Investigation of the Effects of Dioctyl Sulfosuccinate on the Photodegradation of Benzo[a]Pyrene in Aqueous Solutions under Various Wavelength Regimes
Abstract
:1. Introduction
2. Methods and Materials
2.1. Reagents
2.2. Solution Preparation
2.3. UV-Vis Absorption Spectroscopy
2.4. Room Temperature Fluorescence Spectroscopy
2.5. Photodegradation Studies
3. Results and Discussion
3.1. Absorption and Fluorescence Characteristics of BaP
3.2. Irradiation Studies in the Absence of DOSS
3.3. Irradiation Studies in the Presence of DOSS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, J.; Liang, Y.; Zhou, B.; Wang, Y.; Xing, F.; Qin, L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. Environ. Pollut. 2019, 251, 312–327. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.T.; Achten, C. Time to say goodbye to the 16 EPA PAHs? Towards an up-to-date use of PACs for environmental purposes. Polycycl. Aromat. Compd. 2015, 35, 330–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.D.; Oh, S.Y. Distribution, toxicity, and origins of polycyclic aromatic hydrocarbons in soils in Ulsan, South Korea. Environ. Monit. Assess. 2019, 191, 409. [Google Scholar] [CrossRef] [PubMed]
- Doong, R.; Chang, S.; Sun, Y. Solid-phase microextraction for determining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples. J. Chrom. A 2000, 879, 177–188. [Google Scholar] [CrossRef]
- Wang, R.; Liu, G.; Chou, C.; Liu, J.; Zhang, J. Environmental assessment of PAHs in soils around the Anhui Coal District, China. Arch. Environ. Contam. Toxicol. 2010, 59, 62–70. [Google Scholar] [CrossRef]
- Mueller, A.; Ulrich, N.; Hollmann, J.; Sanchez, C.; Rolle-Kampczyk, U.E.; Bergen, M. Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment. Environ. Pollut. 2019, 255, 112967. [Google Scholar] [CrossRef]
- Engraff, M.; Solere, C.; Smith, K.E.C.; Mayer, P.; Dahll, I. Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods: Linking toxic effects to chemical activity. Aquat. Toxicol. 2011, 102, 142–149. [Google Scholar] [CrossRef]
- El-Alawi, Y.; McConkey, B.J.; Dixon, D.G.; Greenberg, B.M. Measurement of short- and long-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria. Ecotoxicol. Environ. Saf. 2002, 51, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.F.; Chen, C.W.; Dong, C.D.; Kao, C.M. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. Sci. Total Environ. 2013, 463–464, 1174–1181. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Zhang, S.; Liang, J.; Chen, F.; Zhao, K. Formation and distribution of polycyclic aromatic hydrocarbons (PAHs) derived from coal seam combustion: A case study of the Ulanqab lignite from Inner Mongolia, northern China. Int. J. Coal Geol. 2012, 90–91, 126–134. [Google Scholar] [CrossRef]
- Lee, J.H.; Gigliotti, C.L.; Offenberg, J.H.; Eisenreich, S.J. Source of polycyclic aromatic hydrocarbons to the Hudson River watershed. Atmos. Environ. 2004, 38, 5971–5981. [Google Scholar] [CrossRef]
- Parastar, H.; Radovic, J.R.; Jalali-Heravi, M.; Diez, S.; Bayona, J.M.; Tauler, R. Resolution and quantification of complex mixtures of polycyclic aromatic hydrocarbons in heavy fuel oil sample by means of of GC x GC-TOFMS combined to multivariate curve resolution. Anal. Chem. 2011, 83, 9289–9297. [Google Scholar] [CrossRef]
- Thomas, R.E.; Lindeberg, M.; Harris, P.M.; Rice, S.D. Induction of DNA strand breaks in mussel (Mytilus trossulus) and clam (Protothaca staminea) following chronic field exposure to polycyclic aromatic hydrocarbons from the Exxon Valdez spill. Mar. Pollut. Bull. 2007, 54, 726–732. [Google Scholar] [CrossRef]
- Yin, F.; John, G.F.; Hayworth, J.S.; Clement, T.P. Long-term monitoring data to describe the fate of polycyclic aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama’s beaches. Sci. Total Environ. 2015, 508, 46–56. [Google Scholar] [CrossRef]
- Leech, D.M.; Snyder, M.T.; Wetzel, R.G. Natural organic matter and sunlight accelerate the degradation of 17ß-estradiol in water. Sci. Total Environ. 2009, 407, 2087–2092. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Chen, J.; Zhou, C.; Xie, Q. Phototransformation of 2,3-Dibromoproyl-2,4,6-tribromophenyl ether in natural waters: Important roles of dissolved organic matter and chloride ion. Environ. Sci. Technol. 2018, 52, 10490–10499. [Google Scholar] [CrossRef]
- Seller, P.; Kelly, C.A.; Rudd, J.W.M.; MacHutchon, A.R. Photodegradation of methylmercury in lakes. Nature 1996, 380, 694–697. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Taghizadeh, A.; Taghizadeh, M.; Abdi, J. In situ deposition of Ag/AgCl on the surface of magnetic metal-organic framework nanocomposite and its application for the visible-light photocatalytic degradation of Rhodamine dye. J. Hazard. Mater. 2019, 378, 120741. [Google Scholar] [CrossRef]
- Xia, X.; Li, G.; Yang, Z.; Chen, Y.; Huang, G.H. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen. Environ. Pollut. 2009, 157, 1352–1359. [Google Scholar] [CrossRef]
- Sheng, J.; Chen, J.; Shen, Z.; Xiao, X.; Yang, H.; Wang, Y.; Ruan, A. Photochemical degradation of PAHs in estuarine surface water: Effects of DOM, salinity, and suspended particulate matter. Environ. Sci. Pollut. Res. 2015, 22, 12374–12383. [Google Scholar] [CrossRef]
- Zhao, S.; Xue, S.; Zhang, J.; Zhang, Z.; Sun, J. Dissolved organic matter-mediated photodegradation of anthracene and pyrene in water. Sci. Rep. 2020, 10, 3413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collina, E.; Lasagni, M.; Pitea, D.; Franzetti, A.; Di Gennaro, P.; Bestetti, G. Bioremediation of diesel fuel contaminated soil: Effects of non-ionic surfactants and selected bacterial addition. Ann. Chim. 2007, 97, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liang, X.; Lu, G.; Thai, T.; Xu, W.; Dang, Z. Effects of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.). Ecotoxicol. Environ. Saf. 2015, 112, 1–6. [Google Scholar] [CrossRef]
- Goicoechea, H.C.; Yu, S.; Moore, A.F.T.; Campiglia, A.D. Four-way modeling of 4.2 K time-resolved excitation emission fluorescence data for the quantitation of polycyclic aromatic hydrocarbons in soil samples. Talanta 2012, 101, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.B.; Hewitt, U.; Miller, M.; Campiglia, A.D. Water analysis of the sixteen environmental protection agency—Polycyclic aromatic hydrocarbons via solid-phase nanoextraction-gas chromatography/mass spectrometry. J. Chromatogr. A 2014, 1345, 1–8. [Google Scholar] [CrossRef]
- Okoro, O.; Solliec, M.; Papineau, I.; Fradette, L.; Barbeau, B. Contribution of surfactants and micelles to contamination and treatability of crude oil-contaminated surface water. J. Environ. Chem. Eng. 2021, 9, 106425. [Google Scholar] [CrossRef]
- Reference Air Mass 1.5 Spectra. Available online: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html#:~:text=The%20American%20Society%20for%20Testing%20and%20Materials%20%28ASTM%29,and%20only%20one%20set%20of%20specified%20atmospheric%20conditions (accessed on 20 October 2022).
- Fasnacht, M.P.; Blough, N.V. Aqueous photodegradation of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 2002, 36, 4364–4369. [Google Scholar] [CrossRef]
- Bruyn, W.J.; Clark, C.D.; Ottelle, K.; Aiona, P. Photochemical degradation of phenanthrene as a function of natural water variables modeling freshwater marine environments. Mar. Pollut. Bull. 2012, 64, 532–538. [Google Scholar] [CrossRef]
- Aguiar, J.; Carpena, P.; Molina-Bolívar, J.A.; Ruiz, C.C. On the determination of the critical miscelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003, 258, 116–122. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Fetzer, J.; Campiglia, A.D. Monitoring and characterization of polyaromatic compounds in the environment. Talanta 1998, 47, 943–969. [Google Scholar] [CrossRef]
Irradiation Lamp a (nm) | 350 | 419 | 575 |
---|---|---|---|
Percentage of Overlap b (%) | 16.4 | 10.7 | 11.9 |
Absorptivity c (mL/µg∙cm) | 15,303 ± 1716 | 12,605 ± 3108 | 2921 ± 819 |
BaP b | Lamp Wavelength (nm) | All Lamps Together | ||
---|---|---|---|---|
350 | 419 | 575 | ||
k (min−1) | (3.79 ± 0.97) × 10−3 | ND c | ND c | (1.12 ± 0.35) × 10−3 |
t1/2 (min) | 182.9 ± 46.62 | ND c | ND c | 616.4 ± 189.8 |
BaP a | Lamp Wavelength (nm) | All Lamps Together | ||
---|---|---|---|---|
350 | ||||
No DOSS | DOSS | No DOSS | DOSS | |
k (min−1) | (3.79 ± 0.97) × 10−3 | (1.10 ± 0.13) × 10−3 | (1.12 ± 0.35) × 10−3 | (3.30 ± 0.87) × 10−4 |
t1/2 (min) | 182.9 ± 46.62 | 633 ± 73 | 616.4 ± 189.8 | 2099.5 ± 554.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, A.M.; Arif, S.; Evteyeva, K.; Barbosa, F., Jr.; Campiglia, A.D. Investigation of the Effects of Dioctyl Sulfosuccinate on the Photodegradation of Benzo[a]Pyrene in Aqueous Solutions under Various Wavelength Regimes. Molecules 2023, 28, 5797. https://doi.org/10.3390/molecules28155797
Santana AM, Arif S, Evteyeva K, Barbosa F Jr., Campiglia AD. Investigation of the Effects of Dioctyl Sulfosuccinate on the Photodegradation of Benzo[a]Pyrene in Aqueous Solutions under Various Wavelength Regimes. Molecules. 2023; 28(15):5797. https://doi.org/10.3390/molecules28155797
Chicago/Turabian StyleSantana, Anthony M., Sadia Arif, Kristina Evteyeva, Fernando Barbosa, Jr., and Andres D. Campiglia. 2023. "Investigation of the Effects of Dioctyl Sulfosuccinate on the Photodegradation of Benzo[a]Pyrene in Aqueous Solutions under Various Wavelength Regimes" Molecules 28, no. 15: 5797. https://doi.org/10.3390/molecules28155797
APA StyleSantana, A. M., Arif, S., Evteyeva, K., Barbosa, F., Jr., & Campiglia, A. D. (2023). Investigation of the Effects of Dioctyl Sulfosuccinate on the Photodegradation of Benzo[a]Pyrene in Aqueous Solutions under Various Wavelength Regimes. Molecules, 28(15), 5797. https://doi.org/10.3390/molecules28155797