Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators
Abstract
:1. Introduction
2. Results and Discussions
3. Dye Absorption Studies
4. Conclusions
5. Experimental Section
5.1. General Method and Materials
5.2. Dye Absorption Studies
5.2.1. For Gelator 6 in a Bi-Phase System for Rhodamine B
5.2.2. For Gelator 7 in a Gel Column
5.2.3. Toluidine Blue Dye Absorption Studies
5.3. Synthesis of Compounds 5–8
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Babu, S.S.; Praveen, V.K.; Ajayaghosh, A. Functional π-Gelators and Their Applications. Chem. Rev. 2014, 114, 1973. [Google Scholar]
- Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165. [Google Scholar] [PubMed]
- Skilling, K.J.; Citossi, F.; Bradshaw, T.D.; Ashford, M.; Kellam, B.; Marlow, M. Insights into low molecular mass organic gelators: A focus on drug delivery and tissue engineering applications. Soft Matter 2014, 10, 237. [Google Scholar]
- Ajayaghosh, A.; Praveen, V.K.; Vijayakumar, C. Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev. 2008, 37, 109. [Google Scholar] [PubMed]
- Okesola, B.O.; Smith, D.K. Applying low-molecular weight supramolecular gelators in an environmental setting—Self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev. 2016, 45, 4226. [Google Scholar] [PubMed]
- Morris, J.; Bietsch, J.; Bashaw, K.; Wang, G. Recently Developed Carbohydrate Based Gelators and Their Applications. Gels 2021, 7, 24. [Google Scholar] [CrossRef]
- Datta, S.; Bhattacharya, S. Multifarious facets of sugar-derived molecular gels: Molecular features, mechanisms of self-assembly and emerging applications. Chem. Soc. Rev. 2015, 44, 5596. [Google Scholar] [PubMed]
- Draper, E.R.; Adams, D.J. Photoresponsive gelators. Chem. Commun. 2016, 52, 8196. [Google Scholar]
- Sun, Z.; Huang, Q.; He, T.; Li, Z.; Zhang, Y.; Yi, L. Multistimuli-Responsive Supramolecular Gels: Design Rationale, Recent Advances, and Perspectives. ChemPhysChem 2014, 15, 2421. [Google Scholar] [PubMed]
- Jones, C.D.; Steed, J.W. Gels with sense: Supramolecular materials that respond to heat, light and sound. Chem. Soc. Rev. 2016, 45, 6546. [Google Scholar]
- Wang, G.; Goyal, N.; Mangunuru, H.P.R.; Yang, H.; Cheuk, S.; Reddy, P.V.N. Preparation and self-assembly study of amphiphilic and bispolar diacetylene-containing glycolipids. J. Org. Chem. 2015, 80, 733. [Google Scholar]
- Goulet-Hanssens, A.; Eisenreich, F.; Hecht, S. Enlightening materials with photoswitches. Adv. Mater. 2020, 32, 1905966. [Google Scholar]
- Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114, 12174. [Google Scholar] [PubMed]
- Irie, M. Diarylethenes for Memories and Switches. Chem. Rev. 2000, 100, 1685. [Google Scholar]
- Cheng, H.-B.; Zhang, S.; Bai, E.; Cao, X.; Wang, J.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L.; Yoon, J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. Adv. Mater. 2022, 34, 2108289. [Google Scholar]
- Zhang, J.; Tian, H. The Endeavor of Diarylethenes: New Structures, High Performance, and Bright Future. Adv. Opt. Mater. 2018, 6, 1701278. [Google Scholar]
- Zhang, Z.; Wang, W.; O’Hagan, M.; Dai, J.; Zhang, J.; Tian, H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew. Chem. Int. Ed. 2022, 61, e202205758. [Google Scholar]
- Yoon, L.U.; Adhikari, S.B.; Sarabamoun, E.S.; Bietsch, J.M.; Tsai, E.H.R.; Wang, G.J.; Choi, J.J. Exciton dissociation in quantum dots connected with photochromic molecule bridges. J. Mater. Chem. C 2021, 9, 16006. [Google Scholar]
- Hsu, C.-W.; Sauvee, C.; Sunden, H.; Andreasson, J. Writing and erasing multicolored information in diarylethene-based supramolecular gels. Chem. Sci. 2018, 9, 8019. [Google Scholar]
- Johnstone, M.D.; Hsu, C.-W.; Hochbaum, N.; Andreasson, J.; Sunden, H. Multi-color emission with orthogonal input triggers from a diarylethene pyrene-OTHO organogelator cocktail. Chem. Commun. 2020, 56, 988. [Google Scholar]
- Samanta, D.; Singh, A.; Verma, P.; Bhattacharyya, S.; Roy, S.; Maji, T.K. Photoswitchable J-Aggregated Processable Organogel by Integrating a Photochromic Acceptor. J. Org. Chem. 2019, 84, 10946. [Google Scholar]
- Li, Z.; Davidson-Rozenfeld, G.; Vazquez-Gonzalez, M.; Fadeev, M.; Zhang, J.; Tian, H.; Willner, I. Multi-triggered Supramolecular DNA/Bipyridinium Dithienylethene Hydrogels Driven by Light, Redox, and Chemical Stimuli for Shape-Memory and Self-Healing Applications. J. Am. Chem. Soc. 2018, 140, 17691. [Google Scholar]
- Liu, G.; Zhang, Y.-M.; Xu, X.; Zhang, L.; Liu, Y. Optically Switchable Luminescent Hydrogel by Synergistically Intercalating Photochromic Molecular Rotor into Inorganic Clay. Adv. Opt. Mater. 2017, 5, 1700149. [Google Scholar]
- Wei, S.C.; Pan, M.; Fan, Y.Z.; Liu, H.; Zhang, J.; Su, C.Y. Creating coordination-based cavities in a multiresponsive supramolecular gel. Chem. Eur. J. 2015, 21, 7418. [Google Scholar]
- Gu, Y.; Alt, E.A.; Wang, H.; Li, X.; Willard, A.P.; Johnson, J.A. Photoswitching topology in polymer networks with metal-organic cages as crosslinks. Nature 2018, 560, 65. [Google Scholar]
- Wei, S.-C.; Pan, M.; Li, K.; Wang, S.; Zhang, J.; Su, C.-Y. A Multistimuli-Responsive Photochromic Metal-Organic Gel. Adv. Mater. 2014, 26, 2072. [Google Scholar]
- De Jong, J.J.D.; Lucas, L.N.; Kellogg, R.M.; van Esch, J.H.; Feringa, B.L. Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality. Science 2004, 304, 278. [Google Scholar]
- De Jong, J.J.D.; Tiemersma-Wegman, T.D.; Van Esch, J.H.; Feringa, B.L. Dynamic Chiral Selection and Amplification Using Photoresponsive Organogelators. J. Am. Chem. Soc. 2005, 127, 13804. [Google Scholar] [PubMed]
- Akazawa, M.; Uchida, K.; de Jong, J.J.D.; Areephong, J.; Stuart, M.; Caroli, G.; Browne, W.R.; Feringa, B.L. Photoresponsive dithienylethene-urea-based organogels with “reversed” behavior. Org. Biomol. Chem. 2008, 6, 1544. [Google Scholar] [PubMed]
- Van Herpt, J.T.; Areephong, J.; Stuart, M.C.A.; Browne, W.R.; Feringa, B.L. Light-Controlled Formation of Vesicles and Supramolecular Organogels by a Cholesterol-Bearing Amphiphilic Molecular Switch. Chem. Eur. J. 2014, 20, 1737. [Google Scholar]
- Wang, S.; Shen, W.; Feng, Y.; Tian, H. A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem. Commun. 2006, 14, 1497–1499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, J.; Zou, L.; Tian, H. Reversible photocontrollable gels based on bisthienylethene-doped lecithin micelles. Chem. Commun. 2013, 49, 9926. [Google Scholar] [CrossRef] [PubMed]
- Rameshbabu, K.; Zou, L.; Kim, C.; Urbas, A.; Li, Q. Self-organized photochromic dithienylcyclopentene organogels. J. Mater. Chem. 2011, 21, 15673. [Google Scholar]
- Jiang, Y.; Zeng, F.; Gong, R.; Guo, Z.; Chen, C.-F.; Wan, X. A multi-stimuli responsive organogel based on a tetrapeptide-dithienylcyclopentene conjugate. Soft Matter 2013, 9, 7538. [Google Scholar]
- Van Herpt, J.T.; Stuart, M.C.A.; Browne, W.R.; Feringa, B.L. A Dithienylethene-Based Rewritable Hydrogelator. Chem. Eur. J. 2014, 20, 3077. [Google Scholar] [PubMed]
- Simeth, N.A.; de Mendoza, P.; Dubach, V.R.A.; Stuart, M.C.A.; Smith, J.W.; Kudernac, T.; Browne, W.R.; Feringa, B.L. Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chem. Sci. 2022, 13, 3263. [Google Scholar]
- Sevez, G.; Gan, J.; Pan, J.; Sallenave, X.; Colin, A.; Saadoui, H.; Saleh, A.; Vogtle, F.; Pozzo, J.-L. Multi-addressable supramolecular gels based on linear amino acid and bisthienylcyclopentene. J. Phys. Org. Chem. 2007, 20, 888. [Google Scholar]
- Verma, P.; Singh, A.; Maji, T.K. Photo-modulated wide-spectrum chromism in Eu3+ and Eu3+/Tb3+ photochromic coordination polymer gels: Application in decoding secret information. Chem. Sci. 2021, 12, 2674. [Google Scholar]
- Chai, X.; Fu, Y.-X.; James, T.D.; Zhang, J.; He, X.-P.; Tian, H. Photochromism and molecular logic gate operation of a water-compatible bis-glycosyl diarylethene. Chem. Commun. 2017, 53, 9494. [Google Scholar]
- Chai, X.; Han, H.-H.; Zang, Y.; Li, J.; He, X.-P.; Zhang, J.; Tian, H. Targeted photoswitchable imaging of intracellular glutathione by a photochromic glycosheet sensor. Beilstein J. Org. Chem. 2019, 15, 2380. [Google Scholar]
- Morris, J.; Kozlowski, P.; Wang, G. Synthesis and Characterization of Hybrid Glycolipids as Functional Organogelators and Hydrogelators. Langmuir 2019, 35, 14639. [Google Scholar] [CrossRef] [PubMed]
- Myles, A.J.; Branda, N.R. Novel Photochromic Homopolymers Based on 1,2-Bis(3-thienyl)cyclopentenes. Macromolecules 2003, 36, 298. [Google Scholar] [CrossRef]
Cpd. # | Hex | Tol | n-BuOH | i-PrOH | EtOH | EG | EtOH :H2O (1:1) | EtOH :H2O (1:2) | DMSO: H2O (1:1) | DMSO: H2O (1:2) | H2O |
---|---|---|---|---|---|---|---|---|---|---|---|
5 | I | I | G5.0T | PG | PG | G20.0C | G10.0T | PG | G6.7T | G5.0T | P |
6 | P | I | G2.8T | G5.0T | G10.0T | G6.7C | G4.0T | G4.0T | G5.0O | G4.0T | I |
7 | I | G10T | G6.6O | G6.6O | G4.0T | G6.6T | G10O | G20O | G1.6O | G1.6O | I |
8 | I | P | G20O | P | G10T | G10T | P | P | P | P | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aryal, P.; Morris, J.; Adhikari, S.B.; Bietsch, J.; Wang, G. Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators. Molecules 2023, 28, 6228. https://doi.org/10.3390/molecules28176228
Aryal P, Morris J, Adhikari SB, Bietsch J, Wang G. Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators. Molecules. 2023; 28(17):6228. https://doi.org/10.3390/molecules28176228
Chicago/Turabian StyleAryal, Pramod, Joedian Morris, Surya B. Adhikari, Jonathan Bietsch, and Guijun Wang. 2023. "Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators" Molecules 28, no. 17: 6228. https://doi.org/10.3390/molecules28176228
APA StyleAryal, P., Morris, J., Adhikari, S. B., Bietsch, J., & Wang, G. (2023). Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators. Molecules, 28(17), 6228. https://doi.org/10.3390/molecules28176228