Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management
Abstract
:1. Introduction
2. Alkaloids and Their General Applications
3. Alkaloids in Cancer Treatment: A Historical Perspective
4. Chemistry of Anticancer Alkaloids
5. Anticancer Alkaloids from Plants
5.1. Proto-Alkaloids
5.2. Cumarine–Alkaloid Conjugate
5.3. Indole Alkaloids
5.4. Quinoline Alkaloid Derivatives
5.5. Carbazole Alkaloid
5.6. Indoloquinazoline Alkaloid
5.7. Steroidal Alkaloid
5.8. Piperidine Alkaloid
6. Plant Alkaloids in Clinical Trials
7. Limitations of Alkaloids in Cancer Treatment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nia, H.T.; Munn, L.L.; Jain, R.K. Physical traits of cancer. Science 2020, 370, eaaz0868. [Google Scholar] [CrossRef] [PubMed]
- Patel, A. Benign vs Malignant Tumors. JAMA Oncol. 2020, 6, 1488. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Amini, P.; Moazamiyanfar, R.; Dakkali, M.S.; Khani, A.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Johari, R.; Taeb, S.; Najafi, M. Resveratrol in Cancer Therapy: From Stimulation of Genomic Stability to Adjuvant Cancer Therapy: A Comprehensive Review. Curr. Top Med. Chem. 2022, 23, 629–648. [Google Scholar]
- Eisenmann, E.D.; Talebi, Z.; Sparreboom, A.; Baker, S.D. Boosting the oral bioavailability of anticancer drugs through intentional drug–drug interactions. Basic Clin. Pharmacol. Toxicol. 2022, 130, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Sarbadhikary, P.; George, B.P. A Review on Traditionally Used African Medicinal Plant Annickia chlorantha, Its Phytochemistry, and Anticancer Potential. Plants 2022, 11, 2293. [Google Scholar] [CrossRef]
- Olawale, F.; Iwaloye, O.; Olofinsan, K.; Ogunyemi, O.M.; Gyebi, G.A.; Ibrahim, I.M. Homology modelling, vHTS, pharmacophore, molecular docking and molecular dynamics studies for the identification of natural compound-derived inhibitor of MRP3 in acute leukaemia treatment. Chem. Pap. 2022, 76, 3729–3757. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Joanna, K. Introductory Chapter. In Alkaloids–Their Importance in Nature and for Human Life; Joanna, K., Ed.; IntechOpen: Rijeka, Croatioa, 2019. [Google Scholar]
- Heinrich, M.; Mah, J.; Amirkia, V. Alkaloids used as medicines: Structural phytochemistry meets biodiversity—An update and forward look. Molecules 2021, 26, 1836. [Google Scholar] [CrossRef]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mat. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Chen, C.; Qi, W.; Peng, X.; Chen, J.; Wan, C. Inhibitory effect of 7-demethoxytylophorine on Penicillium italicum and its possible mechanism. Microorganisms 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Kanashiro, A.M.; Akiyama, D.Y.; Kupper, K.C.; Fill, T.P. Penicillium italicum: An underexplored postharvest pathogen. Front. Microbiol. 2020, 11, 606852. [Google Scholar] [CrossRef]
- Hikal, W.M.; Baeshen, R.S.; Said-Al Ahl, H.A. Botanical insecticide as simple extractives for pest control. Cogent Biol. 2017, 3, 1404274. [Google Scholar] [CrossRef]
- Shanks, G.D. Historical review: Problematic malaria prophylaxis with quinine. Am. J. Trop. Med. Hyg. 2016, 95, 269. [Google Scholar] [CrossRef] [PubMed]
- Banyal, A.; Tiwari, S.; Sharma, A.; Chanana, I.; Patel, S.K.S.; Kulshrestha, S.; Kumar, P. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges. 3 Biotech 2023, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, S.H.; Guo, X.L. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed. Pharmacother. 2017, 96, 659–666. [Google Scholar] [CrossRef]
- Gerullis, H.; Wawroschek, F.; Köhne, C.-H.; Ecke, T.H. Vinflunine in the treatment of advanced urothelial cancer: Clinical evidence and experience. Ther. Adv. Urol. 2017, 9, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–567. [Google Scholar]
- Singh, R. Chemotaxonomy: A tool for plant classification. J. Med. Plants Stud. 2016, 4, 90–93. [Google Scholar]
- Eguchi, R.; Ono, N.; Hirai Morita, A.; Katsuragi, T.; Nakamura, S.; Huang, M.; Amin, A.U.M.; Kanaya, S. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks. BMC Bioinform. 2019, 20, 380. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, S.M.; O’Rahilly, S. Colchicine—An old dog with new tricks. Nat. Metb. 2021, 3, 451–452. [Google Scholar] [CrossRef]
- Adham Foumani, E.; Irani, S.; Shokoohinia, Y.; Mostafaie, A. Colchicine of Colchicum autumnale, A Traditional Anti-Inflammatory Medicine, Induces Apoptosis by Activation of Apoptotic Genes and Proteins Expression in Human Breast (MCF-7) and Mouse Breast (4T1) Cell Lines. Cell J. 2022, 24, 647–656. [Google Scholar] [PubMed]
- Ito, C.; Itoigawa, M.; Sato, A.; Hasan, C.M.; Rashid, M.A.; Tokuda, H.; Mukainaka, T.; Nishino, H.; Furukawa, H. Chemical Constituents of Glycosmis a rborea: Three New Carbazole Alkaloids and Their Biological Activity. J. Nat. Prod. 2004, 67, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, J.; Unnisa, A.; Alanazi, M.; Alharby, T.N.; Moin, A.; Rizvi, S.M.D.; Hussain, T.; Awadelkareem, A.M.; Elkhalifa, A.O.; Faiyaz, S.S.M. 3-Methoxy Carbazole Impedes the Growth of Human Breast Cancer Cells by Suppressing NF-κB Signaling Pathway. Pharmaceuticals 2022, 15, 1410. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Kaune, M.; Hauschild, J.; Kriegs, M.; Hoffer, K.; Busenbender, T.; Smirnova, P.A.; Zhidkov, M.E.; Poverennaya, E.V.; Oh-Hohenhorst, S.J. Efficacy and mechanism of action of marine alkaloid 3, 10-dibromofascaplysin in drug-resistant prostate cancer cells. Mar. Drugs 2020, 18, 609. [Google Scholar] [CrossRef] [PubMed]
- Zhidkov, M.E.; Kaune, M.; Kantemirov, A.V.; Smirnova, P.A.; Spirin, P.V.; Sidorova, M.A.; Stadnik, S.A.; Shyrokova, E.Y.; Kaluzhny, D.N.; Tryapkin, O.A. Study of Structure–Activity Relationships of the Marine Alkaloid Fascaplysin and Its Derivatives as Potent Anticancer Agents. Mar. Drugs 2022, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shangguan, F.; Zhang, L.; Ma, N.; Song, S.; Ma, L.; Liu, C.; Liu, M.; An, J.; Li, H. A novel mechanism of 6-methoxydihydroavicine in suppressing ovarian carcinoma by disrupting mitochondrial homeostasis and triggering ROS/MAPK mediated apoptosis. Front Pharmacol. 2023, 14, 1093650. [Google Scholar] [CrossRef]
- Ma, N.; Shangguan, F.; Zhou, H.; Huang, H.; Lei, J.; An, J.; Jin, G.; Zhuang, W.; Zhou, S.; Wu, S. 6-methoxydihydroavicine, the alkaloid extracted from Macleaya cordata (Willd.) R. Br. (Papaveraceae), triggers RIPK1/Caspase-dependent cell death in pancreatic cancer cells through the disruption of oxaloacetic acid metabolism and accumulation of reactive oxygen species. Phytomedicine 2022, 102, 154164. [Google Scholar]
- Al-Ghazzawi, A.M. Anti-cancer activity of new benzyl isoquinoline alkaloid from Saudi plant Annona squamosa. BMC Chem. 2019, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lai, Q.; Yang, C.J.; Zhuang, M.; Ma, Y.H.; Lin, C.Y.; Zeng, G.Z.; Yin, J.L. Alkaloid from Alstonia yunnanensis diels root against gastrointestinal cancer: Acetoxytabernosine inhibits apoptosis in hepatocellular carcinoma cells. Front. Pharmacol. 2022, 13, 1085309. [Google Scholar] [CrossRef]
- Si, P.; Chen, H.; Liu, J.; Zhang, E.; Li, C.; Gu, J.; Wang, R.; Li, W. Identification of (S)-10-Hydroxycamptothecin as a potent BRD4 inhibitor for treating triple-negative breast cancer. J. Mol. Struct. 2022, 1265, 133366. [Google Scholar] [CrossRef]
- Li, F.; Jiang, T.; Li, Q.; Ling, X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res. 2017, 7, 2350. [Google Scholar]
- Dini, I.; Soekamto, N.H.; Firdaus, F.; Supratman, U.; Latip, J. Alkaloid Caulerpin and Cytotoxic Activity against NCL-H460 Lung Cancer Cells Isolated along with β-sitosterol from the Halimeda cylindracea Decaisne. Sains Malays. 2021, 50, 2663–2674. [Google Scholar] [CrossRef]
- Mert-Ozupek, N.; Calibasi-Kocal, G.; Olgun, N.; Basbinar, Y.; Cavas, L.; Ellidokuz, H. An Efficient and Quick Analytical Method for the Quantification of an Algal Alkaloid Caulerpin Showed In-Vitro Anticancer Activity against Colorectal Cancer. Mar. Drugs 2022, 20, 757. [Google Scholar] [CrossRef]
- Hu, S.; Yin, J.; Yan, S.; Hu, P.; Huang, J.; Zhang, G.; Wang, F.; Tong, Q.; Zhang, Y. Chaetocochin J, an epipolythiodioxopiperazine alkaloid, induces apoptosis and autophagy in colorectal cancer via AMPK and PI3K/AKT/mTOR pathways. Bioorg. Chem. 2021, 109, 104693. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.B.; He, G.; Bai, H.H.; Yang, T.; Zhang, G.L.; Wu, L.W.; Li, G.Y. Indole alkaloids from Chaetomium globosum. J. Nat. Prod. 2015, 78, 1479–1485. [Google Scholar] [CrossRef]
- Becer, E.; Hanoğlu, D.Y.; Kabadayı, H.; Hanoğlu, A.; Vatansever, S.; Yavuz, D.Ö.; Meriçli, F.; Meriçli, A.H. The effect of Colchicum pusillum in human colon cancer cells via Wnt/β-catenin pathway. Gene 2019, 686, 213–219. [Google Scholar] [CrossRef]
- Sun, G.C.; Chen, H.H.; Liang, W.Z.; Jan, C.R. Exploration of the effect of the alkaloid colchicine on Ca2+ handling and its related physiology in human oral cancer cells. Arch. Oral Biol. 2019, 102, 179–185. [Google Scholar] [CrossRef]
- Wang, Z.W.; Liu, H.; Ye, G.T.; Sheng, Z.Y.; Hu, Y.F.; Tan, Y.F.; Li, G.X. Crebanine N-oxide, a natural aporphine alkaloid isolated from Stephania hainanensis, induces apoptosis and autophagy in human gastric cancer SGC-7901 cells. Asian Pac. J. Trop. Biomed. 2020, 10, 224. [Google Scholar]
- Chai, F.; Zhou, J.; Chen, C.; Xie, S.; Chen, X.; Su, P.; Shi, J. The Hedgehog inhibitor cyclopamine antagonizes chemoresistance of breast cancer cells. Onco. Targets Ther. 2013, 6, 1643–1647. [Google Scholar]
- Lu, J.; Sun, D.; Gao, S.; Gao, Y.; Ye, J.; Liu, P. Cyclovirobuxine D induces autophagy-associated cell death via the Akt/mTOR pathway in MCF-7 human breast cancer cells. J. Pharmacol. Sci. 2014, 125, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zulpa, A.K.; Muttiah, B.; Vellasamy, K.M.; Mariappan, V.; Vadivelu, J. Dentatin triggers ROS-mediated apoptosis, G0/G1 cell cycle arrest and release of Th1-related cytokines in colorectal carcinoma cells. J. Taibah Univ. Sci. 2023, 17, 2194231. [Google Scholar] [CrossRef]
- Andas, A.; Abdul, A.B.; Rahman, H.S.; Sukari, M.A.; Abdelwahab, S.I.; Samad, N.A.; Anasamy, T.; Arbab, I.A. Dentatin from clausena excavata induces apoptosis in HEPG2 cells via mitochondrial mediated signaling. Asian Pac. J. Cancer Prev. 2015, 16, 4311–4316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Yu, X. Naturally occurring Girinimbine alkaloid inhibits the proliferation, migration, and invasion of human breast cancer cells via induction of apoptosis and inhibition of MEK/ERK and STAT3 signalling pathways. Acta Biochim Pol. 2021, 68, 647–652. [Google Scholar] [CrossRef]
- Satyavarapu, E.M.; Sinha, P.K.; Mandal, C. Influence of geographical and seasonal variations on carbazole alkaloids distribution in Murraya koenigii: Deciding factor of its in vitro and in vivo efficacies against cancer cells. Biomed Res Intl. 2020, 2020, 7821913. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Zhang, T.; Yang, N.; Li, Z.; Liu, Y. Anticancer effects of Mahanimbine alkaloid on the human bladder cancer cells are due to the induction of G0/G1 cell cycle arrest, apoptosis and autophagy. J. BUON 2020, 25, 1166–1171. [Google Scholar]
- Still, P.C.; Yi, B.; González-Cestari, T.F.; Pan, L.; Pavlovicz, R.E.; Chai, H.-B.; Ninh, T.N.; Li, C.; Soejarto, D.D.; McKay, D.B. Alkaloids from Microcos paniculata with cytotoxic and nicotinic receptor antagonistic activities. J. Nat. Prod. 2013, 76, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Bakthavachalam, V.; Chinnapaka, S.; Venkatesan, R.; Samy, A.L.; Munirathinam, G. Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism. Phytother. Res. 2020, 34, 2366–2384. [Google Scholar] [CrossRef]
- Tosun, F.; Mıhoğlugil, F.; Beutler, J.A.; Eroğlu Özkan, E.; Miski, M. Neopapillarine, an unusual coumarino-alkaloid from the root extract of neocryptodiscus papillaris with cytotoxic activity on renal cancer cells. Molecules 2020, 25, 3040. [Google Scholar] [CrossRef]
- Grabarska, A.; Wróblewska-Łuczka, P.; Kukula-Koch, W.; Łuszczki, J.J.; Kalpoutzakis, E.; Adamczuk, G.; Skaltsounis, A.L.; Stepulak, A. Palmatine, a bioactive protoberberine alkaloid isolated from berberis cretica, inhibits the growth of human estrogen receptor-positive breast cancer cells and acts synergistically and additively with doxorubicin. Molecules 2021, 26, 6253. [Google Scholar] [CrossRef]
- Awasthee, N.; Shekher, A.; Rai, V.; Verma, S.S.; Mishra, S.; Dhasmana, A.; Gupta, S.C. Piperlongumine, a piper alkaloid, enhances the efficacy of doxorubicin in breast cancer: Involvement of glucose import, ROS, NF-κB and lncRNAs. Apoptosis 2022, 27, 261–282. [Google Scholar] [CrossRef]
- Kumar, S.; Agnihotri, N. Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed. Pharmacother. 2019, 109, 1462–1477. [Google Scholar] [CrossRef] [PubMed]
- Fadaeinasab, M.; Karimian, H.; Omar, H.; Taha, H.; Khorasani, A.; Banisalam, B.; Aziz Ketuly, K.; Abdullah, Z. Reflexin A, a new indole alkaloid from Rauvolfia reflexa induces apoptosis against colon cancer cells. J. Asian Nat. Prod. Res. 2020, 22, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Burger, T.; Mokoka, T.; Fouché, G.; Steenkamp, P.; Steenkamp, V.; Cordier, W. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition. BMC Complement. Altern. Med. 2018, 18, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Zheng, S.; Yan, Z.; Chen, S.; Zhang, W.; Miao, L.; Zhang, X. Inductive effect of solamargine on the apoptosis of human esophageal cancer KYSE150 cells and its action mechanism. J. Med. Postgrad. 2019, 12, 803–808. [Google Scholar]
- Qu, X.; Xie, J.; Zhang, Y.; Wang, Z. Solamargine Alleviates Proliferation and Metastasis of Cervical Cancer Cells by Blocking the CXCL3-Mediated Erk Signaling Pathway. Evid. Based Complement. Alternat. Med. 2022, 2022, 7634754. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Wang, P.; Ma, H.; Zhang, J. Solamargine inhibits prostate cancer cell growth and enhances the therapeutic efficacy of docetaxel via Akt signaling. J. Oncol. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Fu, R.; Wang, X.; Hu, Y.; Du, H.; Dong, B.; Ao, S.; Zhang, L.; Sun, Z.; Zhang, L.; Lv, G. Solamargine inhibits gastric cancer progression by regulating the expression of lncNEAT1_2 via the MAPK signaling pathway. Int. J. Oncol. 2019, 54, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Noulala, C.G.T.; Ouete, J.L.N.; Atangana, A.F.; Mbahbou, G.T.B.; Fotso, G.W.; Stammler, H.-G.; Lenta, B.N.; Happi, E.N.; Sewald, N.; Ngadjui, B.T. Soyauxinine, a New Indolopyridoquinazoline Alkaloid from the Stem Bark of Araliopsis soyauxii Engl. (Rutaceae). Molecules 2022, 27, 1104. [Google Scholar] [CrossRef]
- Noulala, C.G.T.; Fotso, G.W.; Rennert, R.; Lenta, B.N.; Sewald, N.; Arnold, N.; Happi, E.N.; Ngadjui, B.T. Mesomeric form of quaternary indoloquinazoline alkaloid and other constituents from the Cameroonian Rutaceae Araliopsis soyauxii Engl. Biochem. Syst. Ecol. 2020, 91, 104050. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Noulala, C.G.; Samba, A.R.; Tankeo, S.B.; Abdelfatah, S.; Fotso, G.W.; Happi, E.N.; Ngadjui, B.T.; Beng, V.P.; Kuete, V. The alkaloid, soyauxinium chloride, displays remarkable cytotoxic effects towards a panel of cancer cells, inducing apoptosis, ferroptosis and necroptosis. Chem. Biol. Interact. 2021, 333, 109334. [Google Scholar] [CrossRef]
- Hamid, H.A.; Ramli, A.N.; Yusoff, M.M. Indole alkaloids from plants as potential leads for antidepressant drugs: A mini review. Front. Pharmacol. 2017, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021, 32, 115973. [Google Scholar] [CrossRef] [PubMed]
- Mathada, B.S. The Versatile Quinoline and Its Derivatives as anti-Cancer Agents: An Overview. Polycycl. Aromat. Compd. 2022, 43, 4333–4345. [Google Scholar] [CrossRef]
- Ilakiyalakshmi, M.; Napoleon, A.A. Review on recent development of quinoline for anticancer activities. Arab. J. Chem. 2022, 15, 104168. [Google Scholar] [CrossRef]
- Liu, K.; Ding, X.; Deng, B.; Chen, W. 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol. Lett. 2010, 32, 689–693. [Google Scholar] [CrossRef]
- Georgiades, S.N.; Nicolaou, P.G. Recent advances in carbazole syntheses. Adv. Heterocycl. Chem. 2019, 129, 1–88. [Google Scholar]
- Khandokar, L.; Bari, M.S.; Seidel, V.; Haque, M.A. Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicological profile of Glycosmis pentaphylla (Retz.) DC.: A review. J. Ethnopharmacol. 2021, 278, 114313. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, C.; Wu, Y.; Mo, S.; Wang, S.; Yang, G.; Mei, Z. Glycosmisines A and B: Isolation of two new carbazole–indole-type dimeric alkaloids from Glycosmis pentaphylla and an evaluation of their antiproliferative activities. Org. Biomol. Chem. 2015, 13, 6773–6781. [Google Scholar] [CrossRef]
- Huang, L.; Zhe-Ling, F.; Yi-Tao, W.; Li-Gen, L. Anticancer carbazole alkaloids and coumarins from Clausena plants: A review. Chin. J. Nat. Med. 2017, 15, 881–888. [Google Scholar] [CrossRef]
- Xia, H.M.; Yang, G.Q.O.; Li, C.J.; Yang, J.Z.; Ma, J.; Zhang, D.; Li, Y.; Li, L.; Zhang, D.M. Clauemarazoles A–G, seven carbazole alkaloids from the stems of Clausena emarginata. Fitoterapia 2015, 103, 83–89. [Google Scholar] [CrossRef]
- Sun, X.Y.; Ma, J.; Li, C.J.; Zang, Y.D.; Huang, J.W.; Wang, X.Y.; Chen, N.H.; Chen, X.G.; Zhang, D.M. Carbazole alkaloids with bioactivities from the stems of Clausena lansium. Phytochem. Lett. 2020, 38, 28–32. [Google Scholar] [CrossRef]
- Maneerat, W.; Phakhodee, W.; Cheenpracha, S.; Ritthiwigrom, T.; Deachathai, S.; Laphookhieo, S. Clausenawallines G–K, carbazole alkaloids from Clausena wallichii twigs. Phytochemistry 2013, 88, 74–78. [Google Scholar] [CrossRef]
- Huang, Y.; Li, G.; Hong, C.; Zheng, X.; Yu, H.; Zhang, Y. Potential of Steroidal Alkaloids in Cancer: Perspective Insight into Structure–Activity Relationships. Front. Oncol. 2021, 11, 733369. [Google Scholar] [CrossRef]
- Abd Karim, H.A.; Ismail, N.H.; Osman, C.P. Steroidal Alkaloids from the Apocynaceae Family: Their Isolation and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X221141265. [Google Scholar] [CrossRef]
- Eshonov, M.; Turgunov, K.; Tashkhodzhaev, B.; Shakirov, R. Alkaloids of Buxus sempervirens, crystal and molecular structure of Cyclobuxine-D and Imperialine. Chem. Nat. Compd. 2014, 49, 1179–1182. [Google Scholar] [CrossRef]
- Phi, T.D.; Pham, V.C.; Thi Mai, H.D.; Litaudon, M.; Guéritte, F.O.; Nguyen, V.H.; Chau, V.M. Cytotoxic steroidal alkaloids from Kibatalia laurifolia. J. Nat. Prod. 2011, 74, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.W.; Cruz, R.; Mattos, J.; Baughman, N.; Elwell, J.; Fothergill, J.; Nielsen, A.; Brookhouse, J.; Bartlett, A.; Malek, P. Cyclopamine bioactivity by extraction method from Veratrum californicum. Bioorg. Med. Chem. 2016, 24, 3752–3757. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Upadhyay, A.K.; Dixit, P.; Singh, A.; Yadav, D.; Chhavi, A.; Konar, S.; Srivastava, R.P.; Pandey, S.; Devkota, H.P. A review of chemistry and pharmacology of Piperidine alkaloids of Pinus and related genera. Curr. Pharm. Biotechnol. 2022, 23, 1132–1141. [Google Scholar] [PubMed]
- Mitra, S.; Anand, U.; Jha, N.K.; Shekhawat, M.S.; Saha, S.C.; Nongdam, P.; Rengasamy, K.R.; Proćków, J.; Dey, A. Anticancer applications and pharmacological properties of piperidine and piperine: A comprehensive review on molecular mechanisms and therapeutic perspectives. Front. Pharmacol. 2022, 12, 772418. [Google Scholar] [CrossRef]
- Song, L.; Wang, Y.; Zhen, Y.; Li, D.; He, X.; Yang, H.; Zhang, H.; Liu, Q. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial–mesenchymal transition. Biotechnol. Lett. 2020, 42, 2049–2058. [Google Scholar] [CrossRef] [PubMed]
- Arun, A.; Ansari, M.; Popli, P.; Jaiswal, S.; Mishra, A.; Dwivedi, A.; Hajela, K.; Konwar, R. New piperidine derivative DTPEP acts as dual-acting anti-breast cancer agent by targeting ER α and downregulating PI 3K/Akt-PKC α leading to caspase-dependent apoptosis. Cell Prolif. 2018, 51, e12501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragull, K.; Yoshida, W.Y.; Tang, C.S. Piperidine alkaloids from Piper methysticum. Phytochemistry 2003, 63, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Bolzani, V.D.S.; Furlan, M.; Barreiro, E.J.; Young, M.C.M.; Tomazela, D.; Eberlin, M.N. Further Bioactive Piperidine Alkaloids from the Flowers and Green Fruits of Cassia s pectabilis. J. Nat. Prod. 2004, 67, 908–910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, N.; Xu, L.; Wu, H.T.; Chen, D.; Lin, Q.H.; Luo, L.Z. A new piperidine alkaloid from the leaves of Microcos paniculata L. Nat. Prod. Res. 2017, 31, 169–174. [Google Scholar] [CrossRef]
- Sears, J.E.; Boger, D.L. Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure–function properties. Acc. Chem. Res. 2015, 48, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Tilaoui, M.; Ait Mouse, H.; Zyad, A. Update and new insights on future cancer drug candidates from plant-based alkaloids. Front. Pharmacol. 2021, 12, 3621. [Google Scholar] [CrossRef]
- O’Brien, S.; Kantarjian, H.; Keating, M.; Beran, M.; Koller, C.; Robertson, L.; Hester, J.; Rios, M.; Andreeff, M.; Talpaz, M. Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood 1995, 86, 3322–3326. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, W.; Ding, Y.; Ma, J.; Qian, Z.; Shao, J.; Li, Y. Homoharringtonine suppresses imatinib resistance via the Bcl-6/p53 pathway in chronic myeloid leukemia cell lines. Oncotarget 2017, 8, 37594. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Y.; Chen, J.; Chen, R.; Gu, L.; Xue, H.; Pan, C.; Tang, J.; Shen, S. Homoharringtonine is a safe and effective substitute for anthracyclines in children younger than 2 years old with acute myeloid leukemia. Front. Med. 2019, 13, 378–387. [Google Scholar] [CrossRef]
- Ahmadi, S.E.; Rahimi, S.; Zarandi, B.; Chegeni, R.; Safa, M. MYC: A multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J. Hematol. Oncol. 2021, 14, 121. [Google Scholar] [CrossRef]
- Chen, X.J.; Zhang, W.N.; Chen, B.; Xi, W.D.; Lu, Y.; Huang, J.Y.; Wang, Y.Y.; Long, J.; Wu, S.F.; Zhang, Y.X.; et al. Homoharringtonine deregulates MYC transcriptional expression by directly binding NF-κB repressing factor. Proc. Natl. Acad. Sci. USA 2019, 116, 2220–2225. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Gálvez, M.Á.; García-Villalba, R.; Martínez-Díaz, F.; Ocaña-Castillo, B.; Monedero-Saiz, T.; Torrecillas-Sánchez, A.; Abellán, B.; González-Sarrías, A.; Espín, J.C. Metabolic profiling of dietary polyphenols and methylxanthines in normal and malignant mammary tissues from breast cancer patients. Mol. Nutr. Food Res. 2019, 63, 1801239. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Gao, Q.Y.; Zou, T.H.; Wang, B.M.; Liu, S.D.; Sheng, J.Q.; Ren, J.L.; Zou, X.P.; Liu, Z.J.; Song, Y.Y. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: A multicentre, double-blinded, randomised controlled study. Lancet Gastroenterol. Hepatol. 2020, 5, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Bao, J.L.; Chen, X.P.; Huang, M.; Wang, Y.T. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med. 2012, 2012, 485042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindhoor, S.; Naveen, N.R.; Rao, G.K.; Gopan, G.; Chopra, H.; Park, M.N.; Alshahrani, M.M.; Jose, J.; Emran, T.B.; Kim, B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer. Front. Oncol. 2022, 12, 994155. [Google Scholar]
- Lee, R.J.; Low, P.S. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta Biomembr. 1995, 1233, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Makwana, V.; Karanjia, J.; Haselhorst, T.; Anoopkumar-Dukie, S.; Rudrawar, S. Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. Int. J. Pharm. 2021, 593, 120117. [Google Scholar] [CrossRef]
- Berger, W.; Setinek, U.; Hollaus, P.; Zidek, T.; Steiner, E.; Elbling, L.; Cantonati, H.; Attems, J.; Gsur, A.; Micksche, M. Multidrug resistance markers P-glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-small cell lung cancer: Prognostic implications. J. Cancer Res. Clin. Oncol. 2005, 131, 355–363. [Google Scholar] [CrossRef]
- Etievant, C.; Barret, J.M.; Kruczynski, A.; Perrin, D.; Hill, B.T. Vinflunine (20′,20′-difluoro-3′,4′-dihydrovinorelbine), a novel Vinca alkaloid, which participates in P-glycoprotein (Pgp)-mediated multidrug resistance in vivo and in vitro. Invest. New Drugs. 1998, 16, 3–17. [Google Scholar] [CrossRef]
- Schramm, S.; Köhler, N.; Rozhon, W. Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules 2019, 24, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wang, S.; Xia, Q.; da Costa, G.C.A.; Doerge, D.R.; Cai, L.; Fu, P.P. Reaction of dehydropyrrolizidine alkaloids with valine and hemoglobin. Chem. Res. Toxicol. 2014, 27, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Kurimoto, M.; Chang, T.C.; Nishiyama, Y.; Suzuki, T.; Dohmae, N.; Tanaka, K.; Yokoshima, S. Anticancer Approach Inspired by the Hepatotoxic Mechanism of Pyrrolizidine Alkaloids with Glycosylated Artificial Metalloenzymes. Angew. Chem. 2022, 134, e202205541. [Google Scholar] [CrossRef]
Compound | Structural Classification | Plant Source | Plant Family | Mode of Action | References |
---|---|---|---|---|---|
3-Methoxy carbazole | Carbazole alkaloid | Glycosmis arborea | Rutaceae |
| [23,24] |
3,10-Dibromofascaplysin | Indole alkaloid | Fascaplysinopsis reticulata | Thorectidae |
| [25,26] |
6-Methoxydihydroavicine | Isoquinoline alkaloids | Macleaya cordata | Papaveraceae |
| [27,28] |
6, 7-Dimethoxy-1-(α-hydroxy-4-methoxybenzyl)-2-methyl-1, 2, 3, 4-tetrahydroisoquinoline | Benzylisoquinoline alkaloid | Annona squamosa | Annonaceae | NA | [29] |
Acetoxytabernosine | Indole alkaloid | Alstonia yunnanensis | Apocynaceae |
| [30] |
Camptothecin | Pyrroloquinoline alakloid | Camptotheca acuminata | Nyssaceae |
| [31,32] |
Caulerpin | Indole alkaloid | Halimeda cylindracea, Halimeda lentillifera | Halimedaceae |
| [33,34] |
Chaetocochin J | Indole alkaloid | Chaetomium globosum | Chaetomiaceae |
| [35,36] |
Coclaurine | Benzylisoquinoline alkaloid | Annona squamosa | Annonaceae | NA | [29] |
Colchicine | Proto-alkaloid | Colchicum pusillum Colchicum autumnale | Colchicaceae Liliaceae |
| [37,38,39] |
Crebanine N-oxide | Aporphine alkaloid | Stephania hainanensis | Menispermaceae |
| [40] |
Cyclopamine | Steroidal alkaloid | Veratrum californicum | Liliaceae |
| [41] |
Cyclovirobuxine D | Steroidal alkaloid | Buxus sempervirens | Buxaceae |
| [42] |
Dentatin | Carbazole alkaloid | Clausena excavate | Rutaceae |
| [43,44] |
Girinimbine | Carbazole alkaloid | Murraya koenigii | Rutaceae |
| [45] |
Koenimbine | Carbazole alkaloid | Murraya koenigii | Rutaceae |
| [46] |
Mahanimbine | Carbazole alkaloid | Murraya koenigii | Rutaceae |
| [46,47] |
Mahanine | Carbazole alkaloid | Murraya koenigii | Rutaceae |
| [46] |
Microcosamine A | Piperidine alkaloids | Microcos paniculate | Malvaceae |
| [48] |
Neferine | Benzylisoquinoline alkaloid | Nelumbo nucifera | Nelumbonaceae |
| [49] |
Neopapillarine | Cumarino alkaloid | Neocryptodiscus papillaris | Apiaceae | NA | [50] |
Palmatine | Isoquinoline alkaloids | Berberis cretica | Berberidaceae |
| [51] |
Piperlongumine | Piperidine alkaloid | Piper longum | Piperaceae |
| [52,53] |
Reflexin A | Indole alkaloid | Rauvolfia reflexa | Apocynaceae |
| [54] |
Solamargine | Steroidal alkaloid | Solanum aculeastrum Solanum nigrum | Solanaceae |
| [55,56,57,58,59] |
Soyauxinine | Indoloquinazoline alkaloid | Araliopsis soyauxii | Rutaceae |
| [60,61,62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olofinsan, K.; Abrahamse, H.; George, B.P. Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management. Molecules 2023, 28, 5578. https://doi.org/10.3390/molecules28145578
Olofinsan K, Abrahamse H, George BP. Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management. Molecules. 2023; 28(14):5578. https://doi.org/10.3390/molecules28145578
Chicago/Turabian StyleOlofinsan, Kolawole, Heidi Abrahamse, and Blassan P. George. 2023. "Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management" Molecules 28, no. 14: 5578. https://doi.org/10.3390/molecules28145578
APA StyleOlofinsan, K., Abrahamse, H., & George, B. P. (2023). Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management. Molecules, 28(14), 5578. https://doi.org/10.3390/molecules28145578