Lipase Inactivation Kinetics of Tef Flour with Microwave Radiation and Impact on the Rheological Properties of the Gels Made from Treated Flour
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Microwave Treatment on Lipase Activity
2.2. Free Fatty Acid Content
2.3. Pasting Properties
2.4. Rheological Properties
3. Materials and Methods
3.1. Tef Flour Preparation
3.2. Microwave Treatment
3.3. Lipase Activity
3.4. Free Fatty Acid Determination
3.5. Pasting Properties
3.6. Rheological Properties
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Villanueva, M.; Abebe, W.; Collar, C.; Ronda, F. Tef [Eragrostis Tef (Zucc.) Trotter] Variety Determines Viscoelastic and Thermal Properties of Gluten-Free Dough and Bread Quality. LWT 2021, 135, 110065. [Google Scholar] [CrossRef]
- Masure, H.G.; Fierens, E.; Delcour, J.A. Current and Forward Looking Experimental Approaches in Gluten-Free Bread Making Research. J. Cereal Sci. 2016, 67, 92–111. [Google Scholar] [CrossRef]
- Bultosa, G. Physicochemical Characteristics of Grain and Flour in 13 Tef [Eragrostis Tef (Zucc.) Trotter] Grain Varieties. J. Appl. Sci. Res. 2007, 3, 2042–2050. [Google Scholar]
- Gebremariam, M.M.; Zarnkow, M.; Becker, T. Teff (Eragrostis Tef) as a Raw Material for Malting, Brewing and Manufacturing of Gluten-Free Foods and Beverages: A Review. J. Food Sci. Technol. 2014, 51, 2881–2895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.C.; Varriano-Marston, E. Changes in Pearl Millet Meal During Storage. Cereal Chem. 1980, 57, 275–277. [Google Scholar]
- Zhang, G.; Hamaker, B.R. Sorghum (Sorghum bicolor L. Moench) Flour Pasting Properties Influenced by Free Fatty Acids and Protein. Cereal Chem. 2005, 82, 534–540. [Google Scholar] [CrossRef]
- Parker, M.L.; Umeta, M.; Faulks, R.M. The Contribution of Flour Components to the Structure of Injera, an Ethiopian Fermented Bread Made from Tef (Eragrostis Tef). J. Cereal Sci. 1989, 10, 93–104. [Google Scholar] [CrossRef]
- Amare, E.; Grigoletto, L.; Corich, V.; Giacomini, A.; Lante, A. Fatty Acid Profile, Lipid Quality and Squalene Content of Teff (Eragrostis Teff (Zucc.) Trotter) and Amaranth (Amaranthus caudatus L.) Varieties from Ethiopia. Appl. Sci. 2021, 11, 3590. [Google Scholar] [CrossRef]
- Meera, M.S.; Bhashyam, M.K.; Ali, S.Z. Effect of Heat Treatment of Sorghum Grains on Storage Stability of Flour. LWT 2011, 44, 2199–2204. [Google Scholar] [CrossRef]
- Heiniö, R.L.; Noort, M.W.J.; Katina, K.; Alam, S.A.; Sozer, N.; de Kock, H.L.; Hersleth, M.; Poutanen, K. Sensory Characteristics of Wholegrain and Bran-Rich Cereal Foods—A Review. Trends Food Sci. Technol. 2016, 47, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; Bergman, C.J.; McClung, A.M. Hydrolytic Rancidity and Its Association with Phenolics in Rice Bran. Food Chem. 2019, 285, 485–491. [Google Scholar] [CrossRef]
- Nantanga, K.K.; Seetharaman, K.; De Kock, H.L.; Taylor, J.R. Thermal Treatments to Partially Pre-Cook and Improve the Shelf-Life of Whole Pearl Millet Flour. J. Sci. Food Agric. 2008, 88, 1892–1899. [Google Scholar] [CrossRef]
- Yadav, D.N.; Anand, T.; Kaur, J.; Singh, A.K. Improved Storage Stability of Pearl Millet Flour through Microwave Treatment. Agric. Res. 2012, 1, 399–404. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, L.; Zhu, H.; Li, Z. Superheated Steam Treatment Improved Flour Qualities of Wheat in Suitable Conditions. J. Food Process. Preserv. 2017, 41, e13238. [Google Scholar] [CrossRef]
- Adebowale, O.J.; Taylor, J.R.N.; de Kock, H.L. Stabilization of Wholegrain Sorghum Flour and Consequent Potential Improvement of Food Product Sensory Quality by Microwave Treatment of the Kernels. LWT 2020, 132, 109827. [Google Scholar] [CrossRef]
- Sumnu, G. A Review on Microwave Baking of Foods. Int. J. Food Sci. Technol. 2001, 36, 117–127. [Google Scholar] [CrossRef]
- Alajaji, S.A.; El-Adawy, T.A. Nutritional Composition of Chickpea (Cicer arietinum L.) as Affected by Microwave Cooking and Other Traditional Cooking Methods. J. Food Compos. Anal. 2006, 19, 806–812. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, S.L.; Miao, W.J.; Gao, C.; Cai, M.J.; Dong, Y. Study on the Stabilization Effect of Continuous Microwave on Wheat Germ. J. Food Eng. 2013, 117, 1–7. [Google Scholar] [CrossRef]
- Keying, Q.; Changzhong, R.; Zaigui, L. An Investigation on Pretreatments for Inactivation of Lipase in Naked Oat Kernels Using Microwave Heating. J. Food Eng. 2009, 95, 280–284. [Google Scholar] [CrossRef]
- Dang, B.; Zhang, W.G.; Zhang, J.; Yang, X.J.; Xu, H. De Effect of Thermal Treatment on the Internal Structure, Physicochemical Properties and Storage Stability of Whole Grain Highland Barley Flour. Foods 2022, 11, 2021. [Google Scholar] [CrossRef]
- Qu, C.; Yang, Q.; Ding, L.; Wang, X.; Liu, S.; Wei, M. The Effect of Microwave Stabilization on the Properties of Whole Wheat Flour and Its Further Interpretation by Molecular Docking. BMC Chem. 2021, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, A.; Marinopoulou, A.; Matsoukas, N.P.; Biliaderis, C.G. Impact of Flour Particle Size and Autoclaving on β-Glucan Physicochemical Properties and Starch Digestibility of Barley Rusks as Assessed by in Vitro Assays. Bioact. Carbohydr. Diet. Fibre 2014, 4, 58–73. [Google Scholar] [CrossRef]
- Pérez-Quirce, S.; Ronda, F.; Melendre, C.; Lazaridou, A.; Biliaderis, C.G. Inactivation of Endogenous Rice Flour β-Glucanase by Microwave Radiation and Impact on Physico-Chemical Properties of the Treated Flour. Food Bioprocess Technol. 2016, 9, 1562–1573. [Google Scholar] [CrossRef] [Green Version]
- Calix-Rivera, C.S.; Pérez-Quirce, S.; Ronda, F. Effect of Rice Flour Ultrafine Particle Size on β-Glucanase Inactivation by Microwave Treatments and Pasting Properties in Treated Flours. Bionatura 2022, 7, 10. [Google Scholar] [CrossRef]
- Villanueva, M.; De Lamo, B.; Harasym, J.; Ronda, F. Microwave Radiation and Protein Addition Modulate Hydration, Pasting and Gel Rheological Characteristics of Rice and Potato Starches. Carbohydr. Polym. 2018, 201, 374–381. [Google Scholar] [CrossRef]
- Solaesa, Á.G.; Villanueva, M.; Muñoz, J.M.; Ronda, F. Dry-Heat Treatment vs. Heat-Moisture Treatment Assisted by Microwave Radiation: Techno-Functional and Rheological Modifications of Rice Flour. LWT 2021, 141, 110851. [Google Scholar] [CrossRef]
- Vicente, A.; Villanueva, M.; Caballero, P.A.; Muñoz, J.M.; Ronda, F. Buckwheat Grains Treated with Microwave Radiation: Impact on the Techno-Functional, Thermal, Structural, and Rheological Properties of Flour. Food Hydrocoll. 2023, 137, 108328. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.S. Non-Uniform Temperature Distribution during Microwave Heating of Food Materials—A Review. Food Bioprocess Technol. 2010, 3, 161–171. [Google Scholar] [CrossRef]
- Rashid, M.T.; Liu, K.; Han, S.; Jatoi, M.A. The Effects of Thermal Treatment on Lipid Oxidation, Protein Changes, and Storage Stabilization of Rice Bran. Foods 2022, 11, 4001. [Google Scholar] [CrossRef]
- Uthumporn, U.; Nadiah, N.I.; Koh, W.Y.; Zaibunnisa, A.H.; Azwan, L. Effect of Microwave Heating on Corn Flour and Rice Flour in Water Suspension. Int. Food Res. J. 2016, 23, 2493–2503. [Google Scholar]
- Kamble, D.B.; Singh, R.; Pal Kaur, B.; Rani, S.; Upadhyay, A. Effect of Microwave Processing on Physicothermal Properties, Antioxidant Potential, in Vitro Protein Digestibility and Microstructure of Durum Wheat Semolina. J. Food Meas. Charact. 2020, 14, 761–769. [Google Scholar] [CrossRef]
- Aina, A.J.; Falade, K.O.; Akingbala, J.O.; Titus, P. Physicochemical Properties of Caribbean Sweet Potato (Ipomoea batatas (L) Lam) Starches. Food Bioprocess Technol. 2012, 5, 576–583. [Google Scholar] [CrossRef]
- Abegunde, O.K.; Mu, T.H.; Chen, J.W.; Deng, F.M. Physicochemical Characterization of Sweet Potato Starches Popularly Used in Chinese Starch Industry. Food Hydrocoll. 2013, 33, 169–177. [Google Scholar] [CrossRef]
- Abebe, W.; Ronda, F. Rheological and Textural Properties of Tef [Eragrostis Tef (Zucc.) Trotter] Grain Flour Gels. J. Cereal Sci. 2014, 60, 122–130. [Google Scholar] [CrossRef]
- Rose, D.J.; Pike, O.A. A Simple Method to Measure Lipase Activity in Wheat and Wheat Bran as an Estimation of Storage Quality. JAOCS J. Am. Oil Chem. Soc. 2006, 83, 415–419. [Google Scholar] [CrossRef]
- Irakli, M.; Lazaridou, A.; Biliaderis, C.G. Comparative Evaluation of the Nutritional, Antinutritional, Functional, and Bioactivity Attributes of Rice Bran Stabilized by Different Heat Treatments. Foods 2020, 10, 57. [Google Scholar] [CrossRef]
- AACC International Method 02-02.02. Fat Acidity—Rapid Method, for Small Grains. In AACC International Approved Methods; Cereals & Grains Association: St. Paul, MN, USA, 2009. [Google Scholar]
- Ronda, F.; Villanueva, M.; Collar, C. Influence of Acidification on Dough Viscoelasticity of Gluten-Free Rice Starch-Based Dough Matrices Enriched with Exogenous Protein. LWT 2014, 59, 12–20. [Google Scholar] [CrossRef] [Green Version]
Sample | Moisture Content (%) | Treatment Time (min) |
---|---|---|
BT (Control) | 12 | - |
BT-12-1 | 12 | 1 |
BT-12-2 | 12 | 2 |
BT-12-4 | 12 | 4 |
BT-12-6 | 12 | 6 |
BT-12-8 | 12 | 8 |
BT-15-1 | 15 | 1 |
BT-15-2 | 15 | 2 |
BT-15-4 | 15 | 4 |
BT-15-6 | 15 | 6 |
BT-15-8 | 15 | 8 |
BT-20-1 | 20 | 1 |
BT-20-2 | 20 | 2 |
BT-20-4 | 20 | 4 |
BT-20-6 | 20 | 6 |
BT-20-8 | 20 | 8 |
BT-25-1 | 25 | 1 |
BT-25-2 | 25 | 2 |
BT-25-4 | 25 | 4 |
BT-25-6 | 25 | 6 |
BT-25-8 | 25 | 8 |
Sample | Moisture Content (%) | Time (min) | Lipase Activity (U/g) | Free Fatty Acids (%) | PT (°C) | PV (cP) | TV (cP) | BV (cP) | FV (cP) | SV (cP) |
---|---|---|---|---|---|---|---|---|---|---|
Control | 0.62 d | 6.25 e | 71.1 a | 708 e | 588 d | 120 c | 1190 c | 602 c | ||
BT12-1 | 12 | 1 | 0.56 cA | 5.16 aA | 70.9 aA | 728 eA | 585 dA | 144 dA | 1184 cA | 600 cA |
BT12-2 | 2 | 0.50 cB | 5.53 bB | 70.9 aA | 673 dA | 556 cA | 117 cAB | 1134 bA | 578 bA | |
BT12-4 | 4 | 0.41 bD | 5.75 cB | 71.3 aA | 644 cB | 542 bcA | 102 bD | 1125 bA | 583 bcA | |
BT12-6 | 6 | 0.26 aC | 6.04 dB | 72.5 bA | 535 bA | 535 bA | 2 aA | 1109 bA | 575 bB | |
BT12-8 | 8 | 0.28 aC | 8.07 fC | 74.2 cB | 432 aA | 429 aA | 3 aA | 902 aB | 473 aC | |
SE | 0.02 | 0.08 | 0.2 | 7 | 4 | 3 | 10 | 6 | ||
Control | 0.62 f | 6.25 c | 71.1 a | 708 c | 588 a | 120 d | 1190 a | 602 a | ||
BT15-1 | 15 | 1 | 0.50 eA | 5.8 aC | 71.5 abB | 735 cA | 595 aA | 140 eA | 1207 abA | 612 aA |
BT15-2 | 2 | 0.39 dA | 5.6 aB | 71.8 bB | 715 cB | 583 aB | 133 deC | 1192 abB | 610 aB | |
BT15-4 | 4 | 0.34 cC | 6.0 bC | 72.3 cBC | 615 aA | 573 aB | 43 cB | 1185 aB | 613 aB | |
BT15-6 | 6 | 0.27 bC | 6.3 cB | 72.5 cA | 658 bC | 643 bC | 15 aC | 1310 cB | 667 bC | |
BT15-8 | 8 | 0.04 aA | 7.2 dB | 72.7 cA | 622 abD | 594 aD | 29 bC | 1247 bC | 654 bD | |
SE | 0.01 | 0.1 | 0.1 | 11 | 8 | 4 | 16 | 8 | ||
Control | 0.62 f | 6.25 c | 71.1 a | 708 cd | 588 b | 120 c | 1190 b | 602 b | ||
BT20-1 | 20 | 1 | 0.53 eA | 5.2 aA | 71.7 bcB | 755 eA | 610 bA | 146 dA | 1222 bcA | 612 bA |
BT20-2 | 2 | 0.39 dA | 5.1 aA | 71.3 abAB | 725 deB | 598 bBC | 127 cBC | 1227 bcC | 630 bcC | |
BT20-4 | 4 | 0.29 cB | 5.4 bA | 71.9 cB | 673 bcC | 615 bC | 58 bC | 1269 cC | 654 cdC | |
BT20-6 | 6 | 0.20 bB | 5.6 bA | 72.7 dA | 666 bC | 651 cC | 15 aC | 1332 dB | 682 dC | |
BT20-8 | 8 | 0.09 aB | 7.2 dB | 77.4 eC | 542 aC | 527 aC | 15 aB | 920 aB | 393 aB | |
SE | 0.01 | 0.1 | 0.1 | 12 | 8 | 5 | 16 | 8 | ||
Control | 0.62 e | 6.25 b | 71.13 a | 708 c | 588 b | 120 d | 1190 c | 602 c | ||
BT25-1 | 25 | 1 | 0.52 dA | 5.4 aB | 71.50 bA | 735 deA | 592 bA | 143 eA | 1205 cA | 613 cA |
BT25-2 | 2 | 0.37 cA | 5.3 aAB | 71.48 bAB | 713 cdB | 611 cC | 102 cA | 1252 dC | 641 dC | |
BT25-4 | 4 | 0.15 bA | 5.3 aA | 72.70 cC | 748 eD | 715 dD | 33 bA | 1437 eD | 722 eD | |
BT25-6 | 6 | 0.07 aA | 5.5 aA | 75.25 dB | 608 bB | 599 bcB | 9 aB | 1116 bA | 517 bA | |
BT25-8 | 8 | 0.07 aB | 6.2 bA | 77.63 eC | 486 aB | 457 aB | 29 bC | 774 aA | 317 aA | |
SE | 0.02 | 0.2 | 0.08 | 7 | 5 | 3 | 10 | 6 | ||
Analysis of variance and significance (p-values) | ||||||||||
Moisture content (F1) | ns | * | ns | ns | * | ns | ns | ns | ||
Treatment time (F2) | *** | *** | *** | *** | *** | *** | *** | *** | ||
(F1) × (F2) | *** | *** | *** | *** | *** | *** | *** | *** |
Sample | G1′ (Pa) | a | G1” (Pa) | b | (Tan δ)1 | c | τmax (Pa) | Crossover (Pa) |
---|---|---|---|---|---|---|---|---|
Control | 239 c | 0.133 a | 41.3 b | 0.321 a | 0.173 ab | 0.188 d | 116 b | 144 b |
BT25-1 | 263 d | 0.127 a | 43.3 bc | 0.318 a | 0.165 a | 0.191 d | 136 c | 141 b |
BT25-2 | 232 c | 0.149 b | 43.7 c | 0.331 b | 0.189 bc | 0.182 cd | 121 bc | 148 b |
BT25-4 | 209 b | 0.168 c | 44.1 c | 0.341 c | 0.211 d | 0.173 bc | 162 d | 164 b |
BT25-6 | 223 bc | 0.193 d | 44.1 c | 0.348 d | 0.197 cd | 0.155 a | 202 e | 208 c |
BT25-8 | 155 a | 0.201 d | 35.8 a | 0.365 e | 0.231 e | 0.163 ab | 93 a | 103 a |
SE | 6 | 0.004 | 0.6 | 0.001 | 0.005 | 0.003 | 5 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abebe, W.; Náthia-Neves, G.; Calix-Rivera, C.S.; Villanueva, M.; Ronda, F. Lipase Inactivation Kinetics of Tef Flour with Microwave Radiation and Impact on the Rheological Properties of the Gels Made from Treated Flour. Molecules 2023, 28, 2298. https://doi.org/10.3390/molecules28052298
Abebe W, Náthia-Neves G, Calix-Rivera CS, Villanueva M, Ronda F. Lipase Inactivation Kinetics of Tef Flour with Microwave Radiation and Impact on the Rheological Properties of the Gels Made from Treated Flour. Molecules. 2023; 28(5):2298. https://doi.org/10.3390/molecules28052298
Chicago/Turabian StyleAbebe, Workineh, Grazielle Náthia-Neves, Caleb S. Calix-Rivera, Marina Villanueva, and Felicidad Ronda. 2023. "Lipase Inactivation Kinetics of Tef Flour with Microwave Radiation and Impact on the Rheological Properties of the Gels Made from Treated Flour" Molecules 28, no. 5: 2298. https://doi.org/10.3390/molecules28052298
APA StyleAbebe, W., Náthia-Neves, G., Calix-Rivera, C. S., Villanueva, M., & Ronda, F. (2023). Lipase Inactivation Kinetics of Tef Flour with Microwave Radiation and Impact on the Rheological Properties of the Gels Made from Treated Flour. Molecules, 28(5), 2298. https://doi.org/10.3390/molecules28052298