Phenolic Profiles, Antihyperglycemic, Anti-Diabetic, and Antioxidant Properties of Egyptian Sonchus oleraceus Leaves Extract: An In Vivo Study
Abstract
:1. Introduction
2. Results
2.1. The Extraction of Sonchus oleraceus Extracts (SOEs)
2.2. Identification of Some Antioxidant Components of SOE Extracts by HPLC
2.3. Biological Evaluation
2.3.1. Effect of Treatment with SOE Extract and Glibenclamide (GLI) on Blood Glucose in Negative Control and Positive Control (Diabetic) Groups
2.3.2. Effect of SOE Extract at Different Doses on Serum Lipid Profile
2.3.3. Elevation in Hepatic and Renal Enzymes in SOE Extract and Glibenclamide-Treated Rats
2.3.4. Effect of SOE and Glibenclamide on Antioxidant Parameters in Diabetic Rats Compared to GLI, Negative Control, and Positive Control (Diabetic) Groups
2.3.5. Histological Assay
3. Discussion
4. Materials and Methods
4.1. Preparation of Extract for Biological Experiments
4.2. Preparation of Different Extracts for Determination of Total Phenolic, Total Flavonoid, and Radical–Scavenging Activity by DPPH
4.3. Determination of Total Phenolic Content (TPC)
4.4. Determination of Total Flavonoids Content (TFC)
4.5. DPPH (2,2-Diphenylpicryhydrazyl) Radical–Scavenging Activity
4.6. HPLC Conditions
4.7. Experimental Design
4.8. Administration and Dosage of Sonchus oleraceus Extract (SOE)
4.9. Blood Sampling, Biochemical, and Histological Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bagust, A.; Hopkinson, P.K.; Maier, W.; Currie, C.J. An economic model of the long-term health care burden of Type II diabetes. Diabetologia 2001, 44, 2140–2155. [Google Scholar] [CrossRef]
- Saleem, T.; Mumtaz, U.; Bashir, M.U.; Qureshi, H.J.; Saleem, A. Comparison of hypoglycemic effects of Azadirachta indica seeds and leaves on alloxan induced diabetes in male albino rats. Pak. J. Med. Health Sci. 2018, 12, 753–756. [Google Scholar]
- Gülçin, İ.; Oktay, M.; Küfrevioğlu, Ö.İ.; Aslan, A. Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J. Ethnopharmacol. 2002, 79, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.L.; Giménez-Giménez, A.; Rodríguez-García, I.; Torija-Isasa, M.E. Nutritional composition of Sonchus species (S. asper L., S. oleraceus L. and S. tenerrimus L.). J. Sci. Food Agric. 1998, 76, 628–632. [Google Scholar] [CrossRef]
- Teugwa, C.M.; Mejiato, P.C.; Zofou, D.; Tchinda, B.T.; Boyom, F.F. Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae). BMC Complement Altern. Med. 2013, 13, 175. [Google Scholar] [CrossRef]
- Vilela, F.C.; Bitencourt, A.D.; Cabral, L.D.; Franqui, L.S.; Soncini, R.; Giusti-Paiva, A. Anti-inflammatory and antipyretic effects of Sonchus oleraceus in rats. J. Ethnopharmacol. 2010, 127, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.; Schmitt-Schillig, S.; Muller, W.E.; Eckert, G.P. Antioxidant properties of Mediterranean food plant extracts: Geographical differences. J. Physiol. Pharmacol. Suppl. 2005, 56, 115–124. [Google Scholar]
- Li, Q.; Dong, D.D.; Huang, Q.P.; Li, J.; Du, Y.Y.; Li, B.; Li, H.Q.; Huyan, T. The anti-inflammatory effect of Sonchus oleraceus aqueous extract on lipopolysaccharide stimulated RAW 264.7 cells and mice. Pharm. Biol. 2017, 55, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Loliger, J. The Use of Antioxidants in Foods. Free Radicals and Food Additives; Taylor and Francis: London, UK, 1991; p. 121. [Google Scholar]
- Samodien, E.; Johnson, R.; Pheiffer, C.; Mabasa, L.; Erasmus, M.; Louw, J.; Chellan, N. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Mol. Metab. 2019, 27, 1–10. [Google Scholar] [CrossRef]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary polyphenol intake, blood pressure, and hypertension: A systematic review and meta-analysis of observational studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef]
- Konstantinidi, M.; Koutelidakis, A.E. Functional foods and bioactive compounds: A review of its possible role on weight management and obesity’s metabolic consequences. Medicines 2019, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Dietary factors a_ecting polyphenol bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
- Eker, M.E.; Aaby, K.; Budic-Leto, I.; Rimac Brnčić, S.; El, S.N.; Karakaya, S.; Simsek, S.; Manach, C.; Wiczkowski, W.; de Pascual-Teresa, S. A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability. Foods 2019, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef]
- Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran 2017, 31, 134. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Cao, H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food Chem. Toxicol. 2019, 127, 182–187. [Google Scholar] [CrossRef]
- Omar, H.E.D.M.; Ragaa, S.M.; Abd Elghaffar, S.K.; Alduraywish, A.A.; El-Metwally, T.H. Berberine, quercetin and O-coumaric acid phytochemicals ameliorate the impact of experimentally fed high-fat/high-sucrose diet on pancreas Β-cells and glycemic control indices. Austin J. Endocrinol. Diabetes 2016, 3, 1042. [Google Scholar]
- Choi, R.; Kim, B.H.; Naowaboot, J.; Lee, M.Y.; Hyun, M.R.; Cho, E.J.; Lee, E.S.; Lee, E.Y.; Yang, Y.C.; Chung, C.H. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Exp. Mol. Med. 2011, 43, 676–683. [Google Scholar] [CrossRef]
- Yang, D.K.; Kang, H.S. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol. Ther. 2018, 26, 130. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Aldebasi, Y.H.; Srikar, S.; Khan, A.A.; Aly, S.M. Aloe vera: Potential candidate in health management via modulation of biological activities. Pharmacogn. Rev. 2015, 9, 120. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Alzohairy, M.A.; Khan, A.A.; Ansari, M.A.; Babiker, A.Y.; Alsahli, M.A.; Almatroodi, S.A.; Rahmani, A.H. Protective effect of quercetin, a Flavonol against benzo (a) pyrene-induced lung injury via inflammation, oxidative stress, angiogenesis and Cyclooxygenase-2 Signalling molecule. Appl. Sci. 2021, 11, 8675. [Google Scholar] [CrossRef]
- Izak-Shirian, F.; Najafi-Asl, M.; Azami, B.; Heidarian, E.; Najafi, M.; Khaledi, M.; Nouri, A. Quercetin exerts an ameliorative effect in the rat model of diclofenac-induced renal injury through mitigation of inflammatory response and modulation of oxidative stress. Eur. J. Inflamm. 2022, 20, 1721727X221086530. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Verma, A.K.; Aloliqi, A.; Allemailem, K.S.; Khan, A.A.; Rahmani, A.H. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules 2021, 26, 1315. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Kang, Y.J. Cell death and diabetic cardiomyopathy. Cardiovasc. Toxicol. 2003, 3, 219–228. [Google Scholar] [CrossRef]
- Shetty, K.; Wahlqvist, M. A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pac. J. Clin. Nutr. 2004, 13, 1–24. [Google Scholar]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN−93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN−76A rodent diet. Oxf. Univ. Press 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Kwon, G.J.; Wang, M.H. The antioxidant and cytotoxic activities of Sonchus oleraceus L. extracts. Nutr. Res. Pract. 2007, 1, 189–194. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diabetes Mellitus; Report of a WHO Study Group; WHO Technical Report Series; WHO: Geneva, Switzerland, 1985; p. 727. [Google Scholar]
- Pellegrini, N.; Colombi, B.; Salvatore, S.; Brenna, O.V.; Galaverna, G.; Del Rio, D.; Bianchi, M.; Bennett, R.N.; Brighenti, F. Evaluation of antioxidant capacity of some fruit and vegetable foods: Efficiency of extraction of a sequence of solvents. J. Sci. Food Agric. 2007, 87, 103–111. [Google Scholar] [CrossRef]
- Abubakar, E.M.; Misau, M.S. Percentage yield and acute toxicity of the plant extracts of Ceiba pentandra grown in Bauchi State, North Eastern Nigeria. J. Pharmacogn. Phytochem. 2017, 6, 1777–1779. [Google Scholar]
- Alrekabi, D.G.; Hamad, M.N. Phytochemical investigation of Sonchus oleraceus (Family: Asteraceae) cultivated in Iraq, isolation and identification of quercetin and apigenin. J. Pharm. Sci. Res. 2018, 10, 2242–2248. [Google Scholar]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Di Venere, D. Bioactive phenolics and antioxidant capacity of some wild edible greens as affected by different cooking treatments. Foods 2020, 9, 1320. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Abdallah, E.T.; Kamil, M. Scientific studies on aerial parts of Sonchus oleraceus Linn. Arab. J. Med. Aromat. Plants 2021, 7, 194–214. [Google Scholar]
- Sreejesh, P.G.; Thampi, B.H.; Sreekumaran, E. Hypoglycaemic effect of glibenclamide: A critical study on the basis of creatinine and lipid peroxidation status of streptozotocin-induced diabetic rat. Indian J. Pharm. Sci. 2017, 79, 768–777. [Google Scholar]
- Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Khalil, E.A. Antidiabetic effect of an aqueous extract of Pomegranate (Punica granatum L.) peels in normal and alloxan diabetic rats. Egypt. J. Hosp. Med. 2004, 16, 92–99. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chen, Y.L.; Liang, Y.C.; Lin, J.K. Composition of Polyphenols in fresh Tea Leaves and Associations of their Oxygen Radical Absorbing Capacity with Antiproliferative Actions in Fibroblast Cells. J. Agri. Food Chem. 1996, 44, 1387–1394. [Google Scholar] [CrossRef]
- Salwe, K.J.; Sachdev, D.O.; Bahurupi, Y.; Kumarappan, M. Evaluation of antidiabetic, hypolipedimic and antioxidant activity of hydroalcoholic extract of leaves and fruit peel of Punica granatum in male Wistar albino rats. J. Nat. Sci. Biol. Med. 2015, 6, 56. [Google Scholar] [CrossRef]
- El-Hadary, A.E.; Ramadan, M.F. Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. J. Food Biochem. 2019, 43, e12803. [Google Scholar] [CrossRef]
- Bamanikar, S.A.; Bamanikar, A.A.; Arora, A. Study of Serum urea and Creatinine in Diabetic and nondiabetic patients in a tertiary teaching hospital. J. Med. Res. 2016, 2, 12–15. [Google Scholar] [CrossRef]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Almatroudi, A.; Alsahli, M.A.; Rahmani, A.H. Grapes and their Bioactive Compounds: Role in Health Management Through Modulating Various Biological Phcogj.com Activities. Pharmacogn. J. 2020, 12, 1455–1462. [Google Scholar] [CrossRef]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84. [Google Scholar]
- Arvind, K.; Pradeepa, R.; Deepa, R.; Mohan, V. Diabetes and coronary artery disease. Indian J. Med. Res. 2002, 116, 121–132. [Google Scholar]
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr. Rev. 2002, 23, 599–622. [Google Scholar] [CrossRef]
- Dufresne, C.J.; Farnworth, E.R. A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 2001, 12, 404–421. [Google Scholar] [CrossRef]
- Ordonez, A.A.L.; Gomez, J.D.; Vattuone, M.A. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Gülçin, Ì.; Şat, İ.G.; Beydemir, Ş.; Elmastaş, M.; Küfrevioǧlu, Ö.İ. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 2004, 87, 393–400. [Google Scholar] [CrossRef]
- Prakash, A.; Piening, B.; Whiteaker, J.; Zhang, H.; Shaffer, S.A.; Martin, D.; Hohmann, L.; Cooke, K.; Olson, J.M.; Hansen, S.; et al. Assessing bias in experiment design for large scale mass spectrometry-based quantitative proteomics. Mol. Cell. Proteom. 2007, 6, 1741–1748. [Google Scholar] [CrossRef]
- Kuntic, V.; Pejic, N.; Ivkovic, B. Isocratic RP-HPLC method for rutin determinationin solid oral dosage forms. J. Pharm. Biomed. Anal. 2007, 43, 718–772. [Google Scholar] [CrossRef]
- Ali Asgar, M.D. Anti-diabetic potential of phenolic compounds: A review. Int. J. Food Prop. 2013, 16, 91–103. [Google Scholar] [CrossRef]
- Buko, V.; Lukivskaya, O.; Nikitin, V.; Tarasov, Y.; Zavodnik, L.; Borodinsky, A.; Gorenshtein, B.; Janz, B.; Gundermann, K.J.; Schumacher, R. Hepatic and pancreatic effects of polyenoylphosphatidylcholine in rats with alloxan-induced diabetes. Cell Biochem. Funct. 1996, 14, 131–137. [Google Scholar] [PubMed]
- Hayouni, E.A.; Abedrabba, M.; Bouix, M.; Hamdi, M. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem. 2007, 105, 1126–1134. [Google Scholar] [CrossRef]
- Lee, H.J.; Jeong, K.H.; Kim, Y.G.; Moon, J.Y.; Lee, S.H.; Ihm, C.G.; Sung, J.Y.; Lee, T.W. Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model. Am. J. Nephrol. 2014, 40, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Abayomi, A.I.; Adewoye, E.O.; Olaleye, S.B.; Salami, A.T. Effect of Magnesium pre-treatment on Alloxan induced hyperglycemia in rats. Afr. Health Sci. 2011, 11, 79–84. [Google Scholar]
- Tietz, N.W.; Rinker, A.D.; Shaw, L.M. International Federation of Clinical Chemistry. IFCC methods for the measurement of catalytic concentration of enzymes. Part 5 IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1. 3.1). IFCC Document Stage 2, Draft 1, 1983-03 with a view to an IFCC Recommendation. Clin. Chim. Acta 1983, 135, 339F–367F. [Google Scholar]
- Doumas, B.T.; Perry, B.W.; Sasse, E.A.; Straumfjord, J.V., Jr. Standardization in bilirubin assays: Evaluation of selected methods and stability of bilirubin solutions. Clin. Chem. 1973, 19, 984–993. [Google Scholar] [CrossRef]
- Doumas, B.T.; Watson, W.A.; Biggs, H.G. Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta 1971, 31, 87–96. [Google Scholar] [CrossRef]
- Amer, M.M.A.; Ramadan, M.F.; Abd El-Gleel, W. Impact of Pulicaria incisa, Diplotaxis harra and Avicennia marina as hypocholesterolemic agent. Dtsch. Lebensm. Rundsch. 2007, 103, 320–327. [Google Scholar]
- Ramadan, M.F.; Amer, M.M.A.; Awad, A.E.S. Coriander (Coriandrum sativum L.) seed oil improves plasma lipid profile in rats fed a diet containing cholesterol. Eur. Food Res. Technol. 2008, 227, 1173–1182. [Google Scholar] [CrossRef]
- Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 1969, 6, 24–27. [Google Scholar] [CrossRef]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
Sample | Total Extract % | TPC mg GAE/gm | TFC mg QE/gm | DPPH % |
---|---|---|---|---|
E.E. | 33.5 ± 0.56 | 127.66 ± 0.56 | 74.80 ± 0.55 | 43.46 ± 0.42 |
C.F. | 4.77 ± 0.65 | 75.68 ± 0.3 | 3.52 ± 0.09 | 16.50 ± 0.47 |
E.A. | 5.20 ± 0.6 | 100.22 ± 0.46 | 3.73 ± 0.39 | 5.04 ± 0.13 |
P.T. | 18.77 ± 0.42 | 61.25 ± 0.76 | 5.40 ± 0.52 | 23 ± 0.91 |
A.E. | 20 ± 0.26 | 105.5 ± 0.24 | 37.13 ± 0.75 | 37.82 ± 0.21 |
Leaves Components | RT (Min) | Concentration (%) |
---|---|---|
Phenolic compounds | ||
Chlorogenic acid | 3.914 | 28.02 |
Catechin | 4.12 | 37.39 |
Methyl gallate | 5.099 | 0.31 |
Coffeic acid | 5.460 | 0.81 |
Syringic acid | 5.822 | 0.47 |
Flavonoid compounds | ||
Vanillin | 8.845 | 16.58 |
Ferulic acid | 9.421 | 10.02 |
Naringenin | 10.092 | 11.30 |
Quercetin | 12.840 | 4.29 |
Cinnamic acid | 14.037 | 0.22 |
Hesperetin | 15.729 | 24.79 |
Groups | Initial Body Weight (g) | Final Body Weight (g) | Change Body Weight Gain | ||
---|---|---|---|---|---|
(g) | (%) | ||||
1 | Control Negative | 104.7 b ± 8.1 | 240.7 a ± 23.5 | 136 a ± 29.6 | 131.6 a ± 36.2 |
2 | Control Positive Diabetic (100 mg kg−1 Alloxan) | 174.3 a ± 15 | 196.3 a ± 2.3 | 22 b ± 17 | 13.4 b ± 11.1 |
3 | Diabetic + 10 mg kg−1 GLI | 153 a ± 15.4 | 237.7 a ± 22.5 | 84.7 a ± 34.2 | 57 b ± 27.3 |
4 | Diabetic + 100 mg kg−1 SOE | 149.7 a ± 9.7 | 268.3 a ± 27.1 | 118.7 a ± 36.8 | 80.6 ab ± 30.5 |
5 | Diabetic + 200 mg kg−1 SOE | 154 a ± 14.4 | 256.3 a ± 48.7 | 102.3 a ± 35.5 | 65.6 ab ± 18.4 |
6 | Diabetic + 300 mg kg−1 SOE | 155.7 a ± 12.1 | 265.7 a ± 28.2 | 110 a ± 31.6 | 71.5 ab ± 23.9 |
G. | Treatments | Glucose (mg dL−1) Ratio | ||
---|---|---|---|---|
Zero Point | 2 Days | 56 Day | ||
1 | Control Negative | 128 a ± 9.8 | 120.3 b ± 1.5 | 104.3 b ± 14.4 |
2 | Control Positive Diabetic (100 mg kg−1 Alloxan) | 96.3 a ± 20.1 | 370 a ± 115.3 | 405 a ± 158.3 |
3 | Diabetic + 10 mg kg−1 GLI | 118 a ± 6.1 | 314.7 ab ± 115.5 | 184.3 b ± 93.4 |
4 | Diabetic + 100 mg kg−1 SOE | 120 a ± 5 | 349.7 ab ± 64.5 | 151 b ± 16.4 |
5 | Diabetic + 200 mg kg−1 SOE | 105.7 a ± 12.5 | 276.7 ab ± 64 | 138.7 b ± 27.2 |
6 | Diabetic + 300 mg kg−1 SOE | 101.7 a ± 13.3 | 318.3 ab ± 28.4 | 103.7 b ± 9.3 |
G. | Treatments | Total Cholesterol (mg dL−1) | Triglyceride (mg dL−1) | HDLC (mg dL−1) | LDLC (mg dL−1) |
---|---|---|---|---|---|
1 | Control Negative | 123.7 bc ± 3.2 | 124.3 c ± 5 | 54 a ± 3.6 | 57 b ± 2 |
2 | Control Positive Diabetic (100 mg kg−1 alloxan) | 133 a ± 3.6 | 195.7 a ± 3.1 | 46.7 ab ± 2.1 | 66.3 a ± 4.7 |
3 | Diabetic + 10 mg kg−1 GLI | 122.3 bc ± 2.5 | 143.3 b ± 4.2 | 45 ab ± 3 | 53 b ± 4.4 |
4 | Diabetic + 100 mg kg−1 SOE | 121 c ± 2.6 | 203 a ± 6.1 | 41 b ± 3.6 | 40.7 c ± 2.1 |
5 | Diabetic + 200 mg kg−1 SOE | 129 ab ± 1 | 117.7 c ± 2.5 | 53.3 a ± 4.9 | 54 b ± 2.6 |
6 | Diabetic + 300 mg kg−1 SOE | 124.7 bc ± 1.5 | 98.7 d ± 1.5 | 44.7 ab ± 3.1 | 66 a ± 1 |
Liver Function | Kidney Function | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
G. | Treatment | AST (U L−1) | ALT (U L−1) | T. Protein (mg dL−1) | Albumin (mg dL−1) | Globulin (mg dL−1) | Bilirubin (mg dL−1) | Urea (mg dL−1) | Uric Acid (mg dL−1) | Creatinine (mg dL−1) |
1 | Control Negative | 61.2 b ± 1.6 | 68.3 b ± 1.5 | 6.4 a ± 0.4 | 4.5 a ± 0.5 | 2 ab ± 0.2 | 0.13 ab ± 0.01 | 36 b ± 4.36 | 2.9 ab ± 0.2 | 1.37 bc ± 0.38 |
2 | Control Positive Diabetic (100 g kg−1 alloxan) | 82.0 b ± 3.0 | 73.3 b ± 2.9 | 6.4 a ± 0.2 | 3.9 a ± 0.1 | 2.3 ab ± 0.5 | 0.05 b ± 0.04 | 52 a ± 2 | 3.3 a ± 0.6 | 1.87 ab ± 0.80 |
3 | Diabetic + 10 mg kg−1 GLI | 51.3 c ± 1.5 | 65.1 b ± 1 | 6.3 a ± 0.6 | 4.2 a ± 0.6 | 2.6 a ± 0.5 | 0.04 b ± 0.04 | 35 b ± 2 | 2.5 b ± 0.4 | 1.23 bc ± 0.16 |
4 | Diabetic + 100 mg kg−1 SOE | 118 a ± 2 | 148 a ± 2 | 6.4 a ± 0.4 | 3.8 a ± 0.3 | 2.2 ab ± 0.3 | 0.17 a ± 0.05 | 43 b ± 3 | 3.6 a ± 0.3 | 2.20 a ± 0.44 |
5 | Diabetic + 200 mg kg−1 SOE | 42 d ± 2.6 | 54.3 c ± 2.1 | 6 a ± 0.5 | 4.5 a ± 0.5 | 1.5 b ± 0.4 | 0.14 ab ± 0.05 | 43.7 ab ± 3.1 | 2.8 ab ± 0.4 | 1.90 ab ± 0.40 |
6 | Diabetic + 300 mg kg−1 SOE | 55 c ± 2 | 64.7 b ± 3.2 | 6.1 a ± 0.2 | 4.7 a ± 0.4 | 1.9 ab ± 0.2 | 0.09 ab ± 0.02 | 25 c ± 4 | 2.6 ab ± 0.5 | 0.96 c ± 0.11 |
G. | Treatments | MDA (mM L−1) | SOD (U L−1) | GSH (U L−1) | CAT (U L−1) | (GSTs) (U L−1) |
---|---|---|---|---|---|---|
1 | Control Negative | 10 b ± 1 | 43 ab ± 2 | 66 a ± 1 | 77 a ± 2.6 | 99 a ± 1 |
2 | Control Positive Diabetic (100 mg kg−1 alloxan) | 18.7 a ± 1.5 | 34.7 bc ± 2.1 | 42.3 d ± 2.5 | 62.3 b ± 2.5 | 76 c ± 2 |
3 | Diabetic + 10 mg kg−1 GLI | 12.7 b ± 2.5 | 31.3 c ± 3.2 | 52.7 c ± 2.5 | 65 b ± 4.4 | 86 b ± 4.4 |
4 | Diabetic + 100 mg kg−1 SOE | 13 b ± 2.6 | 42 abc ± 2.6 | 56.3 bc ± 1.5 | 67 b ± 2 | 93 ab ± 4.4 |
5 | Diabetic + 200 mg kg−1 SOE | 13 b ± 2 | 44.3 ab ± 4 | 55 c ± 3 | 69.7 ab ± 2.5 | 92 ab ± 2 |
6 | Diabetic + 300 mg kg−1 SOE | 10.7 b ± 2.1 | 45.7 a ± 7.4 | 61 ab ± 1 | 69 b ± 2 | 93 ab ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salim, N.S.; Abdel-Alim, M.; Said, H.E.M.; Foda, M.F. Phenolic Profiles, Antihyperglycemic, Anti-Diabetic, and Antioxidant Properties of Egyptian Sonchus oleraceus Leaves Extract: An In Vivo Study. Molecules 2023, 28, 6389. https://doi.org/10.3390/molecules28176389
Salim NS, Abdel-Alim M, Said HEM, Foda MF. Phenolic Profiles, Antihyperglycemic, Anti-Diabetic, and Antioxidant Properties of Egyptian Sonchus oleraceus Leaves Extract: An In Vivo Study. Molecules. 2023; 28(17):6389. https://doi.org/10.3390/molecules28176389
Chicago/Turabian StyleSalim, Nesrein S., Mohamed Abdel-Alim, Huda E. M. Said, and Mohamed F. Foda. 2023. "Phenolic Profiles, Antihyperglycemic, Anti-Diabetic, and Antioxidant Properties of Egyptian Sonchus oleraceus Leaves Extract: An In Vivo Study" Molecules 28, no. 17: 6389. https://doi.org/10.3390/molecules28176389
APA StyleSalim, N. S., Abdel-Alim, M., Said, H. E. M., & Foda, M. F. (2023). Phenolic Profiles, Antihyperglycemic, Anti-Diabetic, and Antioxidant Properties of Egyptian Sonchus oleraceus Leaves Extract: An In Vivo Study. Molecules, 28(17), 6389. https://doi.org/10.3390/molecules28176389