High-Dose Deltamethrin Induces Developmental Toxicity in Caenorhabditis elegans via IRE-1
Abstract
:1. Introduction
2. Results
2.1. High-Dose DM Induces Developmental Delay in C. elegans
2.2. Exposure to High-Dose DM during Development Adversely Affects Healthy Physical Indicators in C. elegans
2.3. High-Dose DM Reduces the Ability to Activate the Endoplasmic Reticulum Unfolded Protein Response (UPRER)
2.4. High-Dose DM Reduces Transcript Levels of UPRER Target Genes
2.5. Developmental Toxicity of High-Dose DM in C. elegans Associated with ER Stress
2.6. High-Dose DM Induces Developmental Toxicity in C. elegans via IRE-1
2.7. The Ability of High-Dose DM to Reduce UPRER Activation Is Associated with IRE-1/XBP-1
3. Discussion
4. Materials and Methods
4.1. Nematode Strains and Maintenance
4.2. Drugs and Treatment
4.3. Body Size Estimation of Nematodes
4.4. Nematode Development Analysis
4.5. Onset of Egg Laying
4.6. Lifespan Analysis
4.7. Head Thrashing and Body Bending Analysis
4.8. Pharyngeal Pumping Assay
4.9. Measurement of UPRER Activation Levels
4.10. ER Stress Survival Analysis
4.11. Quantitative Real-Time PCR
4.12. RNA Interference (RNAi) in C. elegans
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Aiello, F.; Simons, M.G.; van Velde, J.W.; Dani, P. New Insights into the Degradation Path of Deltamethrin. Molecules 2021, 26, 3811. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Sun, Y.; Ares, I.; Anadon, A.; Martinez, M.; Martinez-Larranaga, M.R.; Yuan, Z.; Wang, X.; Martinez, M.A. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ. Res. 2019, 170, 260–281. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Dong, J.; Liu, Y.; Yang, Q.; Xu, N.; Yang, Y.; Ai, X. Effects of acute deltamethrin exposure on kidney transcriptome and intestinal microbiota in goldfish (Carassius auratus). Ecotoxicol. Environ. Saf. 2021, 225, 112716. [Google Scholar] [CrossRef]
- Yang, X.; Fang, Y.; Hou, J.; Wang, X.; Li, J.; Li, S.; Zheng, X.; Liu, Y.; Zhang, Z. The heart as a target for deltamethrin toxicity: Inhibition of Nrf2/HO-1 pathway induces oxidative stress and results in inflammation and apoptosis. Chemosphere 2022, 300, 134479. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Belkadi, A.; Zhou, X.; DiCicco-Bloom, E. Exposure to Deltamethrin at the NOAEL Causes ER Stress and Disruption of Hippocampal Neurogenesis in Adult Mice. Neurotoxicology 2022, 93, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Gao, J.; Xie, M.; Xiang, J.; Zuo, Z.; Tian, X.; Song, R.; Yuan, X.; Wu, Y.; Ou, D. Histopathology and transcriptome analysis reveals the gills injury and immunotoxicity in gibel carp following acute deltamethrin exposure. Ecotoxicol. Environ. Saf. 2022, 234, 113421. [Google Scholar] [CrossRef]
- Berkowitz, G.S.; Obel, J.; Deych, E.; Lapinski, R.; Godbold, J.; Liu, Z.; Landrigan, P.J.; Wolff, M.S. Exposure to indoor pesticides during pregnancy in a multiethnic, urban cohort. Environ. Health Perspect. 2003, 111, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; van den Anker, J. Ontogeny of Phase I Metabolism of Drugs. J. Clin. Pharmacol. 2019, 59 (Suppl. S1), S33–S41. [Google Scholar] [CrossRef] [PubMed]
- Pitzer, E.M.; Williams, M.T.; Vorhees, C.V. Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicol. Teratol. 2021, 87, 106983. [Google Scholar] [CrossRef]
- Hossain, M.M.; DiCicco-Bloom, E.; Richardson, J.R. Hippocampal ER Stress and Learning Deficits Following Repeated Pyrethroid Exposure. Toxicol. Sci. 2015, 143, 220–228. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sivaram, G.; Richardson, J.R. Regional Susceptibility to ER Stress and Protection by Salubrinal Following a Single Exposure to Deltamethrin. Toxicol. Sci. 2019, 167, 249–257. [Google Scholar] [CrossRef]
- Hossain, M.M.; Richardson, J.R. Nerve Growth Factor Protects Against Pyrethroid-Induced Endoplasmic Reticulum (ER) Stress in Primary Hippocampal Neurons. Toxicol. Sci. 2020, 174, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Toltin, A.C.; Gamba, L.M.; Molina, M.A. Deltamethrin-Evoked ER Stress Promotes Neuroinflammation in the Adult Mouse Hippocampus. Cells 2022, 11, 1961. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wu, H.; Gao, J.; Geng, X.; Xie, M.; Song, R.; Zheng, J.; Wu, Y.; Ou, D. Acute deltamethrin exposure induces oxidative stress, triggers endoplasmic reticulum stress, and impairs hypoxic resistance of crucian carp. Comp. Biochem. Phys. C 2023, 263, 109508. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, P.; Han, B.; Yang, Q.; Wang, X.; Li, J.; Deng, N.; Han, B.; Liao, Y.; Liu, Y.; et al. Deltamethrin induces apoptosis in cerebrum neurons of quail via promoting endoplasmic reticulum stress and mitochondrial dysfunction. Environ. Toxicol. 2022, 37, 2033–2043. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Lin, J.; Xu, Y.; Peng, Y.; Clark, J.M.; Gao, R.; Park, Y.; Sun, Q. Deltamethrin promotes adipogenesis via AMPK alpha and ER stress-mediated pathway in 3T3-L1 adipocytes and Caenorhabditis elegans. Food Chem. Toxicol. 2019, 134, 110791. [Google Scholar] [CrossRef]
- Eddleston, M.; Gunnell, D. Preventing suicide through pesticide regulation. Lancet Psychiatry 2020, 7, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Rother, H.A. Pesticide suicides: What more evidence is needed to ban highly hazardous pesticides. Lancet Glob. Health 2021, 9, e225–e226. [Google Scholar] [CrossRef]
- Arshad, M.; Siddiqa, M.; Rashid, S.; Hashmi, I.; Awan, M.A.; Ali, M.A. Biomonitoring of Toxic Effects of Pesticides in Occupationally Exposed Individuals. Saf. Health Work 2016, 7, 156–160. [Google Scholar] [CrossRef]
- Langie, S.A.S.; Lara, J.; Mathers, J.C. Early determinants of the ageing trajectory. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 613–626. [Google Scholar] [CrossRef]
- Shen, P.; Hsieh, T.-H.; Yue, Y.; Sun, Q.; Clark, J.M.; Park, Y. Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food Chem. Toxicol. 2017, 101, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.C.; Dillin, A. XBP-1 Is a Cell-Nonautonomous Regulator of Stress Resistance and Longevity. Cell 2013, 153, 1435–1447. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Alvear, D.; Zhou, Y.; Blais, A.; Tsikitis, M.; Lents, N.H.; Arias, C.; Lennon, C.J.; Kluger, Y.; Dynlacht, B.D. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 2007, 27, 53–66. [Google Scholar] [CrossRef]
- de Oliveira, S.R.; Caleffe, R.R.T.; Gigliolli, A.A.S.; Moreira, D.R.; Conte, H.; Ruvolo-Takasusuki, M.C.C. Developmental changes in larvae of the oriental latrine fly, Chrysomya megacephala, exposed to deltamethrin. Parasitol. Res. 2021, 120, 1–7. [Google Scholar] [CrossRef]
- Miao, W.; Jiang, Y.; Hong, Q.; Sheng, H.; Liu, P.; Huang, Y.; Cheng, J.; Pan, X.; Yu, Q.; Wu, Y.; et al. Systematic evaluation of the toxicological effects of deltamethrin exposure in zebrafish larvae. Environ. Toxicol. Pharmacol. 2023, 100, 104155. [Google Scholar] [CrossRef] [PubMed]
- Kung, T.S.; Richardson, J.R.; Cooper, K.R.; White, L.A. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish. Toxicol. Sci. 2015, 146, 235–243. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, Y.; Lao, Z.; Zhong, Y.; Zhang, K.; Zhao, S. Acute and chronic toxicity of deltamethrin, permethrin, and dihaloacetylated heterocyclic pyrethroids in mice. Pest Manag. Sci. 2020, 76, 4210–4221. [Google Scholar] [CrossRef]
- Guo, J.; Xu, J.; Zhang, J.; An, L. Alteration of mice cerebral cortex development after prenatal exposure to cypermethrin and deltamethrin. Toxicol. Lett. 2018, 287, 1–9. [Google Scholar] [CrossRef]
- Metcalf, M.G.; Higuchi-Sanabria, R.; Garcia, G.; Tsui, C.K.; Dillin, A. Beyond the cell factory: Homeostatic regulation of and by the UPRER. Sci. Adv. 2020, 6, eabb9614. [Google Scholar] [CrossRef]
- You, K.; Wang, L.; Chou, C.H.; Liu, K.; Nakata, T.; Jaiswal, A.; Yao, J.; Lefkovith, A.; Omar, A.; Perrigoue, J.G.; et al. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. Science 2021, 371, eabb6896. [Google Scholar] [CrossRef]
- Cai, Y.; Song, W.; Li, J.; Jing, Y.; Liang, C.; Zhang, L.; Zhang, X.; Zhang, W.; Liu, B.; An, Y.; et al. The landscape of aging. Science China Life Sci. 2022, 65, 2354–2454. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.M.; Gildea, H.K.; Dillin, A. Protein homeostasis from the outside in. Nat. Cell Biol. 2020, 22, 911–912. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef]
- Lewis, J.A.; Fleming, J.T. Chapter 1 Basic Culture Methods. In Caenorhabditis elegans: Modern Biologcial Analysis of an Organism; Methods in Cell Biology; Academic Press: Cambridge, MA, USA, 1995; pp. 3–29. [Google Scholar]
- Sutphin, G.L.; Kaeberlein, M. Measuring Caenorhabditis elegans life span on solid media. J. Vis. Exp. 2009, 27, e1152. [Google Scholar] [CrossRef]
- Cai Shi, D.; Long, C.; Vardeman, E.; Kennelly, E.J.; Lawton, M.A.; Di, R. Potential Anti-Alzheimer Properties of Mogrosides in Vitamin B12-Deficient Caenorhabditis elegans. Molecules 2023, 28, 1826. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Forward Primer | Reverse Primer |
---|---|---|
ire-1 | TCCTCAACCGCTCCATCAACAT | TCCTCAACCGCTCCATCAACAT |
hsp-4 | GAACAACCTACTCGTGCGTTGG | GAACAACCTACTCGTGCGTTGG |
xbp-1 total | GGACTTCTTCGGCTTCTGGAGT | GGACTTCTTCGGCTTCTGGAGT |
xbp-1 spliced | GGTGGATGGAGGGAGAAGATT | GGTGGATGGAGGGAGAAGATT |
crt-1 | GAAGTAATAGCCGAGGGAAGC | GAAGTAATAGCCGAGGGAAGC |
T14G8.3 | CACCTCCATCAACAACAACAT | CACCTCCATCAACAACAACAT |
act-1 | GTCATGGTCGGTATGGGACA | AGTGAGGAGGACTGGGTGCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Deng, Y.; Liu, L.; Zou, Z.; Jin, C.; Chen, Z.; Wang, S. High-Dose Deltamethrin Induces Developmental Toxicity in Caenorhabditis elegans via IRE-1. Molecules 2023, 28, 6303. https://doi.org/10.3390/molecules28176303
Chen C, Deng Y, Liu L, Zou Z, Jin C, Chen Z, Wang S. High-Dose Deltamethrin Induces Developmental Toxicity in Caenorhabditis elegans via IRE-1. Molecules. 2023; 28(17):6303. https://doi.org/10.3390/molecules28176303
Chicago/Turabian StyleChen, Chuhong, Ying Deng, Linyan Liu, Zhenyan Zou, Chenzhong Jin, Zhiyin Chen, and Shuanghui Wang. 2023. "High-Dose Deltamethrin Induces Developmental Toxicity in Caenorhabditis elegans via IRE-1" Molecules 28, no. 17: 6303. https://doi.org/10.3390/molecules28176303
APA StyleChen, C., Deng, Y., Liu, L., Zou, Z., Jin, C., Chen, Z., & Wang, S. (2023). High-Dose Deltamethrin Induces Developmental Toxicity in Caenorhabditis elegans via IRE-1. Molecules, 28(17), 6303. https://doi.org/10.3390/molecules28176303