45, e13829. [Google Scholar] [CrossRef]
- Cruz, R.G.; Beney, L.; Gervais, P.; Lira, S.P.; Vieira, T.M.F.S.; Dupont, S. Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. Food Chem. 2018, 277, 698–705. [Google Scholar] [CrossRef]
- Zhao, R.; Xu, Y.; Li, C.; Wang, X.; Du, J.; Wang, C.; Shi, X.; Wang, B. Analysis of physicochemical characteristics, antioxidant activity, and key aroma compounds of five flat peach cultivars grown in Xinjiang. LWT—Food Sci. Technol. 2023, 176, e114550. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis, 20th ed.; AOAC: Washington, DC, USA, 2016; p. 3100. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Oliveira, R.G.; Godoy, H.T.; Prado, M.A. Optimization of a colorimetric method to determine ascorbic acids in fruit jelly. Food Sci. Technol. 2010, 30, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A. Folin-ciocalteau micro method for total phenol in wine. Am. J. Enol. Vitic. 2006, 1, 3–5. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigment photosynthetic biomembranes. Meth. Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Francis, F.J. Analysis of anthocyanins in foods. In Anthocyanins as Food Colors; Markakis, P., Ed.; Academic Press: New York, NY, USA, 1982; pp. 181–207. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon. Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Meireles, B.R.L.A. Nutritional and Antioxidant Potential of Catolé Fruit (Syagrus cearensis). Ph.D. Thesis, Universidade Federal da Paraíba—UFPB, João Pessoa, Brazil, 2007. [Google Scholar]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Scientific Methodology: Determination of Total Antioxidant Activity in Fruits by the Iron Reduction Method (FRAP), Technical Notice 125; Embrapa Tropical Agroindustry: Fortaleza, Brazil, 2006; p. 4. [Google Scholar]
- Rufino, M.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Scientific Methodology: Determination of Total Antioxidant Activity in Fruits by ABTS Free Radical Scavenging, Technical notice 128; Embrapa Tropical Agroindustry: Fortaleza, Brazil, 2007; p. 4. [Google Scholar]
- Silva, F.A.S.; Azevedo, C.A.V. The Assistat Software version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 2016, 11, 3733–3740. [Google Scholar] [CrossRef] [Green Version]
Parameters | Acerola | Guava | Pitanga | Blend |
---|---|---|---|---|
Water content (g/100 g) | 92.07 ± 0.01 A | 85.50 ± 0.38 C | 92.39 ± 0.23 A | 89.52 ± 0.28 B |
Water activity | 0.992 ± 0.00 C | 0.996 ± 0.00 AB | 0,997 ± 0 A | 0.994 ± 0.00 BC |
Total titratable acidity (g citric acid/100 g) | 2.57 ± 0.05 C | 1.29 ± 0.03 D | 3.42 ± 0.06 A | 2.81 ± 0.05 B |
pH | 3.52 ± 0.02 B | 4.11 ± 0.06 A | 3.18 ± 0.08 D | 3.39 ± 0.03 C |
Ashes (g/100 g) | 0.36 ± 0.01 B | 0.49 ± 0.02 A | 0.30 ± 0.01 C | 0.37 ± 0.02 B |
Total soluble solids (°Brix) | 9.73 ± 0.05 A | 10.08 ± 0.05 A | 3.60 ± 0.08 B | 9.88 ± 0.48 A |
Total sugars (g glucose/100 g) | 1.25 ± 0.02 C | 9.55 ± 0.00 A | 0.48 ± 0.00 D | 6.09 ± 0.00 B |
Reducing sugars (g glucose/100 g) | 1.03 ± 0.00 C | 9.13 ± 0.01 A | 0.44 ± 0.00 D | 5.68 ± 0.38 B |
Non-reducing sugars (g sucrose/100 g) | 0.22 ± 0.02 AB | 0.42 ± 0.01 A | 0.03 ± 0.00 B | 0.41 ± 0.38 A |
Parameters (mg/100 g) | Acerola | Guava | Pitanga | Blend |
---|---|---|---|---|
Ascorbic acid | 3636.43 ± 52.32 A | 96,55 ± 1.72 D | 289.78 ± 0.87 C | 1816.81 ± 30.82 B |
Total phenolic compounds | 2069.55 ± 0.57 A | 309.81 ± 0.10 C | 178.63 ± 0.01 D | 2027.85 ± 4.32 B |
Total flavonoids | 12.64 ± 0.50 A | 1.91 ± 0.07 D | 4.05 ± 0.15 C | 8.22 ± 0.21 B |
Anthocyanins | 2.24 ± 0.09 A | 0.48 ± 0.02 B | 0.90 ± 0.02 B | 2.16 ± 1.11 A |
Total carotenoids | 7.92 ± 0.39 A | 1.69 ± 0.54 D | 3.33 ± 1.01 C | 4.16 ± 0.95 B |
Lycopene | 0.19 ± 0.01 B | 0.05 ± 0.00 D | 0.26 ± 0.02 A | 0.10 ± 0.00 C |
Parameters | Acerola | Guava | Pitanga | Blend |
---|---|---|---|---|
Brightness (L*) | 18.77 ± 0.56 A | 12.96 ± 0.32 C | 13.35 ± 0.15 C | 14.56 ± 0.13 B |
Red intensity (+a*) | 7.66 ± 0.25 C | 10.33 ± 0.69 B | 10.87 ± 0.18 B | 11.93 ± 0.29 A |
Yellow intensity (+b*) | 2.44 ± 0.26 D | 3.50 ± 0.04 C | 8.78 ± 0.21 A | 6.63 ± 0.15 B |
Chroma (C*) | 8,04 ± 0.30 C | 10.91 ± 0.65 B | 13.97 ± 0.15 A | 13.65 ± 0.24 A |
Hue angle–h* (o) | 17.64 ± 1.33 C | 18.76 ± 1.33 C | 38.91 ± 0.94 A | 29.08 ± 0.94 B |
Phenolic Compounds (mg/100 g) | Acerola | Guava | Pitanga | Blend |
---|---|---|---|---|
Phenolic acids | ||||
Gallic acid | 2.20 ± 0.60 A | 0.41 ± 0.14 B | 0.71 ± 0.12 C | 2.17 ± 0.55 A |
Syringic acid | 0.03 ± 0.01 | ND | ND | ND |
Caftaric acid | 0.11 ± 0.01 | ND | ND | ND |
Chlorogenic Acid | 0.15 ± 0.00 A | 0.07 ± 0.00 B | 0.05 ± 0.00 B | 0.13 ± 0.01 A |
Caffeic acid | 0.06 ± 0.00 A | ND | 0.03 ±0.00 B | 0.04 ± 0.01 B |
p-Coumaric acid | 0.03 ± 0.02 | ND | ND | ND |
∑ Phenolic acids | 2.58 A | 0.48 D | 0.79 C | 2.34 B |
Flavanols | ||||
Procyanidin B1 | 0.40± 0.03 A | 0.11 ± 0.01 B | 0.17 ± 0.03 B | 0.25 ± 0.11 AB |
Procyanidin B2 | 0.17 ± 0.04 A | 0.09 ± 0.00 A | 0.11 ± 0.00 A | 0.15 ± 0.02 A |
Epigallocatechin gallate | 0.32 ± 0.02 A | ND | 0.12 ± 0.01 B | 0.24 ± 0.05 A |
Epicatechin | 0.07 ± 0.01 A | 0.004 ± 0.01 B | 0.03 ± 0.01 B | 0.02 ±0.00 B |
Epicatechin gallate | 0.08 ± 0.00 B | ND | ND | 0.10 ± 0.01 A |
Catechin | 1.14 ± 0.10 A | 0.50 ± 0.13 BC | 0.17 ± 0.01 C | 0.86 ± 0.15 AB |
∑ Flavanols | 2.18 A | 0.70 C | 0.60 D | 1.62 B |
Flavonols | ||||
Kaempferol 3-glicoside | 1.39 ± 0.39 A | 0.08 ± 0.03 B | 2.20 ± 0.22 A | 1.76 ± 0.33 A |
Rutin | 0.18 ± 0.00 A | 0.01 ± 0.00 B | 0.02 ± 0.00 B | 0.07 ± 0.06 AB |
Quercetin 3-Glycoside | 0.66 ± 0.09 A | 0.06 ± 0.00 B | 0.18 ± 0.03 B | 0.46 ± 0.08 A |
Isorhamnetin | 0.24 ±0.01 A | ND | ND | 0.14 ± 0.03 B |
∑ Flavonols | 2.47 A | 0.15 D | 2.14 C | 2.43 B |
Flavonas | ||||
Hesperidina | 0.30 ± 0.05 A | ND | ND | 0.47 ± 0.23 A |
∑ Flavones | 0.30 B | ND | ND | 0.47 A |
Aanthocyanins | ||||
Malvidin 3-glucoside | ND | ND | 0.61 ± 0.00 | ND |
∑ Anthocyanins | ND | ND | 0.61 ± 0.00 | ND |
∑ Flavonoids | 4.95 A | 0.854 D | 3.35 C | 4.52 B |
Stilbenes | ||||
Trans-resveratrol | 0.10 ± 0.02 A | ND | ND | 0.06 ± 0.01 B |
∑ Stilbenes | 0.10 ± 0.02 A | ND | ND | 0.06 ± 0.01 B |
Samples | FRAP (µmol Fe2+/g) | ABTS (µmol ET/g) | DPPH (µmol ET/g) |
---|---|---|---|
Acerola | 21.99 ± 0.02 A | 11.14 ± 0.20 A | 6.71 ± 0.09 A |
Guava | 20.15 ± 0.40 B | 7.68 ± 0.42 B | 5.14 ± 0.04 C |
Pitanga | 15.63 ± 0.74 C | 8.86 ± 0.18 B | 6.17 ± 0.01 B |
Blend | 22.02 ± 0.00 A | 6.88 ± 2.01 B | 6.76 ± 0.08 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiva, Y.F.; Figueirêdo, R.M.F.d.; Queiroz, A.J.d.M.; Amadeu, L.T.S.; Santos, F.S.d.; Reis, C.G.d.; Carvalho, A.J.d.B.A.; Lima, M.d.S.; Lima, A.G.B.d.; Gomes, J.P.; et al. Physicochemical Aspects, Bioactive Compounds, Phenolic Profile and In Vitro Antioxidant Activity of Tropical Red Fruits and Their Blend. Molecules 2023, 28, 4866. https://doi.org/10.3390/molecules28124866
Paiva YF, Figueirêdo RMFd, Queiroz AJdM, Amadeu LTS, Santos FSd, Reis CGd, Carvalho AJdBA, Lima MdS, Lima AGBd, Gomes JP, et al. Physicochemical Aspects, Bioactive Compounds, Phenolic Profile and In Vitro Antioxidant Activity of Tropical Red Fruits and Their Blend. Molecules. 2023; 28(12):4866. https://doi.org/10.3390/molecules28124866
Chicago/Turabian StylePaiva, Yaroslávia Ferreira, Rossana Maria Feitosa de Figueirêdo, Alexandre José de Melo Queiroz, Lumara Tatiely Santos Amadeu, Francislaine Suelia dos Santos, Carolaine Gomes dos Reis, Ana Júlia de Brito Araújo Carvalho, Marcos dos Santos Lima, Antônio Gilson Barbosa de Lima, Josivanda Palmeira Gomes, and et al. 2023. "Physicochemical Aspects, Bioactive Compounds, Phenolic Profile and In Vitro Antioxidant Activity of Tropical Red Fruits and Their Blend" Molecules 28, no. 12: 4866. https://doi.org/10.3390/molecules28124866
APA StylePaiva, Y. F., Figueirêdo, R. M. F. d., Queiroz, A. J. d. M., Amadeu, L. T. S., Santos, F. S. d., Reis, C. G. d., Carvalho, A. J. d. B. A., Lima, M. d. S., Lima, A. G. B. d., Gomes, J. P., Moura, R. L., Moura, H. V., & Silva, E. T. d. V. (2023). Physicochemical Aspects, Bioactive Compounds, Phenolic Profile and In Vitro Antioxidant Activity of Tropical Red Fruits and Their Blend. Molecules, 28(12), 4866. https://doi.org/10.3390/molecules28124866