A High−Performance Anti−Corrosive Epoxy Coating Based on Ultra−Thin Hydroxyapatite Nanosheets with pH−Responsive Functions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of HAp, F−HAp, β−CD, HAp−CD, and BTA−HAp−CD
2.2. Characterization of the Composite Coatings
3. Experimental Section
3.1. Materials
3.2. Synthesis of Composite Materials
3.2.1. Preparation of HAp
3.2.2. Preparation of F−HAp
3.2.3. Preparation of HAp−CD
3.2.4. Preparation of BTA−HAp−CD
3.2.5. Preparation of BTA−HAp−CD/EP Coating
3.3. Characterization Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ma, B.; Zhao, H.; Ju, D.; Yang, Z.; Chen, M.; Liu, Q. Study on Material Design and Corrosion Resistance Based on Multi−Principal Component Alloying Theory. Materials 2023, 16, 1939. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Feng, W.; Liao, Z.; Yang, Y.; Miao, G.; Yu, B.; Pei, X. Protection of mild steel with molecular engineered epoxy nanocomposite coatings containing corrosion inhibitor functionalized nanoparticles. Surf. Coat. Technol. 2021, 406, 126639. [Google Scholar] [CrossRef]
- Yang, C.; Xu, W.; Meng, X.; Shi, X.; Shao, L.; Zeng, X.; Yang, Z.; Li, S.; Liu, Y.; Xia, X. A pH−responsive hydrophilic controlled release system based on ZIF−8 for self−healing anticorrosion application. Chem. Eng. J. 2021, 415, 128985. [Google Scholar] [CrossRef]
- Chen, H.; Yu, Z.; Yang, G.; Liao, K.; Peng, B.; Pang, Y.; Zhu, L.; Tang, J. A novel pH−responsive smart anticorrosion coating based on sepiolite and MOF for high−performance corrosion protection. Surf. Coat. Technol. 2022, 446, 128768. [Google Scholar] [CrossRef]
- Chen, H.; Yu, Z.; Cao, K.; Chen, L.; Pang, Y.; Xie, C.; Jiang, Y.; Zhu, L.; Wang, J. Preparation of a BTA–UIO–GO nanocomposite to endow coating systems with active inhibition and passive anticorrosion performances. New J. Chem. 2021, 45, 16069–16082. [Google Scholar] [CrossRef]
- Han, D.; Wu, S.; Zhang, S.; Deng, Y.; Cui, C.; Zhang, L.; Long, Y.; Li, H.; Tao, Y.; Weng, Z.; et al. A Corrosion−Resistant and Dendrite−Free Zinc Metal Anode in Aqueous Systems. Small 2020, 16, e2001736. [Google Scholar] [CrossRef]
- Aliyu, A.; Srivastava, C. Correlation between growth texture, crystallite size, lattice strain and corrosion behavior of copper−carbon nanotube composite coatings. Surf. Coat. Technol. 2021, 405, 126596. [Google Scholar] [CrossRef]
- Gergely, A.; Bertóti, I.; Török, T.; Pfeifer, É.; Kálmán, E. Corrosion protection with zinc−rich epoxy paint coatings embedded with various amounts of highly dispersed polypyrrole−deposited alumina monohydrate particles. Prog. Org. Coat. 2013, 76, 17–32. [Google Scholar] [CrossRef]
- Yang, L.-X.; Yin, J.-J.; Wang, L.-L.; Xing, G.-X.; Yin, P.; Liu, Q.-W. Hydrothermal synthesis of hierarchical hydroxyapatite: Preparation, growth mechanism and drug release property. Ceram. Int. 2012, 38, 495–502. [Google Scholar] [CrossRef]
- Huang, T.-C.; Su, Y.-A.; Yeh, T.-C.; Huang, H.-Y.; Wu, C.-P.; Huang, K.-Y.; Chou, Y.-C.; Yeh, J.-M.; Wei, Y. Advanced anticorrosive coatings prepared from electroactive epoxy–SiO2 hybrid nanocomposite materials. Electrochim. Acta 2011, 56, 6142–6149. [Google Scholar] [CrossRef]
- Hosseini, M.; Jafari, M.; Najjar, R. Effect of polyaniline–montmorillonite nanocomposite powders addition on corrosion performance of epoxy coatings on Al 5000. Surf. Coat. Technol. 2011, 206, 280–286. [Google Scholar] [CrossRef]
- Zhu, L.J.; Feng, C.; Song, Y.C.; Cao, Y.Q.; Han, L.H.; Ge, H.J. Comparison of Corrosion Behavior of an Epoxy Coating and a RGO Modified Epoxy Coating on N80 Tubing Steel in 10.0 wt% NaCl Solution at Different Temperatures. Mater. Sci. Forum 2021, 1035, 554–561. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J.; Zhang, D.; Qi, T.; Li, G.L. pH−responsive self−healing anticorrosion coatings based on benzotriazole−containing zeolitic imidazole framework. Colloids Surf. A Physicochem. Eng. Asp. 2019, 561, 1–8. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, H.; Zou, Y.; Zhao, H. Study on self−healing and corrosion resistance behaviors of functionalized carbon dot−intercalated graphene−based waterborne epoxy coating. J. Mater. Sci. Technol. 2021, 67, 226–236. [Google Scholar] [CrossRef]
- Liu, A.; Tian, H.; Li, S.; Ju, X.; Yang, H.; Sun, Y.; Wang, L.; Li, W. Bioinspired layered hybrid coatings with greatly enhanced barrier effect and active corrosion protection performance. Prog. Org. Coat. 2021, 152, 106131. [Google Scholar] [CrossRef]
- Cao, K.; Yu, Z.; Yin, D. Preparation of Ce−MOF@TEOS to enhance the anti−corrosion properties of epoxy coatings. Prog. Org. Coat. 2019, 135, 613–621. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, D.; Dong, Q.; Li, M.; Liu, A.; Wang, X.; Wang, S.; Liu, Q. Anticorrosive behavior of epoxy coating modified with hydrophobic nano−silica on phosphatized carbon steel. Prog. Org. Coat. 2021, 151, 106051. [Google Scholar] [CrossRef]
- Liang, T.; Yuan, H.; Li, C.; Dong, S.; Zhang, C.; Cao, G.; Fan, Y.; Zhao, X.; Cao, X. Corrosion inhibition effect of nano–SiO2 for galvanized steel superhydrophobic surface. Surf. Coat. Technol. 2021, 406, 126673. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Z.; Yin, D.; Cao, K.; Xie, C.; Zhu, L.; Jiang, Y. Preparation and anticorrosion properties of GO−Ce−MOF nanocomposite coatings. J. Appl. Polym. Sci. 2022, 139, 51571. [Google Scholar] [CrossRef]
- Jia, Y.; Qiu, T.; Guo, L.; Ye, J.; He, L.; Li, X. Preparation of pH responsive smart nanocontainer via inclusion of inhibitor in graphene/halloysite nanotubes and its application in intelligent anticorrosion protection. Appl. Surf. Sci. 2020, 504, 144496. [Google Scholar] [CrossRef]
- Jia, Y.; Qiu, T.; Guo, L.; Ye, J.; He, L.; Li, X. Reduction–Coagulation Preparation of Hybrid Nanoparticles of Graphene and Halloysite Nanotubes for Use in Anticorrosive Waterborne Polymer Coatings. ACS Appl. Nano Mater. 2018, 1, 1541–1550. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Wang, F.; Huang, Q.; Ji, G. Carbon fibers embedded with FeIII−MOF−5−derived composites for enhanced microwave absorption. Carbon 2021, 174, 509–517. [Google Scholar] [CrossRef]
- Rui, M.; Jiang, Y.; Zhu, A. Sub−micron calcium carbonate as a template for the preparation of dendrite−like PANI/CNT nanocomposites and its corrosion protection properties. Chem. Eng. J. 2020, 385, 123396. [Google Scholar] [CrossRef]
- Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.; Habibzadeh, S.; Formela, K.; Saeb, M.R. Metal−organic framework (MOF)/epoxy coatings: A review. Materials 2020, 13, 2881. [Google Scholar] [CrossRef]
- Lei, Z.; Feng, J.; Yang, Y.; Shen, J.; Zhang, W.; Wang, C. An efficient polymer coating for highly acid−stable zeolitic imidazolate frameworks based composite sponges. J. Hazard. Mater. 2020, 382, 121057. [Google Scholar] [CrossRef]
- Biserčić, M.S.; Marjanović, B.; Zasońska, B.A.; Stojadinović, S.; Ćirić−Marjanović, G. Novel microporous composites of MOF−5 and polyaniline with high specific surface area. Synth. Met. 2020, 262, 116348. [Google Scholar] [CrossRef]
- Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B. Synthesis of a non−hazardous/smart anti−corrosion nano−carrier based on beta−cyclodextrin−zinc acetylacetonate inclusion complex decorated graphene oxide (β−CD−ZnA−MGO). J. Hazard. Mater. 2020, 398, 122962. [Google Scholar] [CrossRef]
- Patel, M.R.; Lamprou, D.A.; Vavia, P.R. Synthesis, characterization, and drug delivery application of self−assembling amphiphilic cyclodextrin. AAPS PharmSciTech 2020, 21, 11. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Hydrocortisone/cyclodextrin complex electrospun nanofibers for a fast−dissolving oral drug delivery system. RSC Med. Chem. 2020, 11, 245–258. [Google Scholar] [CrossRef]
- Atta, A.M.; Ezzat, A.O.; El−Saeed, A.M.; Tawfeek, A.M.; Sabeela, N.I. Self−healing of chemically bonded hybrid silica/epoxy for steel Coating. Prog. Org. Coat. 2020, 141, 105549. [Google Scholar] [CrossRef]
- Miao, M.; Yuan, X.-Y.; Wang, X.-G.; Lu, Y.; Liu, J.-K. One step self−heating synthesis and their excellent anticorrosion performance of zinc phosphate/benzotriazole composite pigments. Dyes Pigments 2017, 141, 74–82. [Google Scholar] [CrossRef]
- Pramanik, S.; Agarwal, A.K.; Rai, K.; Garg, A. Development of high strength hydroxyapatite by solid−state−sintering process. Ceram. Int. 2007, 33, 419–426. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Huang, S.; Hou, Z.; Cheng, Z.; Yang, P.; Peng, C.; Lin, J. Self−activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 2010, 31, 3374–3383. [Google Scholar] [CrossRef]
- Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769–2781. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Z.; Chen, L.; Liao, K.; Chen, H.; Pang, Y.; Peng, B.; Zhu, L. Preparation and performance of a composite epoxy coating based on modified hydroxyapatite. Surf. Coat. Technol. 2022, 443, 128614. [Google Scholar] [CrossRef]
- Okabayashi, R.; Nakamura, M.; Okabayashi, T.; Tanaka, Y.; Nagai, A.; Yamashita, K. Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full−thickness skin wounds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 90, 641–646. [Google Scholar] [CrossRef]
- Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 2017, 347, 48–76. [Google Scholar] [CrossRef]
- Sonmez, S.; Aksakal, B.; Dikici, B. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy. J. Alloys Compd. 2014, 596, 125–131. [Google Scholar] [CrossRef]
- Assadian, M.; Jafari, H.; Ghaffari Shahri, S.; Idris, M.; Gholampour, B. Corrosion resistance of EPD nanohydroxyapatite coated 316L stainless steel. Surf. Eng. 2014, 30, 806–813. [Google Scholar] [CrossRef]
- Xue, X.-Z.; Zhang, J.-Y.; Zhou, D.; Liu, J.-K. In−situ bonding technology and excellent anticorrosion activity of graphene oxide/hydroxyapatite nanocomposite pigment. Dyes Pigments 2019, 160, 109–118. [Google Scholar] [CrossRef]
- Xing, X.; Wang, J.; Li, Q.; Hu, W.; Yuan, J. A novel acid−responsive HNTs−based corrosion inhibitor for protection of carbon steel. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 295–304. [Google Scholar] [CrossRef]
- Leprêtre, S.; Chai, F.; Hornez, J. −C.; Vermet, G.; Neut, C.; Descamps, M.; Hildebrand, H.F.; Martel, B. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials 2009, 30, 6086–6093. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ma, X.; Chang, L.; Zhu, S.; Guan, S. Characterization and cytocompatibility of polydopamine on MAO−HA coating supported on Mg−Zn−Ca alloy. Surf. Interface Anal. 2017, 49, 1115–1123. [Google Scholar] [CrossRef]
- Lee, W.; Lee, J.U.; Jung, B.M.; Byun, J.-H.; Yi, J.-W.; Lee, S.-B.; Kim, B.-S. Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine. Carbon 2013, 65, 296–304. [Google Scholar] [CrossRef]
- Mohammadkhani, R.; Ramezanzadeh, M.; Saadatmandi, S.; Ramezanzadeh, B. Designing a dual−functional epoxy composite system with self−healing/barrier anti−corrosion performance using graphene oxide nano−scale platforms decorated with zinc doped−conductive polypyrrole nanoparticles with great environmental stability and non−toxicity. Chem. Eng. J. 2020, 382, 122819. [Google Scholar]
- Chen, H.; Yu, Z.; Yang, G.; Liao, K.; Peng, B.; Guo, Y.; Zhu, L. A hydrophobic smart coating based on hexagonal boron nitride/metal−organic frameworks for high−performance corrosion protection. Prog. Org. Coat. 2022, 172, 107154. [Google Scholar] [CrossRef]
- Morozov, Y.; Calado, L.; Shakoor, R.; Raj, R.; Kahraman, R.; Taryba, M.; Montemor, M. Epoxy coatings modified with a new cerium phosphate inhibitor for smart corrosion protection of steel. Corros. Sci. 2019, 159, 108128. [Google Scholar] [CrossRef]
- Habib, S.; Khan, A.; Nawaz, M.; Sliem, M.H.R.; Shakoor, R.A.; Kahraman, R.; Abdullah, A.M.; Zekri, A. Self−healing performance of multifunctional polymeric smart coatings. Polymers 2019, 11, 1519. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.; Fan, H.; Hong, R.; Li, W. Construction of MOF−based superhydrophobic composite coating with excellent abrasion resistance and durability for self−cleaning, corrosion resistance, anti−icing, and loading−increasing research. Chem. Eng. J. 2021, 408, 127343. [Google Scholar] [CrossRef]
- Cao, K.; Yu, Z.; Zhu, L.; Yin, D.; Chen, L.; Jiang, Y.; Wang, J. Fabrication of superhydrophobic layered double hydroxide composites to enhance the corrosion−resistant performances of epoxy coatings on Mg alloy. Surf. Coat. Technol. 2021, 407, 126763. [Google Scholar] [CrossRef]
- Mohammadloo, H.E.; Mirabedini, S.; Pezeshk−Fallah, H. Microencapsulation of quinoline and cerium based inhibitors for smart coating application: Anti−corrosion, morphology and adhesion study. Prog. Org. Coat. 2019, 137, 105339. [Google Scholar] [CrossRef]
- Liu, T.; Li, W.; Zhang, C.; Wang, W.; Dou, W.; Chen, S. Preparation of highly efficient self−healing anticorrosion epoxy coating by integration of benzotriazole corrosion inhibitor loaded 2D−COF. J. Ind. Eng. Chem. 2021, 97, 560–573. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Z.; Yin, D.; Cao, K. Preparation and anticorrosion properties of BTA@HNTs−GO nanocomposite smart coatings. Compos. Interfaces 2020, 28, 1–16. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, D.; Li, J.; Liu, T.; Pu, J.; Zhao, H.; Wang, L. One−step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane−graphene oxide and its application in anti−corrosion and anti−wear fields. Corros. Sci. 2019, 147, 9–21. [Google Scholar] [CrossRef]
- Vijayan, P.P.; Al−Maadeed, M. Self−repairing composites for corrosion protection: A review on recent strategies and evaluation methods. Materials 2019, 12, 2754. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Zhu, L.; Chen, L.; Hui, X.; Liu, J.; He, L.; Bai, X.; Yu, Z. A High−Performance Anti−Corrosive Epoxy Coating Based on Ultra−Thin Hydroxyapatite Nanosheets with pH−Responsive Functions. Molecules 2023, 28, 6223. https://doi.org/10.3390/molecules28176223
Feng C, Zhu L, Chen L, Hui X, Liu J, He L, Bai X, Yu Z. A High−Performance Anti−Corrosive Epoxy Coating Based on Ultra−Thin Hydroxyapatite Nanosheets with pH−Responsive Functions. Molecules. 2023; 28(17):6223. https://doi.org/10.3390/molecules28176223
Chicago/Turabian StyleFeng, Chun, Lijuan Zhu, Legang Chen, Xuezhi Hui, Jinling Liu, Lei He, Xiaofeng Bai, and Zongxue Yu. 2023. "A High−Performance Anti−Corrosive Epoxy Coating Based on Ultra−Thin Hydroxyapatite Nanosheets with pH−Responsive Functions" Molecules 28, no. 17: 6223. https://doi.org/10.3390/molecules28176223
APA StyleFeng, C., Zhu, L., Chen, L., Hui, X., Liu, J., He, L., Bai, X., & Yu, Z. (2023). A High−Performance Anti−Corrosive Epoxy Coating Based on Ultra−Thin Hydroxyapatite Nanosheets with pH−Responsive Functions. Molecules, 28(17), 6223. https://doi.org/10.3390/molecules28176223