Comprehensive HRMS Chemical Characterization of Pomegranate-Based Antioxidant Drinks via a Newly Developed Suspect and Target Screening Workflow
Abstract
:1. Introduction
2. Results
2.1. Suspect Screening of the Juice Employing Different Workflows—Qualitative Results
2.2. Quantitative Analysis
3. Discussion
3.1. Development of a Novel Workflow
3.1.1. Compilation of Suspect Lists
3.1.2. MZmine-Based Workflow (MS1 Driven)
3.1.3. MS-DIAL-Based Workflow (Fragmentation Driven)
3.2. The Antioxidant Activity of the Investigated Juices
3.3. Comparative Analysis of Antioxidant Juices
3.4. Beneficial Role of the Identified Compound in Human Health
4. Materials and Methods
4.1. Methodology for the Preparation of Pomegranate-Based Drinks
4.2. Reagents and Materials
4.3. Sample Pre-Treatment for HRMS Analysis
4.4. Instrumentation
UPLC-QToF-MS Instrumentation
4.5. Mass Spectrometry Data Analysis
4.5.1. Identification Confidence
4.5.2. Data Processing and Identification Workflows
Workflows for the Compilation of Suspect Lists
- 1.
- Bioactivity driven suspect list.
- 2.
- Comprehensive literature-based suspect list.
Methodology of the Development of Workflow MS1 Driven
Methodology of the Development of Workflow MS2 Driven
4.5.3. Target Screening Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sreekumar, S.; Sithul, H.; Muraleedharan, P.; Azeez, J.M.; Sreeharshan, S. Pomegranate fruit as a rich source of biologically active compounds. Biomed. Res. Int. 2014, 2014, 686921. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; El Gendy Ael, N.; Sendra, E.; Fernandez-Lopez, J.; Abd El Razik, K.A.; Omer, E.A.; Perez-Alvarez, J.A. Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants. J. Agric. Food Chem. 2010, 58, 9063–9070. [Google Scholar] [CrossRef] [PubMed]
- Elfalleh, W.; Hannachi, H.; Tlili, N.; Yahia, Y.; Nasri, N.; Ferchichi, A. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plants Res. 2012, 6, 4724–4730. [Google Scholar] [CrossRef]
- Gurčík, Ľ.; Bajusová, Z.; Ladvenicová, J.; Palkovič, J.; Novotná, K. Cultivation and Processing of Modern Superfood—Aronia melanocarpa (Black Chokeberry) in Slovak Republic. Agriculture 2023, 13, 604. [Google Scholar] [CrossRef]
- Gajic, D.; Saksida, T.; Koprivica, I.; Vujicic, M.; Despotovic, S.; Savikin, K.; Jankovic, T.; Stojanovic, I. Chokeberry (Aronia melanocarpa) fruit extract modulates immune response in vivo and in vitro. J. Funct. Foods 2020, 66, 103836. [Google Scholar] [CrossRef]
- Hussain, F.; Rana, Z.; Shafique, H.; Malik, A.; Hussain, Z. Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: A review. Asian Pac. J. Trop. Biomed. 2017, 7, 950–956. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Serali, O.; Unal, N.; Capanoglu, E. Antioxidant activity and polyphenol composition of black mulberry (Morus nigra L.) products. J. Berry Res. 2013, 3, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Integrated Taxonomic Information System (ITIS). Available online: https://www.gbif.org/dataset/9ca92552-f23a-41a8-a140-01abaa31c931 (accessed on 28 April 2023).
- Bigard, A.; Berhe, D.T.; Maoddi, E.; Sire, Y.; Boursiquot, J.M.; Ojeda, H.; Peros, J.P.; Doligez, A.; Romieu, C.; Torregrosa, L. Vitis vinifera L. Fruit Diversity to Breed Varieties Anticipating Climate Changes. Front. Plant Sci. 2018, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Change 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef] [PubMed]
- Pomegranate Market Share and Forecast till 2028. Available online: https://www.marketwatch.com/press-release/pomegranate-market-share-and-forecast-till-2028-2023-03-19 (accessed on 22 March 2023).
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Sendra, J.M.; Sentandreu, E.; Navarro, J.L. Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) for determination of the antiradical activity of citrus juices. Eur. Food Res. Technol. 2006, 223, 615–624. [Google Scholar] [CrossRef]
- de la Fuente, B.; Pallares, N.; Barba, F.J.; Berrada, H. An Integrated Approach for the Valorization of Sea Bass (Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction. Foods 2021, 10, 546. [Google Scholar] [CrossRef]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of Antioxidant Potency of Commonly Consumed Polyphenol-Rich Beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef]
- Gozlekci, S.; Saracoglu, O.; Onursal, E.; Ozgen, M. Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharm. Mag 2011, 7, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Ehling, S.; Cole, S. Analysis of organic acids in fruit juices by liquid chromatography-mass spectrometry: An enhanced tool for authenticity testing. J. Agric. Food Chem. 2011, 59, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, H.; Barzegar, M.; Weidlich, H.; Zimmermann, B.F. Phenolic Compounds and Antioxidant Activity of Juices from Ten Iranian Pomegranate Cultivars Depend on Extraction. J. Chem. 2015, 2015, 907101. [Google Scholar] [CrossRef]
- Di Stefano, V.; Scandurra, S.; Pagliaro, A.; Di Martino, V.; Melilli, M.G. Effect of Sunlight Exposure on Anthocyanin and Non-Anthocyanin Phenolic Levels in Pomegranate Juices by High Resolution Mass Spectrometry Approach. Foods 2020, 9, 1161. [Google Scholar] [CrossRef]
- Indelicato, S.; Houmanat, K.; Bongiorno, D.; Ejjilani, A.; Hssaini, L.; Razouk, R.; Charafi, J.; Ennahli, S.; Hanine, H. Freeze dried pomegranate juices of Moroccan fruits: Main representative phenolic compounds. J. Sci. Food Agric. 2023, 103, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Caravaca, A.M.; Verardo, V.; Toselli, M.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Caboni, M.F. Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS. J. Agric. Food Chem. 2013, 61, 5328–5337. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Drakopoulou, S.K.; Aalizadeh, R.; Thomaidis, N.S. Targeted and Untargeted Metabolomics as an Enhanced Tool for the Detection of Pomegranate Juice Adulteration. Foods 2019, 8, 212. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Xu, Q.; Li, X.; Wang, Y.; Zhu, J.; Ning, C.; Chang, X.; Meng, X. Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innov. Food Sci. Emerg. Technol. 2016, 36, 48–58. [Google Scholar] [CrossRef]
- Andrade, M.A.; de Oliveira Torres, L.R.; Silva, A.S.; Barbosa, C.H.; Vilarinho, F.; Ramos, F.; de Quirós, A.R.B.; Khwaldia, K.; Sendón, R. Industrial multi-fruits juices by-products: Total antioxidant capacity and phenolics profile by LC–MS/MS to ascertain their reuse potential. Eur. Food Res. Technol. 2020, 246, 2271–2282. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, J.; Ma, L.; Wen, D.; Chen, F.; Li, J. Identification of polyphenols in mulberry (genus Morus ) cultivars by liquid chromatography with time-of-flight mass spectrometer. J. Food Compos. Anal. 2017, 63, 55–64. [Google Scholar] [CrossRef]
- Bouzabata, A.; Montoro, P.; Gil, K.A.; Piacente, S.; Youssef, F.S.; Al Musayeib, N.M.; Cordell, G.A.; Ashour, M.L.; Tuberoso, C.I.G. HR-LC-ESI-Orbitrap-MS-Based Metabolic Profiling Coupled with Chemometrics for the Discrimination of Different Echinops spinosus Organs and Evaluation of Their Antioxidant Activity. Antioxidants 2022, 11, 453. [Google Scholar] [CrossRef]
- Hasanpour, M.; Saberi, S.; Iranshahi, M. Metabolic Profiling and Untargeted 1H-NMR-Based Metabolomics Study of Different Iranian Pomegranate (Punica granatum) Ecotypes. Planta Med. 2020, 86, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zuo, T.; Wang, X.; Wang, H.; Hu, Y.; Li, Z.; Li, W.; Jia, L.; Qian, Y.; Yang, W.; et al. Integration of Data-Dependent Acquisition (DDA) and Data-Independent High-Definition MS(E) (HDMS(E)) for the Comprehensive Profiling and Characterization of Multicomponents from Panax japonicus by UHPLC/IM-QTOF-MS. Molecules 2019, 24, 2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Géhin, C.; Holman, S.W. Advances in high-resolution mass spectrometry applied to pharmaceuticals in 2020: A whole new age of information. Anal. Sci. Adv. 2021, 2, 142–156. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef]
- SmiLib v2.0. Available online: http://melolab.org/smilib/ (accessed on 13 April 2023).
- Schüller, A.; Hähnke, V.; Schneider, G. SmiLib v2.0: A Java-Based Tool for Rapid Combinatorial Library Enumeration. QSAR Comb. Sci. 2007, 26, 407–410. [Google Scholar] [CrossRef]
- Miguel, M.G.; Neves, M.A.; Antunes, M.D. Pomegranate (Punica granatum L.): A medicinal plant with myriad biological properties—A short review. J. Med. Plants Res. 2010, 4, 2836–2847. [Google Scholar]
- El-Nemr, S.E.; Ismail, I.A.; Ragab, M. Chemical composition of juice and seeds of pomegranate fruit. Food/Nahr. 1990, 34, 601–606. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdylo, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Pilaczynska-Szczesniak, L.; Skarpanska-Steinborn, A.; Deskur, E.; Basta, P.; Horoszkiewicz-Hassan, M. The Influence of Chokeberry Juice Supplementation on the Reduction of Oxidative Stress Resulting from an Incremental Rowing Ergometer Exercise. Int. J. Sport Nutr. Exerc. Metab. 2005, 14, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Prieur, C.; Rigaud, J.; Cheynier, V.; Moutounet, M. Oligomeric and polymeric procyanidins from grape seeds. Phytochemistry 1994, 36, 781–784. [Google Scholar] [CrossRef]
- Toaldo, I.M.; Cruz, F.A.; da Silva, E.L.; Bordignon-Luiz, M.T. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals. Nutr. Res. 2016, 36, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Balu, M.; Sangeetha, P.; Murali, G.; Panneerselvam, C. Modulatory role of grape seed extract on age-related oxidative DNA damage in central nervous system of rats. Brain Res. Bull. 2006, 68, 469–473. [Google Scholar] [CrossRef]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2004, 84, 1771–1782. [Google Scholar] [CrossRef]
- Tavares, L.; Figueira, I.; McDougall, G.J.; Vieira, H.L.; Stewart, D.; Alves, P.M.; Ferreira, R.B.; Santos, C.N. Neuroprotective effects of digested polyphenols from wild blackberry species. Eur. J. Nutr. 2013, 52, 225–236. [Google Scholar] [CrossRef]
- Marquina, M.A.; Corao, G.M.; Araujo, L.; Buitrago, D.; Sosa, M. Hyaluronidase inhibitory activity from the polyphenols in the fruit of blackberry (Rubus fruticosus B.). Fitoterapia 2002, 73, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Touqeer, T.; Setzer, W.N.; Nabavi, S.F.; Orhan, I.E.; Braidy, N.; Sobarzo-Sanchez, E.; Nabavi Mohammad, S. Insights Into Effects of Ellagic Acid on the Nervous System: A Mini Review. Curr. Pharm. Des. 2016, 22, 1350–1360. [Google Scholar] [CrossRef]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharm. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar] [CrossRef] [PubMed]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef]
- Reis, F.S.; Stojković, D.; Soković, M.; Glamočlija, J.; Ćirić, A.; Barros, L.; Ferreira, I.C.F.R. Chemical characterization of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese. Food Res. Int. 2012, 48, 620–626. [Google Scholar] [CrossRef]
- Bjelobaba, I.; Savic, D.; Lavrnja, I. Multiple Sclerosis and Neuroinflammation: The Overview of Current and Prospective Therapies. Curr. Pharm. Des. 2017, 23, 693–730. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Xia, F.F.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Ryan, E.M.; Duryee, M.J.; Hollins, A.; Dover, S.K.; Pirruccello, S.; Sayles, H.; Real, K.D.; Hunter, C.D.; Thiele, G.M.; Mikuls, T.R. Antioxidant properties of citric acid interfere with the uricase-based measurement of circulating uric acid. J. Pharm. Biomed. Anal. 2019, 164, 460–466. [Google Scholar] [CrossRef]
- Kilel, E.C.; Wanyoko, J.K.; Faraj, A.K.; Ngoda, P. Effect of Citric Acid on the Total Monomeric Anthocyanins and Antioxidant Activity of Liquor Made from Unprocessed Purple Leafed TRFK 306 Kenyan Tea Clone. Food Nutr. Sci. 2019, 10, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Rostamzad, H.; Shabanpour, B.; Kashaninejad, M.; Shabani, A. Antioxidative activity of citric and ascorbic acids and their preventive effect on lipid oxidation in frozen persian sturgeon fillets. Lat. Am. Appl. Res. 2011, 41, 135–140. [Google Scholar]
- Panara, A.; Gikas, E.; Thomaidis, N.S. From By-Products to Fertilizer: Chemical Characterization Using UPLC-QToF-MS via Suspect and Non-Target Screening Strategies. Molecules 2022, 27, 3498. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Schymanski, E.L.; Bletsou, A.A.; Aalizadeh, R.; Hollender, J.; Thomaidis, N.S. Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environ. Sci. Technol. 2015, 49, 12333–12341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aalizadeh, R.; Thomaidis, N.S.; Bletsou, A.A.; Gago-Ferrero, P. Quantitative Structure-Retention Relationship Models To Support Nontarget High-Resolution Mass Spectrometric Screening of Emerging Contaminants in Environmental Samples. J. Chem. Inf. Model 2016, 56, 1384–1398. [Google Scholar] [CrossRef]
- .Aalizadeh, R.; Nika, M.C.; Thomaidis, N.S. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J. Hazard. Mater. 2019, 363, 277–285. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Bletsou, A.A.; Damalas, D.E.; Aalizadeh, R.; Alygizakis, N.A.; Singer, H.P.; Hollender, J.; Thomaidis, N.S. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 2020, 387, 121712. [Google Scholar] [CrossRef] [PubMed]
- Aalizadeh, R.; Alygizakis, N.A.; Schymanski, E.L.; Krauss, M.; Schulze, T.; Ibanez, M.; McEachran, A.D.; Chao, A.; Williams, A.J.; Gago-Ferrero, P.; et al. Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening. Anal. Chem. 2021, 93, 11601–11611. [Google Scholar] [CrossRef] [PubMed]
- Aalizadeh, R.; Panara, A.; Thomaidis, N.S. Development and Application of a Novel Semi-quantification Approach in LC-QToF-MS Analysis of Natural Products. J. Am. Soc. Mass Spectrom. 2021, 32, 1412–1423. [Google Scholar] [CrossRef]
- Panara, A.; Gikas, E.; Thomaidis, N.S. Complete Chemical Characterization of Crocus Sativus via LC-HRMS: Does Trimming Affect the Chemical Content of Saffron? Food Chem. 2023, 424, 136452. [Google Scholar] [CrossRef]
- Nikolopoulou, V.; Ajibola, A.S.; Aalizadeh, R.; Thomaidis, N.S. Wide-scope target and suspect screening of emerging contaminants in sewage sludge from Nigerian WWTPs by UPLC-qToF-MS. Sci. Total Env. 2023, 857 Pt 3, 159529. [Google Scholar] [CrossRef]
- Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform. 2007, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Ruttkies, C.; Schymanski, E.L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J. Cheminform. 2016, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djoumbou-Feunang, Y.; Pon, A.; Karu, N.; Zheng, J.; Li, C.; Arndt, D.; Gautam, M.; Allen, F.; Wishart, D.S. CFM-ID 3.0: Significantly Improved ESI-MS/MS Prediction and Compound Identification. Metabolites 2019, 9, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, M.; Singer, H.; Hollender, J. LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns. Anal. Bioanal. Chem. 2010, 397, 943–951. [Google Scholar] [CrossRef] [Green Version]
- MoNA, MassBank of North America. Available online: http://mona.fiehnlab.ucdavis.edu/ (accessed on 2 March 2023).
- MassBank-Europe. Available online: https://massbank.eu/MassBank/ (accessed on 2 March 2023).
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- GNPS. Available online: https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp (accessed on 2 March 2023).
- Poyrazoğlu, E.; Gökmen, V.; Artιk, N. Organic Acids and Phenolic Compounds in Pomegranates (Punica granatum L.) Grown in Turkey. J. Food Compos. Anal. 2002, 15, 567–575. [Google Scholar] [CrossRef]
- Gil, M.I.; Cherif, J.; Ayed, N.; Artés, F.; Tomás-Barberán, F.A. Influence of cultivar, maturity stage and geographical location on the juice pigmentation of Tunisian pomegranates. Z. Für Lebensm. -Unters. Und Forsch. 1995, 201, 361–364. [Google Scholar] [CrossRef]
- Labbé, M.; Ulloa, P.A.; López, F.; Sáenz, C.; Peña, Á.; Salazar, F.N. Characterization of chemical compositions and bioactive compounds in juices from pomegranates (Wonderful, Chaca and Codpa) at different maturity stages. Chil. J. Agric. Res. 2016, 76, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Reifycs Abf Converter. Available online: https://www.reifycs.com/AbfConverter (accessed on 20 February 2023).
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
Compound Name | Chemical Formula | Exp. tR (min) (Reference Standard) a | Pred. tR (min) | Application Domain b | Exp. m/z c | Theor. m/z | ESI Mode | MS/MS Explained Fragments d | Reference MS/MS Spectra e | Total Score | Level of Identification/Database Reference i | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
80% f | 90% g | 100% h | |||||||||||
Citric acid | C₆H₈O₇ | 1.2 (1.2) a | 1.1 | Box 1 | 191.0213 | 191.0197 | −ESI | 57.0353 | 57.0354 | 0.76 | 0.75 | 0.76 | 1 |
87.0092 | 87.0089 | ||||||||||||
111.0094 | 111.0088 | ||||||||||||
191.0198 | 191.0199 | ||||||||||||
Malic acid | C4H6O5 | 1.2 (1.1) a | 1.0 | Box 1 | 133.0131 | 133.0143 | −ESI | 71.0144 | 71.0139 | 0.69 | 0.72 | 0.65 | 1 |
115.0047 | 115.0022 | ||||||||||||
133.0127 | 133.0138 | ||||||||||||
Fructose | C6H12O6 | 1.4 (1.3) a | 1.7 | Box 1 | 179.05754 | 179.0561 | −ESI | 89.0224 | 89.0246 | 0.66 | 0.64 | 0.69 | 1 |
179.0560 | 179.0558 | ||||||||||||
Gallic acid | C7H6O5 | 1.6 (1.5) a | 2.9 | Box 2 | 169.0151 | 169.0142 | −ESI | 69.0354 | 69.0346 | 0.66 | 0.66 | 0.76 | 1 |
97.0271 | 97.0295 | ||||||||||||
125.0245 | 125.0244 | ||||||||||||
Gentisic acid | C7H6O4 | 2.2 (2.4) a | 3.0 | Box 1 | 153.0199 | 153.0193 | −ESI | 108.0191 | 108.0217 | 0.70 | 0.70 | 0.76 | 1 |
109.0289 | 109.0295 | ||||||||||||
Chlorogenic acid | C16H18O9 | 2.9 (2.9) a | 3.5 | Box 1 | 353.0896 | 353.0878 | −ESI | 161.0264 | 161.0233 | 0.74 | 0.76 | 0.76 | 1 |
173.0479 | 173.0447 | ||||||||||||
191.0557 | 191.0555 | ||||||||||||
192.0564 | 192.0589 | ||||||||||||
Fumaric acid | C4H4O4 | 1.3 | 1.9 | Box 1 | 115.0035 | 115.0037 | −ESI | 71.0136 | 71.0136 | 0.68 | 0.71 | 0.74 | 2a MzCloud no 1274 |
72.9928 | 72.9925 | ||||||||||||
115.0035 | 115.0040 | ||||||||||||
Quinic acid | C7H12O6 | 1.3 (1.3) a | 1.2 | Box 1 | 191.0564 | 191.0561 | −ESI | 85.0291 | 85.0299 | 0.62 | 0.64 | 0.69 | 1 |
191.0564 | 191.0558 | ||||||||||||
Phenylalanine | C9H11NO2 | 3.0 | 4.2 | Box 2 | 164.0726 | 164.0717 | −ESI | 72.0091 | 72.0099 | 0.63 | 0.66 | 0.61 | 1 |
147.0447 | 147.0448 | ||||||||||||
164.0728 | 164.0712 | ||||||||||||
Leucine | C6H13NO2 | 2.8 | 1.8 | Box 1 | 132.1020 | 132.1019 | +ESI | 58.0654 | 58.0634 | 0.69 | 0.68 | 0.69 | 1 |
69.0697 | 69.0686 | ||||||||||||
86.0964 | 86.0956 | ||||||||||||
87.0989 | 87.0987 | ||||||||||||
132.1019 | 132.1013 | ||||||||||||
Norvaline | C5H11NO2 | 4.5 | 1.2 | Box 3 | 118.0646 | 118.0863 | +ESI | 65.03932 | 65.036 | 0.71 | 0.73 | 0.72 | 2a MonA ID: FiehnHILIC002191 |
117.0584 | 117.057 | ||||||||||||
118.0658 | 118.062 | ||||||||||||
Quercetin | C15H10O7 | 7.3 (7.3) a | 7.0 | Box 1 | 301.0361 | 301.0354 | −ESI | 151.0042 | 151.0037 | 0.68 | 0.61 | 0.70 | 1 |
169.0170 | 169.0135 | ||||||||||||
179.0004 | 178.9996 | ||||||||||||
Rutin | C27H30O16 | 5.7 (5.7) a | 6.2 | Box 1 | 609.1472 | 609.1461 | −ESI | 300.028 | 300.0256 | 0.62 | 0.63 | 0.68 | 1 |
301.0312 | 301.0366 | ||||||||||||
Apigenin | C15H10O5 | 8.3 (7.9) a | 7.6 | Box 1 | 269.0460 | 269.0455 | −ESI | 117.0359 | 117.0341 | 0.61 | 0.66 | 0.61 | 1 |
151.0077 | 151.0029 | ||||||||||||
269.0463 | 269.0459 | ||||||||||||
Kaempferol | C15H10O6 | 7.6 | 7.2 | Box 1 | 285.042 | 285.0405 | −ESI | 133.0305 | 133.0297 | 0.76 | 0.78 | 0.71 | 2a GNPS ID: VF-NPL-QEHF014174 |
151.0030 | 151.0039 | ||||||||||||
175.0386 | 175.0388 | ||||||||||||
285.0421 | 285.0400 | ||||||||||||
Verbascoside | C29H36O15 | 5.0 (4.8) a | 8.4 | Box 4 | 623.1993 | 623.1981 | −ESI | 161.0319 | 161.0244 | 0.62 | 0.69 | 0.68 | 1 |
162.0263 | 162.0278 | ||||||||||||
Phloridzin | C21H24O10 | 5.9 (5.8) a | 8.2 | Box 2 | 435.1291 | 435.1297 | −ESI | 167.0362 | 167.0340 | 0.66 | 0.67 | 0.75 | 1 |
Ethyl gallate | C9H10O5 | 4.9 | 5.0 | Box 1 | 197.0473 | 197.0455 | −ESI | 123.0061 | 123.0086 | 0.62 | 0.63 | 0.62 | 3 FoodB ID:FDB012004 |
140.0102 | 140.0118 | ||||||||||||
168.0066 | 168.0074 | ||||||||||||
169.0149 | 169.0146 | ||||||||||||
197.0460 | 197.0460 | ||||||||||||
Linoleic acid | C18H32O2 | 13.5 (13.5) a | 12.9 | Box 1 | 279.2336 | 279.2330 | −ESI | 279.2327 | 279.2328 | 0.61 | 0.60 | 0.70 | 1 |
280.2345 | 280.2333 | ||||||||||||
Oleic acid | C18H34O2 | 14.0 (14.0) a | 13.3 | Box 1 | 281.2486 | 281.2486 | −ESI | 281.2484 | 281.2468 | 0.69 | 069 | 0.74 | 1 |
282.2526 | 282.2508 | ||||||||||||
Palmitic acid | C16H32O2 | 13.8 (13.8) a | 13.0 | Box 1 | 255.2334 | 255.2330 | −ESI | 255.2329 | 255.2327 | 0.84 | 0.83 | 0.86 | 1 |
256.2366 | 256.2364 | ||||||||||||
257.2349 | 257.2395 | ||||||||||||
Linolenic acid | C18H30O2 | 13.0 | 12.4 | Box 1 | 277.2170 | 277.2173 | −ESI | 277.2198 | 277.2180 | 0.91 | 0.92 | 0.95 | 2a MoNA ID: MetaboBASE0976 |
Ellagic acid | C14H6O8 | 4.6 | 4.7 | Box 1 | 300.9993 | 300.9990 | −ESI | 201.0183 | 201.0200 | 0.77 | 0.74 | 0.80 | 2a MoNA ID:FiehnHILIC001170 |
229.0143 | 229.0144 | ||||||||||||
283.9960 | 283.9950 | ||||||||||||
299.9924 | 299.9900 | ||||||||||||
300.9992 | 300.9994 | ||||||||||||
Glucosamine * | C6H13NO5 | 1.8 | 1.4 | Box1 | 162.0764 | 162.0760 | +ESI | 60.0450 | 60.0443 | 0.94 | 0.97 | 0.93 | 2a GNPS ID: CCMSLIB00005464276 |
72.0450 | 72.0435 | ||||||||||||
84.0450 | 84.0445 | ||||||||||||
85.0290 | 85.0284 | ||||||||||||
162.0760 | 162.0744 | ||||||||||||
2-Phenylethyl beta-D-glucopyranoside * | C14H20O6 | 6.5 | 6.2 | Box 1 | 302.1616 | 302.1600 | +ESI | 81.0337 | 81.0330 | 0.89 | 0.92 | 0.94 | 2a GNPS ID: CCMSLIB00000854907 |
85.0287 | 85.0270 | ||||||||||||
97.0289 | 97.0280 | ||||||||||||
105.0707 | 105.0710 | ||||||||||||
127.0340 | 127.0400 | ||||||||||||
Pyroglutamic acid | C5H7NO3 | 2.4 | 2.1 | Box1 | 130.0511 | 130.0507 | +ESI | 84.0455 | 84.0460 | 0.94 | 0.93 | 0.91 | 2a MassBank ID: PR311148 |
85.0483 | 85.0450 | ||||||||||||
129.0190 | 129.0220 | ||||||||||||
130.0508 | 130.0510 | ||||||||||||
4-Hydroxyquinoline | C9H7NO | 4.5 | 6.1 | Box 2 | 146.0606 | 146.0600 | +ESI | 77.0389 | 77.03700 | 0.93 | 0.97 | 0.99 | 2a RIKEN PLaSMA ID: RIKENPlaSMA000824 |
91.0541 | 91.0560 | ||||||||||||
101.0395 | 101.0440 | ||||||||||||
146.0598 | 146.0610 | ||||||||||||
Dihydrozeatin | C10H15N5O | 5.8 | 4.31 | Box 2 | 222.1351 | 222.1349 | +ESI | 69.0699 | 69.0710 | 0.91 | 0.88 | 0.92 | 2a MoNA ID: FiehnHILIC000308 |
136.0615 | 136.0620 | ||||||||||||
148.0626 | 148.0620 | ||||||||||||
204.1227 | 204.1250 | ||||||||||||
222.1347 | 222.1349 | ||||||||||||
Ellagic acid glucoside | C20H16O13 | 3.7 | 4.5 | Box 1 | 463.0514 | 463.0518 | −ESI | 300.9976 | 2b diagnostic ion Using Smilib |
Analyte | Concentration (mg/kg) ± SD (n = 3) | Concentration (mg/kg) ± SD (n = 3) | Concentration (mg/kg) ± SD (n = 3) | Equation of the External Calibration Curve y = (a ± Sa)x + (b ± Sb) | Determination Coefficient R2 |
---|---|---|---|---|---|
80% a | 90% b | 100% c | |||
Abscisic acid | 0.28 ± 0.02 | <LOQ | <LOQ | y = (29,407± 1108)x + (13,932 ± 5655) | 0.994 |
Chlorogenic acid | 4.07 ± 0.33 | 1.35 ± 0.08 | 0.52 ± 0.05 | y = (299,437 ± 17,948)x + (236,799 ± 91,609) | 0.98 |
Citric acid | 203 ± 18.9 | 204 ± 21.2 | 199 ± 18.4 | y = (114,212 ± 3871)x − (27,802 ± 19,759) | 0.991 |
Galangin | 1.41 ± 0.86 | 0.65 ± 0.05 | <LOQ | y = (179,124 ± 11,301)x − (9729 ± 57,678) | 0.98 |
Gallic acid | 5.72 ± 0.41 | 4.57 ± 0.41 | 5.11 ± 0.47 | y = (46,623 ± 3535)x + (57,556 ± 18,043) | 0.98 |
Phloridzin | 1.01 ± 0.09 | 0.65 ± 0.05 | 0.65 ± 0.06 | y = (304,319 ± 25,920)x + (287,534 ± 132,294) | 0.97 |
Quinic acid | 0.75 ± 0.09 | 0.38 ± 0.04 | <LOQ | y = (121,371 ± 1970)x + (431,844 ± 10,055) | 0.993 |
Verbascoside | 0.87 ± 0.12 | 0.51 ± 0.05 | <LOQ | y = (58,119 ± 1053)x − (14,120 ± 5376) | 0.996 |
Quercetin | 13.1 ± 0.45 | 11.6 ± 0.56 | 11 ± 0.48 | y = (71,193 ± 4859)x + (51,014 ± 24,802) | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panara, A.; Gikas, E.; Tzavellas, I.; Thomaidis, N.S. Comprehensive HRMS Chemical Characterization of Pomegranate-Based Antioxidant Drinks via a Newly Developed Suspect and Target Screening Workflow. Molecules 2023, 28, 4986. https://doi.org/10.3390/molecules28134986
Panara A, Gikas E, Tzavellas I, Thomaidis NS. Comprehensive HRMS Chemical Characterization of Pomegranate-Based Antioxidant Drinks via a Newly Developed Suspect and Target Screening Workflow. Molecules. 2023; 28(13):4986. https://doi.org/10.3390/molecules28134986
Chicago/Turabian StylePanara, Anthi, Evagelos Gikas, Ilias Tzavellas, and Nikolaos S. Thomaidis. 2023. "Comprehensive HRMS Chemical Characterization of Pomegranate-Based Antioxidant Drinks via a Newly Developed Suspect and Target Screening Workflow" Molecules 28, no. 13: 4986. https://doi.org/10.3390/molecules28134986
APA StylePanara, A., Gikas, E., Tzavellas, I., & Thomaidis, N. S. (2023). Comprehensive HRMS Chemical Characterization of Pomegranate-Based Antioxidant Drinks via a Newly Developed Suspect and Target Screening Workflow. Molecules, 28(13), 4986. https://doi.org/10.3390/molecules28134986