Ge–Cu-Complexes Ph(pyO)Ge(μ2-pyO)2CuCl and PhGe(μ2-pyO)4CuCl—Representatives of Cu(I)→Ge(IV) and Cu(II)→Ge(IV) Dative Bond Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses (Compounds Overview)
2.2. Single-Crystal X-ray Diffraction
2.3. Computational Analyses
2.3.1. Relative Stability of Configurational Isomers 2Si vs. 2Si’ and 2Ge vs. 2Ge’
2.3.2. Non-Covalent Interactions Descriptor (NCI) and Electron Localization Function (ELF)
2.3.3. Topological Analysis with Quantum Theory of Atoms-in-Molecules
2.3.4. NBO-/NLMO-Analyses
3. Materials and Methods
3.1. General Considerations
3.2. Synthesis and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
Appendix B
Parameter | 2Ge’ | 3Ge |
---|---|---|
Formula | C21H17ClCuGeN3O3 | C26H21ClCuGeN4O4 |
Mr | 530.96 | 625.05 |
T(K) | 180(2) | 180(2) |
λ(Å) | 0.71073 | 0.71073 |
Crystal system | monoclinic | orthorhombic |
Space group | P21/n | Pbca |
a(Å) | 14.4369(2) | 15.7300(2) |
b(Å) | 8.7499(1) | 18.2546(4) |
c(Å) | 16.2903(3) | 17.1794(3) |
β(°) | 92.555(1) | 90 |
V(Å3) | 2055.77(5) | 4932.98(15) |
Z | 4 | 8 |
ρcalc(g·cm−1) | 1.72 | 1.68 |
μMoKα (mm−1) | 2.7 | 2.2 |
F(000) | 1064 | 2520 |
θmax(°), Rint | 28.0, 0.0417 | 28.0, 0.0720 |
Completeness | 100% | 100% |
Reflns collected | 49,966 | 72,136 |
Reflns unique | 4971 | 5957 |
Restraints | 0 | 0 |
Parameters | 272 | 335 |
GoF | 1.097 | 1.085 |
R1, wR2 [I > 2σ(I)] | 0.0263, 0.0651 | 0.0356, 0.0761 |
R1, wR2 (all data) | 0.0309, 0.0671 | 0.0509, 0.0817 |
Largest peak/hole (e·Å−3) | 0.38, −0.45 | 0.48, −0.52 |
References
- Hoffmann, F.; Wagler, J.; Böhme, U.; Roewer, G. Transition metal compounds containing alkynylsilyl groups—Complexes with a metal-silicon bond. J. Organomet. Chem. 2012, 705, 59–69. [Google Scholar] [CrossRef]
- Kano, N.; Yoshinari, N.; Shibata, Y.; Miyachi, M.; Kawashima, T.; Enomoto, M.; Okazawa, A.; Kojima, N.; Guo, J.-D.; Nagase, S. Anionic Iron Complexes with a Bond between an Ate-Type Pentacoordinated Germanium and an Iron Atom. Organometallics 2012, 31, 8059–8062. [Google Scholar] [CrossRef]
- Green, M.L.H. A new approach to the formal classification of covalent compounds of the elements. J. Organomet. Chem. 1995, 500, 127–148. [Google Scholar] [CrossRef]
- Hill, A.F.; Owen, G.R.; White, A.J.P.; Williams, D.J. The sting of the Scorpion: A Metallaboratrane. Angew. Chem. Int. Ed. 1999, 38, 2759–2761. [Google Scholar] [CrossRef]
- Landry, V.K.; Melnick, J.G.; Buccella, D.; Pang, K.; Ulichny, J.C.; Parkin, G. Synthesis and Structural Characterization of [κ3-B,S,S-B(mimR)3]Ir(CO)(PPh3)H (R = But, Ph) and [[κ4-B(mimBut)3]M(PPh3)Cl (M = Rh, Ir): Analysis of the Bonding in Metal Borane Compounds. Inorg. Chem. 2006, 45, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, B.L.; Lu, C.C. Rare-Earth Supported Nickel Catalysts for Alkyne Semihydrogenation: Chemo- and Regioselectivity Impacted by the Lewis Acidity and Size of the Support. J. Am. Chem. Soc. 2020, 142, 5396–5407. [Google Scholar] [CrossRef]
- Bajo, S.; Alférez, M.G.; Alcaide, M.M.; López-Serrano, J.; Campos, J. Metal-only Lewis Pairs of Rhodium with s, p and d-Block Metals. Chem. Eur. J. 2020, 26, 16833–16845. [Google Scholar] [CrossRef]
- Wagler, J.; Brendler, E. Metallasilatranes: Palladium(II) and Platinum(II) as Lone-Pair Donors to Silicon(IV). Angew. Chem. Int. Ed. 2010, 49, 624–627. [Google Scholar] [CrossRef]
- Wächtler, E.; Gericke, R.; Block, T.; Pöttgen, R.; Wagler, J. Trivalent Antimony as L-, X-, and Z-Type Ligand: The Full Set of Possible Coordination Modes in Pt−Sb Bonds. Inorg. Chem. 2020, 59, 15541–15552. [Google Scholar] [CrossRef]
- Tschersich, C.; Hoof, S.; Frank, N.; Herwig, C.; Limberg, C. The Effect of Substituents at Lewis Acidic Bismuth(III) Centers on Its Propensity to Bind a Noble Metal Donor. Inorg. Chem. 2016, 55, 1837–1842. [Google Scholar] [CrossRef]
- Lin, T.-P.; Gabbaï, F.P. Telluronium Ions as σ-Acceptor Ligands. Angew. Chem. Int. Ed. 2013, 52, 3864–3868. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, H.; Gruss, K.; Radacki, K. Complexes with Dative Bonds between d- and s-Block Metals: Synthesis and Structure of [(Cy3P)2Pt − Be(Cl)X] (X = Cl, Me). Angew. Chem. Int. Ed. 2009, 48, 4239–4241. [Google Scholar] [CrossRef]
- Ehrlich, L.; Gericke, R.; Brendler, E.; Wagler, J. (2-Pyridyloxy)silanes as Ligands in Transition Metal Coordination Chemistry. Inorganics 2018, 6, 119. [Google Scholar] [CrossRef] [Green Version]
- Seidel, A.; Gericke, R.; Brendler, E.; Wagler, J. Copper Complexes of Silicon Pyridine-2-olates RSi(pyO)3 (R = Me, Ph, Bn, Allyl) and Ph2Si(pyO)2. Inorganics 2023, 11, 2. [Google Scholar] [CrossRef]
- Grobe, J.; Wehmschulte, R.; Krebs, B.; Läge, M. Alternativ-Liganden. XXXII Neue Tetraphosphan-Nickelkomplexe mit Tripod-Liganden des Typs XM’(OCH2PMe2)n(CH2CH2PR2)3-n (M’ = Si, Ge; n = 0–3). Z. Anorg. Allg. Chem. 1995, 621, 583–596. [Google Scholar] [CrossRef]
- Kameo, H.; Mushiake, A.; Isasa, T.; Matsuzaka, H.; Bourissou, D. Pd/Ni-Catalyzed Germa-Suzuki coupling via dual Ge–F bond activation. Chem. Commun. 2021, 57, 5004–5007. [Google Scholar] [CrossRef]
- ConQuest. Version 2023.1.0. Available online: https://www.ccdc.cam.ac.uk/solutions/software/conquest/ (accessed on 9 June 2023).
- Kameo, H.; Kawamoto, T.; Bourissou, D.; Sakaki, S.; Nakazawa, H. Evaluation of the σ-Donation from Group 11 Metals (Cu, Ag, Au) to Silane, Germane, and Stannane Based on the Experimental/Theoretical Systematic Approach. Organometallics 2015, 34, 1440–1448. [Google Scholar] [CrossRef]
- Arii, H.; Nakadate, F.; Mochida, K. Spectroscopic and Structural Characterization of Copper-Germylene Complexes Bearing an Isopropyl-Substituted β-Diketiminate Ligand. Organometallics 2009, 28, 4909–4911. [Google Scholar] [CrossRef]
- Arauzo, A.; Cabeza, J.A.; Fernández, I.; García-Álvarez, P.; García-Rubio, I.; Laglera-Gándara, C.J. Reactions of Late First-Row Transition Metal (Fe-Zn) Dichloride with a PGeP Pincer Germylene. Chem. Eur. J. 2021, 27, 4985–4992. [Google Scholar] [CrossRef]
- Vítek, D.; Dostál, L.; Růžička, A.; Mikysek, T.; Jambor, R. N→Ge Coordinated Germylenes as Ligands for Monomeric Cu Complexes. Eur. J. Inorg. Chem. 2021, 2021, 3301–3304. [Google Scholar] [CrossRef]
- Kuß, S.; Brendler, E.; Wagler, J. Molecular Structures of the Pyridine-2-olates PhE(pyO)3 (E = Si, Ge, Sn) − [4+3]-Coordination at Si, Ge vs. Heptacoordination at Sn. Crystals 2022, 12, 1802. [Google Scholar] [CrossRef]
- Plotzitzka, J.; Kleeberg, C. [(NHC)CuI−ER3 ] Complexes (ER3 = SiMe2Ph, SiPh3, SnMe3 ): From Linear, Mononuclear Complexes to Polynuclear Complexes with Ultrashort CuI⋯CuI Distances. Inorg. Chem. 2016, 55, 4813–4823. [Google Scholar] [CrossRef] [PubMed]
- Komuro, T.; Kawaguchi, H.; Tatsumi, K. Synthesis and Reactions of Triphenylsilanethiolato Complexes of Manganese(II), Iron(II), Cobalt(II), and Nickel(II). Inorg. Chem. 2002, 41, 5083–5090. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 36, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-P.; Wade, C.R.; Pérez, L.M.; Gabbaï, F.P. A Mercury→Antimony Interaction. Angew. Chem. Int. Ed. 2010, 49, 6357–6360. [Google Scholar] [CrossRef]
- Ke, I.-S.; Gabbaï, F.P. σ-Donor/Acceptor-Confused Ligands: The Case of a Chlorostibine. Inorg. Chem. 2013, 52, 7145–7151. [Google Scholar] [CrossRef]
- Kameo, H.; Yamamoto, H.; Ikeda, K.; Isasa, T.; Sakaki, S.; Matsuzaka, H.; García-Todeja, Y.; Miqueu, K.; Bourissou, D. Fluorosilane Activation by Pd/Ni→Si−F→Lewis Acid Interaction: An Entry to Catalytic Sila-Negishi Coupling. J. Am. Chem. Soc. 2020, 142, 14039–14044. [Google Scholar] [CrossRef]
- Gualco, P.; Lin, T.-P.; Sircoglou, M.; Mercy, M.; Ladeira, S.; Bouhadir, G.; Pérez, L.M.; Amgoune, A.; Maron, L.; Gabbaï, F.P.; et al. Gold–Silane and Gold–Stannane Complexes: Saturated Molecules as σ-Acceptor Ligands. Angew. Chem. Int. Ed. 2009, 48, 9892–9895. [Google Scholar] [CrossRef]
- Gericke, R.; Wagler, J. Coordination and Electrochemical Switching on Paddle-Wheel Complexes Containing an As−Ru or a Sb−Ru Axis. Inorg. Chem. 2021, 60, 18122–18132. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 37, 2832–2838. [Google Scholar] [CrossRef]
- Stanford, M.W.; Schweizer, J.I.; Menche, M.; Nichol, G.S.; Holthausen, M.C.; Cowley, M.J. Intercepting the Disilene-Silylsilylene Equilibrium. Angew. Chem. Int. Ed. 2019, 58, 1329–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kämpfe, A.; Brendler, E.; Kroke, E.; Wagler, J. Tp*Cu(I)–CN–SiL2–NC–Cu(I)Tp*—A hexacoordinate Si-complex as connector for redox active metals via π-conjugated ligands. Dalton Trans. 2015, 44, 4744–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Program for the Refinement of Crystal Structures; SHELXL-2018/3; University of Göttingen: Göttingen, Germany, 2018. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. ORTEP-3 for windows—A version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr. 1997, 30, 565. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- POV-RAY (Version 3.7), Trademark of Persistence of Vision Raytracer Pty. Ltd., Williamstown, Victoria (Australia). Copyright Hallam Oaks Pty. Ltd., 1994–2004. Available online: http://www.povray.org/download/ (accessed on 28 June 2021).
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 8, e1606. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Pantazis, D.A.; Neese, F. All-electron basis sets for heavy elements. WIREs Comput. Mol. Sci. 2014, 4, 363–374. [Google Scholar] [CrossRef]
- Van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597. [Google Scholar] [CrossRef]
- Van Wüllen, C. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998, 109, 392. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoychev, G.L.; Auer, A.A.; Neese, F. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017, 13, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Karafiloglou, P.; Landis, C.R.; Weinhold, F. NBO, Version 7.0.10; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2018. Available online: http://nbo7.chem.wisc.edu/(accessed on 3 February 2022).
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Chemcraft, Version 1.8 (Build 164). 2016. Available online: http://www.chemcraftprog.com/ (accessed on 19 September 2015).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Molec. Graphics 1996, 14, 33. Available online: http://www.ks.uiuc.edu/Research/vmd/ (accessed on 10 February 2022). [CrossRef]
- Kameo, H.; Nakazawa, H. Saturated Heavier Group 14 Compounds as σ-Electron-Acceptor (Z-Type) Ligands. Chem. Rec. 2017, 17, 268–286. [Google Scholar] [CrossRef]
- Scheiner, S. Origins and properties of the tetrel bond. Phys. Chem. Chem. Phys. 2021, 23, 5702–5717. [Google Scholar] [CrossRef]
- Scheiner, S. (Ed.) Special Issue “Tetrel Bonds”; MDPI: Basel, Switzerland, 2019; Available online: https://www.mdpi.com/journal/molecules/special_issues/Tetrel_Bonds (accessed on 5 July 2023).
2E | 2E’ 1 | 3E | |
---|---|---|---|
E = Si | −0.01408 | −0.03303 | −0.01896 |
E = Ge | −0.02325 | −0.03113 | −0.02026 |
ρ(rb) | ∇2ρ(rb) | G(rb) | V(rb) | |V(rb)|/G(rb) | H(rb) | ε | ELF | WBI | DI | |
---|---|---|---|---|---|---|---|---|---|---|
2Si | 0.0141 | 0.0209 | 0.0068 | −0.0083 | 1.229 | −0.0016 | 0.356 | 0.107 | 0.104 | 0.015 |
2Ge | 0.0233 | 0.0177 | 0.0090 | −0.0136 | 1.508 | −0.0046 | 0.015 | 0.267 | 0.212 | 0.117 |
2Si’ | 0.0330 | 0.0826 | 0.0232 | −0.0257 | 1.109 | −0.0025 | 1.257 | 0.151 | 0.242 | 0.238 |
2Ge’ | 0.0311 | 0.0450 | 0.0163 | −0.0213 | 1.308 | −0.0050 | 2.162 | 0.228 | 0.267 | 0.138 |
3Si | 0.0190 | 0.0245 | 0.0091 | −0.0120 | 1.324 | −0.0029 | 0.030 | 0.154 | 0.141 | 0.028 |
3Ge | 0.0203 | 0.0299 | 0.0103 | −0.0131 | 1.272 | −0.0028 | 0.008 | 0.151 | 0.155 | 0.064 |
NC(Cu) | NC(E) | NLMO σ-Cu–E | Cu+E | |
---|---|---|---|---|
2Si | 0.86 | 2.25 | 97.9% Cu, 0.9% Si | 98.8% |
2Ge | 0.89 | 2.14 | 94.9% Cu, 3.2% Ge | 98.1% |
2Si’ | 0.85 | 2.22 | 95.5% Cu, 1.7% Si | 97.2% |
2Ge’ | 0.86 | 2.11 | 94.9% Cu, 2.7% Ge | 97.6% |
3Si | 1.32 | 2.14 | 98.4% Cu, 0.9% Si | 99.3% |
(α-spin) | (98.7% Cu, 0.7% Si) | |||
(β-spin) | (98.2% Cu, 1.1% Si) | |||
3Ge | 1.33 | 2.13 | 98.3% Cu, 1.0% Ge | 99.3% |
(α-spin) | 98.6% Cu, 0.8% Ge | |||
(β-spin) | 97.9% Cu, 1.3% Ge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagler, J.; Gericke, R. Ge–Cu-Complexes Ph(pyO)Ge(μ2-pyO)2CuCl and PhGe(μ2-pyO)4CuCl—Representatives of Cu(I)→Ge(IV) and Cu(II)→Ge(IV) Dative Bond Systems. Molecules 2023, 28, 5442. https://doi.org/10.3390/molecules28145442
Wagler J, Gericke R. Ge–Cu-Complexes Ph(pyO)Ge(μ2-pyO)2CuCl and PhGe(μ2-pyO)4CuCl—Representatives of Cu(I)→Ge(IV) and Cu(II)→Ge(IV) Dative Bond Systems. Molecules. 2023; 28(14):5442. https://doi.org/10.3390/molecules28145442
Chicago/Turabian StyleWagler, Jörg, and Robert Gericke. 2023. "Ge–Cu-Complexes Ph(pyO)Ge(μ2-pyO)2CuCl and PhGe(μ2-pyO)4CuCl—Representatives of Cu(I)→Ge(IV) and Cu(II)→Ge(IV) Dative Bond Systems" Molecules 28, no. 14: 5442. https://doi.org/10.3390/molecules28145442
APA StyleWagler, J., & Gericke, R. (2023). Ge–Cu-Complexes Ph(pyO)Ge(μ2-pyO)2CuCl and PhGe(μ2-pyO)4CuCl—Representatives of Cu(I)→Ge(IV) and Cu(II)→Ge(IV) Dative Bond Systems. Molecules, 28(14), 5442. https://doi.org/10.3390/molecules28145442