Sensitive Detection of Various Forms of Hydrogen Sulfide via Highly Selective Naphthalimide-Based Fluorescent Probe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Optical Characterizations of NAP-Py-N3
2.2. Time-Dependent Response of NAP-Py-N3 toward H2S
2.3. Absorption and Fluorescence Titration
2.4. HPLC Titration
2.5. Sensing Mechanism Studies
2.6. Selectivity and Co-Interference Studies of the Probe
2.7. Detection of Gaseous H2S and Paper Test
2.8. Monitoring the Level of H2S Generated from Organic Donors
2.9. Influence of pH on the Fluorescence Response of NAP-Py-N3
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis of Probe NAP-Py-N3
3.2.1. Synthesis of N-Pyridinyl-4-Bromo-1,8-Naphthalimide (NAP-Py-Br) [42]
3.2.2. Synthesis of NAP-Py-N3
3.3. Synthesis of Fluorescent Amino Derivative Standard NAP-Py-NH2
3.3.1. Synthesis of NAP-Py-NO2
3.3.2. Synthesis of NAP-Py-NH2
3.4. General Procedure for Spectroscopic and HPLC Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cuiling, S.; Huayu, W.; Tianjun, N.; Kaiwen, C.; Chunpo, G. A dicyanoisophorone-based near-infrared fluorescent probe with fast detection for H2S in living cells and zebrafish. J. Lumin. 2022, 243, 118669. [Google Scholar] [CrossRef]
- Levinn, C.; Pluth, M. Direct comparison of triggering motifs on chemiluminescent probes for hydrogen sulfide detection in water. Sens. Actuators B Chem. 2021, 329, 129235. [Google Scholar] [CrossRef]
- Li, J.; Yin, C.; Zhang, Y.; Yue, Y.; Chao, J.; Huo, F. High selective distinguishable detection GSH and H2S based on steric configuration of molecular in Vivo. Dye. Pigment. 2020, 172, 107826. [Google Scholar] [CrossRef]
- Rubright, S.; Pearce, L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L. A novel “turn-on” fluorescent probe based on hydroxy functionalized naphthalimide as a logic platform for visual recognition of H2S in environment and living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 235, 118331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; He, F.; Dai, Y.; Ma, F.; Qi, Z. A single fluorescent probe for one- and two-photon imaging hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Dye. Pigment. 2020, 172, 10781. [Google Scholar] [CrossRef]
- Saha, T.; Kand, D.; Talukdar, P. Performance comparison of two cascade reaction models in fluorescence off–on detection of hydrogen sulfide. RSC Adv. 2015, 5, 1438. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, X.; Yang, B.; Liu, B. Dual sites fluorescence probe for hydrogen sulfide: AIEE activity and supramolecular assembly with β-cyclodextrin. Sens. Actuators B Chem. 2019, 282, 743–749. [Google Scholar] [CrossRef]
- Qiao, Z.; Zhang, H.; Wang, K.; Zhang, Y. A highly sensitive and responsive fluorescent probe based on 6-azidechroman dye for detection and imaging of hydrogen sulfide in cells. Talanta 2019, 195, 850–856. [Google Scholar] [CrossRef]
- Suzuki, Y.; Saito, J.; Munakata, M.; Shibata, Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol. Int. 2021, 70, 181–189. [Google Scholar] [CrossRef]
- Świerczyńska, M.; Słowiński, D.; Michalski, R.; Romański, J.; Podsiadły, R. A thiomorpholine-based fluorescent probe for the far-red hypochlorous acid monitoring. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 289, 122193. [Google Scholar] [CrossRef]
- Liu, T.; Cui, X.; Sun, W.; Miao, J.; Zhao, B.; Lin, Z. Two simple but effective turn-on benzothiazole-based fluorescent probes for detecting hydrogen sulfide in real water samples and HeLa cells. Anal. Chim. Acta 2022, 1189, 339225. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Q.; Wang, H.; Lan, Y.; Dong, S. A quaternary ammonium modified fluorescent probe for hydrogen sulfide detection in living cells. J. Photochem. Photobiol. A 2020, 389, 112213. [Google Scholar] [CrossRef]
- Khattak, S.; Rauf, M.; Khan, N.; Zhang, Q.; Chen, H.; Muhammad, P.; Ansari, M.; Alomary, M.; Jahangir, M.; Zhang, C.; et al. Hydrogen sulfide biology and its role in cancer. Molecules 2022, 27, 3389. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Gopala, L.; Kang, C.; Lee, M. Hydrogen sulfide-activatable fluorescence turn-on azide-containing naphthalimide derivative. Bull. Korean Chem. Soc. 2022, 43, 1231–1235. [Google Scholar] [CrossRef]
- Fu, D.; Zhi, W.; Lv, L.; Luo, Y.; Xiong, X.; Kang, X.; Hou, W.; Yan, J.; Zhao, H.; Zheng, L. Construction of ratiometric hydrogen sulfide probe with two reaction sites and its applications in solution and in live cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 224, 117391. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Wondimu, T.; Ross, B.; Wang, R. Hydrogen sulfide and asthma. Exp. Physiol. 2011, 96, 847–852. [Google Scholar] [CrossRef]
- Mo, W.; Shen, J.; Huang, Z.; Zhang, Y.; Zhang, Z. Acute myocardial injury following hydrogen sulfide poisoning. Toxicol. Ind. Health 2020, 36, 750–758. [Google Scholar] [CrossRef]
- Chen, X.; Mei, Y.; Li, H.; Song, Q. Rapid and sensitive detection of H2S by a 4-phenylselenium coumarin as a dual-active-site fluorescent probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 354, 131202. [Google Scholar] [CrossRef]
- Du, Y.; Wang, H.; Zhang, T.; Wen, W.; Li, Z.; Bi, M.; Liu, J. An ESIPT-based fluorescent probe with fast-response for detection of hydrogen sulfide in mitochondria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 265, 120390. [Google Scholar] [CrossRef]
- Zheng, Y.; Chai, Z.; Tang, W.; Yan, S.; Dai, F.; Zhou, B. A multi-signal mitochondria-targetable fluorescent probe for simultaneously discriminating Cys/Hcy/H2S, GSH, and SO2 and visualizing the endogenous generation of SO2 in living cells. Sens. Actuators B Chem. 2020, 330, 129343. [Google Scholar] [CrossRef]
- Jia, T.; Zhang, Y.; Hou, T.; Niu, H.; Wang, S. H2S-based fluorescent imaging for pathophysiological processes. Front. Chem. 2023, 11, 1126309. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B.; Venkateswarulu, M.; Gaur, P.; Sharma, Y.; Sinha, S.; Ghosh, S. Triggered emission for rapid detection of hydrogen sulfide chaperoned by large Stokes shift. J. Photochem. Photobiol. A. 2019, 317, 264–270. [Google Scholar] [CrossRef]
- Lin, V.; Lippert, A.; Chapter, C. Four-azide-based fluorescent probes: Imaging hydrogen sulfide in living systems. Meth. Enzymol. 2015, 554, 63–80. [Google Scholar]
- Sun, Y.; Li, C.; Feng, X.; Wang, C.; Wang, N.; Zhu, J.; Wang, T.; Cui, X. Si-coumarin-based fluorescent probes for ultrafast monitoring H2S in vivo. Dye. Pigment. 2021, 186, 109059. [Google Scholar] [CrossRef]
- Lippert, A.; New, E.; Chang, C. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J. Am. Chem. Soc. 2011, 133, 10078–10080. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, X.; Zhao, H.; Zhang, G.; Jiang, D.; Xue, X.; Zhang, J. A near-infrared fluorescent probe based on SNAr reaction for H2S/GSH detection in living cells and zebrafish. Dye. Pigment. 2019, 163, 183–189. [Google Scholar] [CrossRef]
- Niu, H.; Ni, B.; Chen, K.; Yang, X.; Cao, W.; Yea, Y.; Zhao, Y. A long-wavelength-emitting fluorescent probe for simultaneous discrimination of H2S/Cys/GSH and its bio-imaging applications. Talanta 2019, 196, 145–152. [Google Scholar] [CrossRef]
- Tang, Z.; Song, B.; Ma, H.; Shi, Y.; Yuan, J. A ratiometric time-gated luminescence probe for hydrogen sulfide based on copper (II)-coupled lanthanide complexes. Anal. Chim. Acta 2019, 1049, 152–160. [Google Scholar] [CrossRef]
- Mirra, S.; Milione, S.; Strianese, M.; Pellecchia, C. A Copper Porphyrin for Sensing H2S in Aqueous Solution via a “Coordinative-Based” Approach. Eur. J. Inorg. Chem. 2015, 13, 2272–2276. [Google Scholar] [CrossRef]
- Mirra, S.; Strianese, M.; Pellecchia, C. A Cyclam-Based Fluorescent Ligand as a Molecular Beacon for Cu2+ and H2S Detection. Eur. J. Inorg. Chem. 2017, 33, 3900–3907. [Google Scholar]
- Bailey, S.; Pluth, M. Chemiluminescent Detection of Enzymatically-Produced Hydrogen Sulfide: Substrate Hydrogen Bonding Influences Selectivity for H2S over Biological Thiols. J. Am. Chem. Soc. 2013, 135, 16697–16704. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Zhou, E.; Gong, S.; Feng, G. A red to near-infrared fluorescent probe featuring a super large Stokes shift for light-up detection of endogenous H2S. Dye. Pigment. 2019, 160, 787–793. [Google Scholar] [CrossRef]
- Szabo, C.; Papapetropoulos, A. International union of basic and clinical pharmacology. CII: Pharmacological modulation of H2S levels: H2S Donors and H2S biosynthesis inhibitors. Pharmacol Rev. 2017, 69, 497–564. [Google Scholar] [CrossRef] [PubMed]
- Corvino, A.; Frecentese, F.; Magli, E.; Perissutti, E.; Santagada, V.; Scognamiglio, A.; Caliendo, G.; Fiorino, F.; Severino, B. Trends in H2S-donors chemistry and their effects in cardiovascular diseases. Antioxidants 2021, 10, F429. [Google Scholar] [CrossRef] [PubMed]
- Abramavicius, S.; Petersen, A.; Renaltan, N.; Prat-Duran, J.; Torregrossa, R.; Stankevicius, E.; Whiteman, M.; Simonsen, U. GYY4137 and sodium hydrogen sulfide relaxations are inhibited by L-Cysteine and KV7 channel blockers in rat small mesenteric arteries. Front. Pharmacol. 2021, 2, 613989. [Google Scholar] [CrossRef]
- Panchenko, P.; Fedorov, Y.; Fedorova, O.; Jonusauskas, G. Comparative analysis of the PET and ICT sensor properties of 1,8-naphthalimides containing aza-15-crown-5 ether moiety. Dye. Pigment. 2013, 98, 347–357. [Google Scholar] [CrossRef]
- Liang, D.; Wu, H.; Wong, M.; Huang, D. Diallyl trisulfide is a fast H2S donor, but diallyl disulfide is a slow one: The reaction pathways and intermediates of glutathione with polysulfides. Org. Lett. 2015, 17, 4196–4199. [Google Scholar] [CrossRef]
- Lee, Z.; Zhou, J.; Chen, C.; Zhao, Y.; Tan, C.; Li, L.; Moore, P.; Deng, L. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti- cancer effects in vitro and in vivo. PLoS ONE 2011, 6, e21077. [Google Scholar] [CrossRef]
- Umberger, J.; LaMer, V. The kinetics of diffusion controlled molecular and ionic reactions in solution as determined by measurements of the quenching of fluorescence. J. Am. Chem. Soc. 1945, 67, 1099–1109. [Google Scholar] [CrossRef]
- Słowiński, D.; Świerczyńska, M.; Grzelakowska, A.; Szala, M.; Kolińska, J.; Romański, J.; Podsiadły, R. Hymecromone naph-thoquinone ethers as probes for hydrogen sulfide detection. Dye. Pigment. 2021, 196, 109765. [Google Scholar] [CrossRef]
- Xia, T.; Wang, L.; Qu, Y.; Rui, Y.; Cao, J.; Hu, Y.; Yang, J.; Wua, J.; Xu, J. A thermoresponsive fluorescent rotor based on a hinged naphthalimide for a viscometer and a viscosity-related thermometer. J. Mater. Chem. C 2016, 4, 5696–5701. [Google Scholar] [CrossRef]
- Ma, C.; Wei, C.; Li, X.; Zheng, X.; Chen, B.; Wang, M.; Zhang, P.; Li, X. A mitochondria-targeted dual-reactable fluorescent probe for fast detection of H2S in living cells. Dye. Pigment. 2019, 162, 624–631. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Hong, M.; Xu, Y.; Wang, S.; Liu, Y.; Qian, Y.; Zhao, J. A colorimetric and ratiometric fluorescent probe for the imaging of endogenous hydrogen sulphide in living cells and sulphide determination in mouse hippocampus. Org. Biomol. Chem. 2014, 12, 5115. [Google Scholar] [CrossRef]
- Wei, C.; Wang, R.; Wei, L.; Cheng, L.; Li, Z.; Xi, Z.; Yi, L. O-fluorination of aromatic azides yields improved azido-based fluorescent probes for hydrogen sulfide: Synthesis, spectra, and bioimaging. Chem. Asian J. 2014, 9, 3586–3592. [Google Scholar] [CrossRef]
- Feng, W.; Mao, Z.; Liu, L.; Liu, Z. A ratiometric two-photon fluorescent probe for imaging hydrogen sulfide in lysosomes. Talanta 2017, 167, 134–142. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, X.; Zhong, Y.; Guo, Y.; Li, Z.; Li, H. A ratiometric fluorescent probe for gasotransmitter hydrogen sulfide based on a coumarin-benzopyrylium platform. Anal. Chim. Acta 2015, 859, 59–65. [Google Scholar] [CrossRef]
- Hammers, M.; Taormina, M.; Cerda, M.; Montoya, L.; Seidenkranz, D.; Parthasarathy, R.; Pluth, M. Bright fluorescent probe for H2S enables analyte-responsive, 3D imaging in live zebrafishu light sheet fluorescence microscopy. J. Am. Chem. Soc. 2015, 137, 10216–10223. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, W. A new fluorescent probe for gasotransmitter H2S: High sensitivity, excellent selectivity, and a significant fluorescence off–on response. Chem. Commun. 2014, 50, 4214–4217. [Google Scholar] [CrossRef]
- Fang, Q.; Xiong, H.; Yang, L.; Wang, B.; Song, X. An instantaneous fluorescent probe for detecting hydrogen sulfide in biological systems. New J. Chem. 2019, 43, 13594–13599. [Google Scholar] [CrossRef]
Compound | λmax (nm) | ε (M−1cm−1) | λexc (nm) | λem (nm) | ϕem (%) | Stokes Shift (nm) |
---|---|---|---|---|---|---|
NAP-Py-N3 | 380 | 16,700 | 435 | 553 | 0.32 | 173 |
NAP-Py-NH2 | 435 | 11,500 | 435 | 553 | 36.1 | 118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słowiński, D.; Świerczyńska, M.; Romański, J.; Podsiadły, R. Sensitive Detection of Various Forms of Hydrogen Sulfide via Highly Selective Naphthalimide-Based Fluorescent Probe. Molecules 2023, 28, 6299. https://doi.org/10.3390/molecules28176299
Słowiński D, Świerczyńska M, Romański J, Podsiadły R. Sensitive Detection of Various Forms of Hydrogen Sulfide via Highly Selective Naphthalimide-Based Fluorescent Probe. Molecules. 2023; 28(17):6299. https://doi.org/10.3390/molecules28176299
Chicago/Turabian StyleSłowiński, Daniel, Małgorzata Świerczyńska, Jarosław Romański, and Radosław Podsiadły. 2023. "Sensitive Detection of Various Forms of Hydrogen Sulfide via Highly Selective Naphthalimide-Based Fluorescent Probe" Molecules 28, no. 17: 6299. https://doi.org/10.3390/molecules28176299
APA StyleSłowiński, D., Świerczyńska, M., Romański, J., & Podsiadły, R. (2023). Sensitive Detection of Various Forms of Hydrogen Sulfide via Highly Selective Naphthalimide-Based Fluorescent Probe. Molecules, 28(17), 6299. https://doi.org/10.3390/molecules28176299