Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga Ulva lactuca: Insight into the Characterizations, Antibacterial Activity, and Anti-Biofilm Formation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterisation of Ul/Ag2O-NPS, Ul/Ag/Cu-NCMs, and Ul/CuO-NPs
2.1.1. Fourier Transform Infrared (FTIR) of UL/Ag2 O-NPS, Ul/Ag/Cu-NCMs and Ul/CuO-NPs
2.1.2. Scanning and Transmission Electron Microscope (SEM and TEM) of UL/Ag2 O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs Derived from U. lactuca
2.1.3. Energy Dispersive X-ray (EDX) of UL/Ag2 O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs Derived from U. lactuca
2.1.4. X-ray Diffraction (XRD) of Ul/Ag2 O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs Derived from U. lactuca
2.1.5. Zeta Potential of UL/Ag2 O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs Derived from U. lactuca
2.2. Antibacterial Activity of Synthesized UL/Ag2 O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs Derived from U. lactuca
2.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assays
2.4. Biofilm Formation Inhibition Assay
3. Material and Methods
3.1. Extraction of Algae
3.2. Synthesis of Silver/Copper Nanocomposites (Ul/Ag/Cu-NCMs) by U. lactuca Extract
3.3. Biosynthesis of Silver Nanoparticles Using Alga Aqueous Extract
3.4. Biosynthesis Copper Oxide Nanoparticles (Ul/CuO-NPs) by U. lactuca Extract
3.5. Structural and Morphological Characterization
3.6. Antibacterial Assay
3.7. Minimum Inhibitory Concentration (MIC) Assays
3.8. Minimum Bactericidal Concentration (MBC) Assays
3.9. Biofilm Formation Inhibition Assay
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Element Res. 2020, 199, 344–370. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, K.; Gupta, V.K.; Verma, P. Microbial cell factories a new dimension in bio-nanotechnology: Exploring the robustness of nature. Crit. Rev. Microbiol. 2021, 48, 397–427. [Google Scholar] [CrossRef]
- Prasad, R. Synthesis of Silver Nanoparticles in Photosynthetic Plants. J. Nanopart. 2014, 2014, 963961. [Google Scholar] [CrossRef]
- Akbar, S.; Tauseef, I.; Subhan, F.; Sultana, N.; Khan, I.; Ahmed, U.; Haleem, K.S. An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorg. Nano-Metal Chem. 2020, 50, 257–271. [Google Scholar] [CrossRef]
- Purohit, J.; Chattopadhyay, A.; Singh, N.K. Green Synthesis of Microbial Nanoparticle: Approaches to Application. In Microbial Nanobionics; Basic Research and Applications; Springer: Berlin/Heidelberg, Germany, 2019; Volume 2, pp. 35–60. [Google Scholar] [CrossRef]
- Manivasagan, P.; Oh, J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int. J. Biol. Macromol. 2016, 82, 315–327. [Google Scholar] [CrossRef]
- Negreanu-Pirjol, B.-S.; Negreanu-Pirjol, T.; Popoviciu, D.R.; Anton, R.-E.; Prelipcean, A.-M. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022, 14, 1781. [Google Scholar] [CrossRef]
- Dahoumane, S.A.; Mechouet, M.; Wijesekera, K.; Filipe, C.D.; Sicard, C.; Bazylinski, D.A.; Jeffryes, C. Algae-mediated biosyn-thesis of inorganic nanomaterials as a promising route in nanobiotechnology—A review. Green Chem. 2017, 19, 552–587. [Google Scholar] [CrossRef]
- Soni, R.A.; Rizwan, M.A.; Singh, S. Opportunities and potential of green chemistry in nanotechnology. Nanotechnol. Environ. Eng. 2022, 7, 661–673. [Google Scholar] [CrossRef]
- Asmathunisha, N.; Kathiresan, K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surfaces B Biointerfaces 2013, 103, 283–287. [Google Scholar] [CrossRef]
- González-Ballesteros, N.; Prado-López, S.; Rodríguez-González, J.B.; Lastra, M.; Rodríguez-Argüelles, M. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids Surf. B Biointerfaces 2017, 153, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, R.A.; Hussein, M.H.; El-Naggar, N.E.A.; Karim-Eldeen, M.A.; Alamer, K.H.; Saleh, M.A.; El-Azeem, R.M.A. Promoting effect of soluble polysaccharides extracted from Ulva spp. on Zea mays L. growth. Molecules 2022, 27, 1394. [Google Scholar] [CrossRef]
- Dogmaz, S.; Cavas, L. Biohydrogen production via green silver nanoparticles synthesized through biomass of Ulva lactuca bloom. Bioresour. Technol. 2023, 379, 129028. [Google Scholar] [CrossRef]
- Solanki, A.; Patel, G.; Hakim, M.; Patel, I. Fabrication of silver nanoparticles from marine green algal species: Ulva lactuca L. and Ulva conglobata L. and their antibacterial activity. Med. Plants-Int. J. Phytomed. Rel. Ind. 2023, 15, 194–201. [Google Scholar] [CrossRef]
- González-Ballesteros, N.; Rodríguez-Argüelles, M.C.; Prado-López, S.; Lastra, M.; Grimaldi, M.; Cavazza, A.; Bigi, F. Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. Mater. Sci. Eng. C 2019, 97, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Twardowski, T.E. Introduction to Nanocomposite Materials: Properties, Processing, Characterization; DEStech Publications, Inc.: Lancaster, PA, USA, 2007. [Google Scholar]
- Mohapatra, L.; Bhattamishra, S.K.; Panigrahy, R.; Parida, S.; Pati, P. Antidiabetic Effect of Sargassum wightii and Ulva fasciata in High fat diet and Multi Low Dose Streptozotocin Induced Type 2 Diabetic Mice. Pharm. Biosci. J. 2016, 4, 13–23. [Google Scholar] [CrossRef]
- Din, S.H.; Shah, M.A.; Sheikh, N.A.; Butt, M.M. Nano-composites and their applications: A review. Charact. Appl. Nanomater. 2020, 3, 40–48. [Google Scholar] [CrossRef]
- Ashrafi, M.; Bayat, M.; Mortazavi, P.; Hashemi, S.J.; Meimandipour, A. Antimicrobial effect of chitosan–silver–copper nano-composite on Candida albicans. J. Nanostruct. Chem. 2020, 10, 87–95. [Google Scholar] [CrossRef]
- Mujeeb, A.A.; Khan, N.A.; Jamal, F.; Badre Alam, K.F.; Saeed, H.; Kazmi, S.; Alshameri, A.W.F.; Kashif, M.; Ghazi, I.; Owais, M. Olax scandens mediated biogenic synthesis of Ag-Cu nanocomposites: Potential against inhibition of drug-resistant microbes. Front. Chem. 2020, 8, 103. [Google Scholar] [CrossRef]
- Doolotkeldieva, T.; Bobusheva, S.; Zhasnakunov, Z.; Satybaldiev, A. Biological Activity of Ag and Cu Monometallic Nanoparticles and Ag-Cu Bimetallic Nanocomposites against Plant Pathogens and Seeds. J. Nanomater. 2022, 2022, 1190280. [Google Scholar] [CrossRef]
- Nivetha, A.; Sakthivel, C.; Hemalatha, J.; Senthamil, C.; Prabha, I. Fabrication of a bifunctionalyzed Calotropis gigantea inspired Ag–Cu–Co trimetal oxide for the remediation of methylene blue, and its larvicidal and antibacterial applications. New J. Chem. 2023, 47, 12375–12392. [Google Scholar] [CrossRef]
- Sahin, F.; Camdal, A.; Demirel Sahin, G.; Ceylan, A.; Ruzi, M.; Onses, M.S. Disintegration and Machine-Learning-Assisted Identification of Bacteria on Antimicrobial and Plasmonic Ag–Cu x O Nanostructures. ACS Appl. Mater. Interfaces 2023, 15, 11563–11574. [Google Scholar] [CrossRef] [PubMed]
- Baqir, Y.; Tunio, M.T.; Ilyas, S.Z.; Agathopoulos, S.; Mufti, H.; Jalil, A.; Hassan, A. Green synthesis and first-principles calculations of a highly efficient antibacterial agent: CuO/Ag nanocomposites. Chem. Pap. 2022, 77, 2459–2467. [Google Scholar] [CrossRef]
- Belay, A.N.; Mihretu, M.E.; Getnet, T.G. Synthesis, characterization, and antibacterial activities of Cu-Ag bimetallic oxide nanocomposites using Eichhornia crassipes aqueous leaf extract. J. Experim. Nanosci. 2023, 18, 2202911. [Google Scholar] [CrossRef]
- Amer, M.; Awwad, A. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem. Int. 2021, 7, 1–8. [Google Scholar]
- Sharma, R.; Tripathi, A. Green synthesis of nanoparticles and its key applications in various sectors. Mater. Today Proc. 2021, 48, 1626–1632. [Google Scholar] [CrossRef]
- Krithiga, N.; Jayachitra, A.; Rajalakshmi, A. Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. Indian J. Nat. Sci. 2013, 1, 6–15. [Google Scholar]
- Subhankari, I.; Nayak, P. Antimicrobial activity of copper nanoparticles synthesised by ginger (Zingiber officinale) extract. World J. Nano Sci. Technol. 2013, 2, 10–13. [Google Scholar]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Yu, O.Y.; Lung, C.Y.K.; Chu, C.H. Application of Copper Nanoparticles in Dentistry. Nanomaterials 2022, 12, 805. [Google Scholar] [CrossRef]
- Perelshtein, I.; Applerot, G.; Perkas, N.; Wehrschuetz-Sigl, E.; Hasmann, A.; Gübitz, G.; Gedanken, A. CuO–cotton nanocom-posite: Formation, morphology, and antibacterial activity. Surf. Coat. Technol. 2009, 204, 54–57. [Google Scholar] [CrossRef]
- Hassan, M.S.; Amna, T.; Yang, O.-B.; El-Newehy, M.H.; Al-Deyab, S.S.; Khil, M.-S. Smart copper oxide nanocrystals: Synthesis, characterization, electrochemical and potent antibacterial activity. Coll. Surf. B Biointerfaces 2012, 97, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Černík, M.; Padil, V.V.T. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013, 8, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photo-catalysts. Surf. Coat. Technol. 2010, 205, 219–223. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, H.; Bouafia, A.; Meneceur, S.; Laouini, S.E.; Belkhalfa, H.; Lebbihi, R.; Selmi, B. Secondary Metabolite from Nigella Sativa Seeds Mediated Synthesis of Silver Oxide Nanoparticles for Efficient Antioxidant and Antibacterial Activity. J. Inorg. Organomet. Polym. Mater. 2022, 32, 4223–4236. [Google Scholar] [CrossRef]
- Watanabe, T.; Ebata, T.; Tanabe, S.; Mikami, N. Size-selected vibrational spectra of phenol-(H2O) n (n = 1–4) clusters observed by IR–UV double resonance and stimulated Raman-UV double resonance spectroscopies. J. Chem. Phys. 1996, 105, 408–419. [Google Scholar] [CrossRef]
- Mossoba, M.M.; Al-Khaldi, S.F.; Kirkwood, J.; Fry, F.S.; Sedman, J.; Ismail, A.A. Printing microarrays of bacteria for identi-fication by infrared microspectroscopy. Vibrat. Spectr. 2005, 38, 229–235. [Google Scholar] [CrossRef]
- Lingegowda, D.C.; Kumar, J.K.; Prasad, A.D.; Zarei, M.; Gopal, S. FTIR spectroscopic studies on cleome gynandra-Comparative analysis of functional group before and after extraction. Rom. J. Biophys. 2012, 22, 137–143. [Google Scholar]
- Popova, A.; Christov, M.; Raicheva, S.; Sokolova, E. Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion. Corros. Sci. 2004, 46, 1333–1350. [Google Scholar] [CrossRef]
- Munir, M.; Shahid, M.; Munir, H.; Javaid, S.; Sharif, S.; El-Ghorab, A.; El-Ghorab, A. Xanthan gum biochemical profiling, anti-oxidant, antibacterial, biofilm inhibition and mutagenic potential. Curr. Sci. 2017, 114, 1903–1913. [Google Scholar]
- Rangel-Vazquez, N.A.; Sánchez-López, C.; Felix, F.R. Spectroscopy analyses of polyurethane/polyaniline IPN using computa-tional simulation (Amber, MM+ and PM3 method). Polímeros 2014, 24, 453–463. [Google Scholar] [CrossRef]
- Lima, C.A.; Goulart, V.P.; Correa, L.; Pereira, T.M.; Zezell, D.M. ATR-FTIR spec- troscopy for the assessment of biochemical changes in skin due to cutaneous squamous cell carcinoma. Int. J. Mol. Sci. 2015, 16, 6621–6630. [Google Scholar] [CrossRef] [PubMed]
- Samargandi, D.; Zhang, X.; Liu, F.; Tian, S. Fourier Transform Infrared (FT-IR) spectroscopy for discrimination of fenugreek seeds from different producing areas. J. Chem. Pharm. Res. 2014, 6, 19–24. [Google Scholar]
- Devi, T.R.; Gayathri, S. FTIR and FT-Raman spectral analysis of paclitaxel drugs. Int. J. Pharm. Sci. Rev. Res. 2010, 2, 106–110. [Google Scholar]
- Verdonck, M.; Denayer, A.; Delvaux, B.; Garaud, S.; De Wind, R.; Desmedt, C.; Sotiriou, C.; Willard-Gallo, K.; Goormaghtigh, E. Characterization of human breast cancer tissues by infrared imaging. Analyst 2015, 141, 606–619. [Google Scholar] [CrossRef]
- Dovbeshko, G.I.; Gridina, N.Y.; Kruglova, E.B.; Pashchuk, O.P. FTIR spectroscopy studies of nucleic acid damage. Talanta 2000, 53, 233–246. [Google Scholar] [CrossRef]
- Dukor, R.K. Vibrational Spectroscopy in the Detection of Cancer. In Handbook of Vibrational Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Wood, B.R.; Quinn, M.A.; Tait, B.; Ashdown, M.; Hislop, T.; Romeo, M.; McNaughton, D. FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Biospectroscopy 1998, 4, 75–91. [Google Scholar] [CrossRef]
- Gilardoni, S.; Liu, S.; Takahama, S.; Russell, L.M.; Allan, J.D.; Steinbrecher, R.; Jimenez, J.L.; De Carlo, P.F.; Dunlea, E.J.; Baumgardner, D. Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmos. Meas. Tech. 2009, 9, 5417–5432. [Google Scholar] [CrossRef]
- Das, D.D.; Schnitzer, M.I.; Monreal, C.M.; Mayer, P. Chemical composition of acid–base fractions separated from bio-oil derived by fast pyrolysis of chicken manure. Bioresour. Technol. 2009, 100, 6524–6532. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Ding, J.; Wang, S.; Liu, Q.; Qing, S. Raman spectroscopy and fluorescence for the detection of liver cancer and abnormal liver tissue. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 212–215. [Google Scholar]
- Ahmed, Y.M.Z.; El-Sheikh, S.M.; Zaki, Z.I. Changes in hydroxyapatite powder properties via heat treatment. Bull. Mater. Sci. 2015, 38, 1807–1819. [Google Scholar] [CrossRef]
- El Bialy, B.E.; Hamouda, R.A.; Abd Eldaim, M.A.; El Ballal, S.S.; Heikal, H.S.; Khalifa, H.K.; Hozzein, W.N. Comparative toxi-cological effects of biologically and chemically synthesized copper oxide nanoparticles on mice. Int. J. Nano-Med. 2020, 15, 3827–3842. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Khan, S.A.; Qayum, M.; Khan, M.A.; Anwar, Y.; Akhtar, K.; Asiri, A.M.; Khan, S.B. Green synthesis of antibacterial bimetallic Ag–Cu nanoparticles for catalytic reduction of persistent organic pollutants. J. Mater. Sci. Mater. Electron. 2018, 29, 20840–20855. [Google Scholar] [CrossRef]
- Esmaeil Lashgarian, H.; Karkhane, M.; Kamil Alhameedawi, A.; Marzban, A. Phyco-Mediated Synthesis of Ag/AgCl Nano-particles Using Ethanol Extract of a Marine Green Algae, Ulva fasciata Delile with Biological Activity. Biointerface Res. Appl. Chem. 2021, 11, 14545–14554. [Google Scholar]
- Govindaraju, K.; Kiruthiga, V.; Kumar, V.G.; Singaravelu, G. Extracellular Synthesis of Silver Nanoparticles by a Marine Alga, Sargassum Wightii Grevilli and Their Antibacterial Effects. J. Nanosci. Nanotechnol. 2009, 9, 5497–5501. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Kannan, C.; Annadurai, G. Synthesis and characterizationof antimicrobial silver nanoparticles using marine brown seaweed Padina tetrastromatica. Drug Invent Today 2012, 4, 511–513. [Google Scholar]
- Kumar, P.; Selvi, S.S.; Govindaraju, M. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl. Nanosci. 2013, 3, 495–500. [Google Scholar] [CrossRef]
- Varghese, B.; Kurian, M.; Krishna, S.; Athira, T. Biochemical synthesis of copper nanoparticles using Zingiber officinalis and Curcuma longa: Characterization and antibacterial activity study. Mater. Today Proc. 2020, 25, 302–306. [Google Scholar] [CrossRef]
- Iliger, K.S.; Sofi, T.A.; Bhat, N.A.; Ahanger, F.A.; Sekhar, J.C.; Elhendi, A.Z.; Al-Huqail, A.A.; Khan, F. Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J. Biol. Sci. 2020, 28, 1477–1486. [Google Scholar] [CrossRef]
- Ijaz, F.; Shahid, S.; Khan, S.A.; Ahmad, W.; Zaman, S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop. J. Pharm. Res. 2017, 16, 743. [Google Scholar] [CrossRef]
- Ramzan, M.; Obodo, R.; Mukhtar, S.; Ilyas, S.; Aziz, F.; Thovhogi, N. Green synthesis of copper oxide nanoparticles using Cedrus deodara aqueous extract for antibacterial activity. Mater. Today Proc. 2020, 36, 576–581. [Google Scholar] [CrossRef]
- Amaliyah, S.; Pangesti, D.P.; Masruri, M.; Sabarudin, A.; Sumitro, S.B. Green synthesis and characterization of copper nano-particles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon 2020, 6, e04636. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.E.D.; Al-Qahtani, K.M.; Alflaij, S.O.; Al-Qahtani, S.F.; Alsamhan, F.A. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci. Rep. 2021, 11, 12547. [Google Scholar] [CrossRef] [PubMed]
- Pol, V.G.; Grisaru, H.; Gedanken, A. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation. Langmuir 2005, 21, 3635–3640. [Google Scholar] [CrossRef] [PubMed]
- López-Ubaldo, F.; Sánchez-Mendieta, V.; Olea-Mejía, O.F.; María, S.G.-P.; Luckie, R.A.M. Biosynthesis of Ag/Cu bimetallic nanoparticles using Ricinus communis and their antibacterial and antifungical activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11, 025018. [Google Scholar] [CrossRef]
- Rocha-Rocha, O.; Cortez-Valadez, M.; Hernández-Martínez, A.R.; Gámez-Corrales, R.; Alvarez, R.A.B.; Britto-Hurtado, R.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Pérez-Rodríguez, A.; Arizpe-Chávez, H.; et al. Green Synthesis of Ag-Cu Nanoalloys Using Opuntia ficus-indica. J. Electron. Mater. 2016, 46, 802–807. [Google Scholar] [CrossRef]
- Mohamad, N.; Arham, N.; Junaidah, J.; Hadi, A.; Idris, S. Green Synthesis of Ag, Cu and AgCu Nanoparticles using Palm Leaves Extract as the Reducing and Stabilizing Agents. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012063. [Google Scholar]
- Ginting, B.; Maulana, I.; Karnila, I. Biosynthesis Copper Nanoparticles using Blumea balsamifera Leaf Extracts: Characteri-zation of its Antioxidant and Cytotoxicity Activities. Surf. Interfaces 2020, 21, 100799. [Google Scholar] [CrossRef]
- Abdellatif, K.F.; Abdelfattah, R.H.; El-Ansary, M.S.M. Green Nanoparticles Engineering on Root-knot Nematode Infecting Eggplants and Their Effect on Plant DNA Modification. Iran. J. Biotechnol. 2016, 14, 250–259. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Yousuf, W.E.; Abdeen, E.E.; Mohamed, A. Biological and chemical synthesis of silver nanoparticles: Charac-terization, MIC and antibacterial activity against pathogenic bacteria. J. Chem. Pharm. Res. 2019, 11, 1–12. [Google Scholar]
- Abo-Elmagd, R.A.; Hamouda, R.A.; Hussein, M.H. Phycotoxicity and catalytic reduction activity of green synthesized Oscil-latoria gelatin-capped silver nanoparticles. Sci. Rep. 2022, 12, 20378. [Google Scholar] [CrossRef]
- Aboeita, N.M.; Fahmy, S.A.; El-Sayed, M.M.H.; Azzazy, H.M.E.-S.; Shoeib, T. Enhanced Anticancer Activity of Nedaplatin Loaded onto Copper Nanoparticles Synthesized Using Red Algae. Pharmaceutics 2022, 14, 418. [Google Scholar] [CrossRef]
- Marzban, A.; Mirzaei, S.Z.; Karkhane, M.; Ghotekar, S.K.; Danesh, A. Biogenesis of copper nanoparticles assisted with seaweed polysaccharide with antibacterial and antibiofilm properties against methicillin-resistant Staphylococcus aureus. J. Drug Deliv. Sci. Technol. 2022, 74, 103499. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Elgamily, H.; Safy, R.; Makharita, R. Influence of Medicinal Plant Extracts on the Growth of Oral Pathogens Streptococcus Mutans and Lactobacillus Acidophilus: An In-Vitro Study. Open Access Maced. J. Med. Sci. 2019, 7, 2328–2334. [Google Scholar] [CrossRef] [PubMed]
- Abo-Elmagd, R.A.; Hussein, M.H.; Hamouda, R.A.; Shalan, A.E.; Abdelrazak, A. Statistical optimization of photo-induced biofabrication of silver nanoparticles using the cell extract of Oscillatoria limnetica: Insight on characterization and antioxidant potentiality. RSC Adv. 2020, 10, 44232–44246. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A pre-liminary study. J. Nanomater. 2015, 16, 53. [Google Scholar] [CrossRef]
- El Badawy, A.M.; Silva, R.G.; Morris, B.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Surface Charge-Dependent Toxicity of Silver Nanoparticles. Environ. Sci. Technol. 2010, 45, 283–287. [Google Scholar] [CrossRef]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef]
- Gu, H.; Chen, X.; Chen, F.; Zhou, X.; Parsaee, Z. Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason. Sonochem. 2018, 41, 109–119. [Google Scholar] [CrossRef]
- Chandraker, S.K.; Lal, M.; Ghosh, M.K.; Tiwari, V.; Ghorai, T.K.; Shukla, R. Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill. and study of their photocatalytic and antibacterial activities. Nano Express 2020, 1, 010033. [Google Scholar] [CrossRef]
- Jayarambabu, N.; Akshaykranth, A.; Rao, T.V.; Rao, K.V.; Kumar, R.R. Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater. Lett. 2019, 259, 126813. [Google Scholar] [CrossRef]
- Jayandran, M.; Haneefa, M.; Balasubramanian, V. Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. J. Appl. Pharm. Sci. 2015, 5, 105–110. [Google Scholar] [CrossRef]
- Yousaf, H.; Mehmood, A.; Ahmad, K.S.; Raffi, M. Green synthesis of silver nanoparticles and their applications as an alter-native antibacterial and antioxidant agents. Mater. Sci. Eng. C 2020, 112, 110901. [Google Scholar] [CrossRef] [PubMed]
- Panpaliya, N.P.; Dahake, P.T.; Kale, Y.J.; Dadpe, M.V.; Kendre, S.B.; Siddiqi, A.G.; Maggavi, U.R. In vitro evaluation of antimi-crobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. Saudi Dent. J. 2019, 31, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, L.A.; Zapata, P.A.; Vejar, N.D.; Azócar, M.I.; Gulppi, M.A.; Zhou, X.; Thompson, G.E.; Rabagliati, F.M.; Páez, M.A. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocyto-genes. Mater. Sci. Eng. C 2014, 40, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Rather, R.A.; Sarwara, R.K.; Das, N.; Pal, B. Impact of reducing and capping agents on carbohydrates for the growth of Ag and Cu nanostructures and their antibacterial activities. Particuology 2019, 43, 219–226. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, F.; Wang, K.; Yang, D.; Sacher, E. AgCu NP Formation by the Ag NP Catalysis of Cu Ions at Room Temperature and Their Antibacterial Efficacy: A Kinetic Study. Molecules 2022, 27, 6951. [Google Scholar] [CrossRef]
- Mukherji, S.; Ruparelia, J.; Agnihotri, S. Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi. In Nano-Antimicrobials; Springer: Berlin/Heidelberg, Germany, 2011; pp. 225–251. [Google Scholar] [CrossRef]
- Fellahi, O.; Sarma, R.K.; Das, M.R.; Saikia, R.; Marcon, L.; Coffinier, Y.; Hadjersi, T.; Maamache, M.; Boukherroub, R. The an-timicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. Nanotechnology 2013, 24, 495101. [Google Scholar] [CrossRef]
- Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef]
- Rtimi, S.; Sanjines, R.; Pulgarin, C.; Kiwi, J. Microstructure of Cu–Ag uniform nanoparticulate films on polyurethane 3D cath-eters: Surface properties. ACS Appl. Mater. Interfaces 2016, 8, 56–63. [Google Scholar] [CrossRef]
- Alavi, M.; Karimi, N. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 3), 399–413. [Google Scholar] [CrossRef]
- Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 2017, 10, 862–876. [Google Scholar] [CrossRef]
- Shakhatreh, M.A.; Al-Rawi, O.F.; Swedan, S.F.; Alzoubi, K.H.; Khabour, O.F.; Al-Fandi, M. Biosynthesis of silver nanoparticles from Citrobacter freundii as antibiofilm agents with their cytotoxic effects on human cells. Curr. Pharm. Biotechnol. 2021, 22, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; El-Hack, M.E.A.; Taha, A.E.; Fouda, M.M.G.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; Elshaer, N. Ecofriendly Synthesis and Insecticidal Application of Copper Nanoparticles against the Storage Pest Tribolium castaneum. Nanomaterials 2020, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Makharita, R.R.; El-Kholy, I.; Hetta, H.F.; Abdelaziz, M.H.; Hagagy, F.I.; Ahmed, A.A.; Algammal, A.M. Antibiogram and genetic characterization of carbapenem-resistant gram-negative pathogens incriminated in healthcare-associated infections. Infect. Drug Resist. 2020, 4, 3991–4002. [Google Scholar] [CrossRef]
- Heikens, E.; Bonten, M.J.M.; Willems, R.J.L. Enterococcal Surface Protein Esp Is Important for Biofilm Formation of Enterococcus faecium E1162. J. Bacteriol. 2007, 189, 8233–8240. [Google Scholar] [CrossRef]
- Hamed, A.; Abdel-Razek, A.S.; Araby, M.; Abu-Elghait, M.; El-Hosari, D.G.; Frese, M.; Soliman, H.S.M.; Stammler, H.G.; Sewald, N.; Shaaban, M. Meleagrin from marine fungus Emericella dentata Nq45: Crystal structure and diverse biological activity studies. Nat. Prod. Res. 2021, 35, 3830–3838. [Google Scholar] [CrossRef]
Wavenumber cm−1 | Ul/Ag/Cu-NCMs | Ul/CuO-NPs | UL/Ag2 O-NPS | Assignment | References |
---|---|---|---|---|---|
3752 | Nd | Nd | D | OH bonds | [38] |
3588 | D | −1 | Nd | OH bonds | [39] |
3565 | D | −1 | Nd | OH bonds | [40] |
3419 | Nd | Nd | D | Bonded N–H/C–H/O–H stretching of amines and amides | [41] |
3390 | D | D | Nd | O–H Stretching | [42] |
2925 | D | +2 | Nd | CH stretching bands | [43] |
2426 | Nd | Nd | D | Carboxyl acid | [41] |
1765 | Nd | Nd | D | Carbonyl stretching C=O | [44] |
1633 | D | +2 | +3 | N–H stretching band | [45] |
1386 | Nd | D | −3 | C–H stretching | [46] |
1202 | Nd | Nd | D | Alkyl amine | [47] |
1125 | D | −2 | Nd | Amide III band region | [48] |
1088 | D | +2 | −9 | C–N stretching absorption of primary aliphatic amines | [49] |
1025 | D | Nd | Nd | Aromatic C–H in plane deformation | [50] |
987 | D | +1 | Nd | Si–O stretching region | [51] |
944 | D | D | Nd | Phosphodiester region | [51] |
874 | D | +2 | Nd | Organosulfate C–O–S | [52] |
826 | Nd | Nd | D | Stretching, C–C | [41] |
780 | D | +1 | Nd | Pyridine (pyridine ring vibration and C–H deformation) | [53] |
733 | D | +1 | Nd | Cu–O | [54] |
631 | D | +1 | Nd | OH Stretching | [55] |
600 | D | +1 | +6 | Ring deformation of phenyl | [54] |
509 | D | Nd | Nd | Cu–O | [56] |
483 | D | D | Nd | Cu–O | [56] |
417 | D | +3 | Nd | Cu–O | [56] |
Biofabricated Nanoparticles | Shape | Size Range (nm) | Size Range (nm) (Predominant) | Frequency% |
---|---|---|---|---|
UL/Ag2 O-NPS | Spherical | 10–45 | 15–20 | 28% |
Ul/CuO-NPs | Rod | 10–40 | 20–25 | 50% |
Ul/Ag/Cu-NCMs | Hexagonal | 10–35 | 15–20 | 39% |
(a) | |||||
Peak position 2Ө | 1000 × sin2Ө | 1000 × sin2Ө/36 | Reflection | Crystal size (nm) | Intensity % |
19.843 | 30 | 1 | 100 | 36.7 | 81.8 |
29.841 | 66 | 2 | 110 | 12.2 | 100 |
31.972 | 76 | 2 | 110 | 21.8 | 83.8 |
40.6 | 120 | 3 | 111 | 28.3 | 74.3 |
(b) | |||||
13.865 | 15 | 2 | 110 | 24.1 | 23.7 |
16.608 | 22 | 3 | 111 | 20.9 | 30.8 |
22.889 | 40 | 6 | 211 | 28.4 | 66 |
28.035 | 59 | 8 | 220 | 0.7 | 36.1 |
33.673 | 85 | 12 | 222 | 8.2 | 42.1 |
35.763 | 95 | 14 | 321 | 21.3 | 100 |
46.167 | 153 | 22 | 332 | 14.7 | 38 |
52.718 | 199 | 29 | 432 | 10.5 | 32.7 |
69.226 | 327 | 46 | 631 | 33 | 0.9 |
(c) | |||||
14.221 | 15 | 2 | 110 | 20.2 | 19.6 |
16.659 | 21 | 3 | 111 | 20 | 29.8 |
23.054 | 40 | 6 | 211 | 24.1 | 68.1 |
28.238 | 59 | 10 | 310 | 24.2 | 44.7 |
30.981 | 71 | 12 | 222 | 33.5 | 33.9 |
33.571 | 83 | 17 | 321 | 18.3 | 51.5 |
35.914 | 95 | 16 | 400 | 28.8 | 100 |
38.091 | 106 | 18 | 330 | 117.4 | 38.6 |
44.389 | 143 | 24 | 422 | 16.1 | 22.7 |
46.573 | 156 | 26 | 431 | 38.1 | 27.4 |
52.921 | 198 | 33 | 441 | 0.3 | 31.2 |
Bacterial Strains | Volume | UL/Ag2 O-NPS | Ul/CuO-NPs | Ul/Ag/Cu-NCMs | Significant |
---|---|---|---|---|---|
Streptococcus mutans ATCC 25175 | 10 | 11 a ± 0.28 | 7 a ± 0.28 | 9 abc ± 0.57 | 0.001 |
30 | 11 a ± 1.15 | 7 a ± 1.15 | 9.5 bc ± 0.0 | ||
100 | 17 ded ± 1.15 | 11 a ± 0.28 | 14.5 hijk ± 1.15 | ||
Lactobacillus acidophilus CH-2 | 10 | 9 a ± 0.5 | 7 a ± 0.57 | 7 a ± 0.28 | 0.001 |
30 | 14 db ± 0.57 | 7 a ± 0..0 | 9.5 cd ± 0.28 | ||
100 | 18.3 def ± 0.57 | 11 b ± 0.57 | 16 k ± 0.57 | ||
Staphylococcus aureus ATCC6538 | 10 | 10 a ± 0.0 | 7 a ± 0.0 | 7 a ± 0.57 | 0.001 |
30 | 10 a ± 0.28 | 7 a ± 0.0 | 8 ab ± 0.57 | ||
100 | 17.5 def ± 1.15 | 11 b ± 0.57 | 13.5 ghi ± 0 | ||
Staphylococcus aureus | 10 | 10 a ± 0.57 | 7 a ± 0.0 | 9.5 bc ± 0.76 | 0.001 |
30 | 10 a ± 0.0 | 7 a ± 0.0 | 9.5 bc ± 1.15 | ||
100 | 18.5 ef ± 0.0 | 17 d ± 0.57 | 13 fgh ± 1.15 | ||
Staphylococcus epidermidis | 10 | 9 a ± 0.28 | 7 a ± 0.0 | 9 abc ± 0.0 | 0.001 |
30 | 11 a ± 0.28 | 8 a ± 0.57 | 10 bcd ± 0.57 | ||
100 | 19.3 f ± 0.57 | 12 b ± 0.57 | 14 hij ± 0.57 | ||
Klebsiella pneumoniae KY856924 | 10 | 10 a ± 1.04 | 7 a ± 0.0 | 8 ab ± 0.86 | 0.001 |
30 | 11 a ± 0.57 | 7 a ± 0.0 | 9 abc ± 0.0 | ||
100 | 16.5 cd ± 0.0 | 11 b ± 1.15 | 12 efg ± 0.57 | ||
Acinetobacter KY856930 | 10 | 10 a ± 0.28 | 7 a ± 0.0 | 8 ab ± 0.57 | 0.001 |
30 | 11 a ± 0.0 | 7 a ± 0.57 | 9 abc ± 0.28 | ||
100 | 17 de ± 1.15 | 10.b ± 1.44 | 13 fgh ± 1.15 | ||
E. coli KY856932 | 10 | 10 a ± 0 | 7 a ± 0.0 | 8 ab ± 0.0 | 0.001 |
30 | 10 a ± 1.15 | 7 a ± 0.0 | 9 abc ± 1.15 | ||
100 | 14 b ± 0.57 | 15 c ± 0.750.0 | 14 hij ± 0 | ||
E. coli KY856933 | 10 | 11 a ± 0 | 7 a ± 1.15 | 11 cde ± 0 | 0.001 |
30 | 11 a ± 1.05 | 17 d ± 1.44 | 18 l± 0.57 | ||
100 | 21.3 g ± 0.57 | 20.5 e ± 0.0 | 18 l ± 0.0 | ||
Enterobacter KY856934 | 10 | 9 a ± 0.57 | 7 a ± 0.0 | 9 abc ± 0.28 | 0.001 |
30 | 17.de ± 0.28 | 7 a ± 0.0 | 11.5 def ± 0.0 | ||
100 | 16 ab ± 0.0 | 15 c ± 0.0 | 15 c ± 01.15 | ||
Enterobacter aerogenes | 10 | 9 a ± 0.28 | 7 a ± 0.57 | 9 abc ± 0.28 | 0.001 |
30 | 10 a ± 0.57 | 7 a ± 1.15 | 9 abc ± 0 | ||
100 | 15 ab ± 0.57 | 14 c ± 0.0 | 15.5 b ± 0.57 | ||
Sig | 0.001 | 0.001 | 0.001 |
Bacteria | Nano Types | MIC (Nano mg/mL) | MBC (Nano mg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.5 | 0.25 | 0.125 | 0.062 | 0.03 | 1 | 0.5 | 0.25 | 0.125 | 0.062 | ||
Streptococcus mutans ATCC 25175 | UL/Ag2 O-NPS | − | − | − | − | − | + | − | − | − | − | + |
Ul/CuO-NPs | − | − | − | + | + | + | − | − | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | + | + | + | − | − | + | + | + | |
Lactobacillus acidophilus CH-2 | UL/Ag2 O-NPS | − | − | − | − | − | + | − | − | − | − | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | + | + | + | − | − | − | + | + | |
Staphylococcus aureus ATCC6538 | UL/Ag2 O-NPS | − | − | + | + | + | + | − | − | − | + | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | + | + | + | + | + | + | + | + | |
Staphylococcus aureus ATCC 25923 | UL/Ag2 O-NPS | − | − | − | + | + | + | − | − | − | + | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | − | + | + | − | − | + | + | + | |
Staphylococcus epidermidis ATCC 12228 | UL/Ag2 O-NPS | − | − | − | − | + | + | − | − | − | − | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | − | + | + | + | + | + | + | + | |
Klebsiella pneumoniae KY856924 | UL/Ag2 O-NPS | − | − | + | + | + | + | − | − | + | + | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | + | + | + | + | + | + | + | + | |
Acinetobacter KY856930 | UL/Ag2 O-NPS | − | + | + | + | + | + | − | + | + | + | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | + | + | + | + | + | + | + | + | |
E. coli KY856932 | UL/Ag2 O-NPS | − | − | + | + | + | + | − | − | + | + | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | + | + | + | + | + | + | + | + | |
E. coli KY856933 | UL/Ag2 O-NPS | − | − | − | − | − | + | − | − | − | − | + |
Ul/CuO-NPs | − | − | − | + | + | + | − | − | − | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | − | + | + | − | − | − | + | + | |
Enterobacter KY856934 | UL/Ag2 O-NPS | − | − | − | − | − | + | − | − | − | − | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | + | + | + | + | + | + | + | + | |
Enterobacter aerogenes | UL/Ag2 O-NPS | − | − | + | + | + | + | − | + | + | + | + |
Ul/CuO-NPs | − | − | − | + | + | + | + | + | + | + | + | |
Ul/Ag/Cu-NCMs | − | − | − | + | + | + | + | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamouda, R.A.; Alharthi, M.A.; Alotaibi, A.S.; Alenzi, A.M.; Albalawi, D.A.; Makharita, R.R. Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga Ulva lactuca: Insight into the Characterizations, Antibacterial Activity, and Anti-Biofilm Formation. Molecules 2023, 28, 6324. https://doi.org/10.3390/molecules28176324
Hamouda RA, Alharthi MA, Alotaibi AS, Alenzi AM, Albalawi DA, Makharita RR. Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga Ulva lactuca: Insight into the Characterizations, Antibacterial Activity, and Anti-Biofilm Formation. Molecules. 2023; 28(17):6324. https://doi.org/10.3390/molecules28176324
Chicago/Turabian StyleHamouda, Ragaa A., Mada A. Alharthi, Amenah S. Alotaibi, Asma Massad Alenzi, Doha A. Albalawi, and Rabab R. Makharita. 2023. "Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga Ulva lactuca: Insight into the Characterizations, Antibacterial Activity, and Anti-Biofilm Formation" Molecules 28, no. 17: 6324. https://doi.org/10.3390/molecules28176324
APA StyleHamouda, R. A., Alharthi, M. A., Alotaibi, A. S., Alenzi, A. M., Albalawi, D. A., & Makharita, R. R. (2023). Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga Ulva lactuca: Insight into the Characterizations, Antibacterial Activity, and Anti-Biofilm Formation. Molecules, 28(17), 6324. https://doi.org/10.3390/molecules28176324