Highly Substituted 10-RO-(hetero)acenes—Electric Properties of Vacuum-Deposited Molecular Films
Abstract
:1. Introduction
2. Results
2.1. X-ray Diffraction (XRD)
2.2. Analysis of the Results of the Electric Measurements
2.2.1. Spline Interpolation of TOF Measurements
2.2.2. DM-SCLC Analysis of SCLC Measurements
2.3. Analysis of the DFT Calculations
3. Discussion
4. Materials and Methods
4.1. Synthesis of Organic Materials
4.2. Preparation of Samples for Testing by Vacuum Evaporation Method
4.3. XRD Measurements
4.4. Measurements of Electric Properties
4.4.1. SCLC Measurements
4.4.2. TOF Measurements
4.5. DM-SCLC Calculations
4.6. DFT Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bodzioch, A.; Marciniak, B.; Różycka-Sokołowska, E.; Jeszka, J.K.; Uznański, P.; Kania, S.; Kuliński, J.; Bałczewski, P. Synthesis and Optoelectronic Properties of Hexahydroxylated 10-O-R-Substituted Anthracenes via a New Modification of the Friedel–Crafts Reaction Using O-Protected ortho-Acetal Diarylmethanols. Chem. Eur. J. 2012, 18, 4866–4876. [Google Scholar] [CrossRef] [PubMed]
- Bałczewski, P.; Skalik, J.; Uznański, P.; Guziejewski, D.; Ciesielski, W. Use of Isomeric, Aromatic Dialdehydes in Synthesis of Photoactive, Positional Isomers of Higher Analogs of o-Bromo(hetero)acenaldehydes. RSC Adv. 2015, 5, 24700–24704. [Google Scholar] [CrossRef]
- Bałczewski, P.; Kowalska, E.; Skalik, J.; Koprowski, M.; Owsianik, K.; Różycka-Sokołowska, E. Ultrasound-assisted synthesis of RO- and RS-substituted (hetero)acenes via oxo- and thio-Friedel-Crafts/Bradsher reactions. Ultrason. Sonochem. 2019, 58, 104640. [Google Scholar] [CrossRef] [PubMed]
- Bałczewski, P.; Kowalska, E.; Roóżycka-Sokołowska, E.; Skalik, J.; Owsianik, K.; Koprowski, M.; Marciniak, B.; Guziejewski, D.; Ciesielski, W. Mono-aryl/alkylthio-substituted (Hetero)acenes of Exceptional Thermal and Photochemical Stability via Thio-Friedel Crafts/Bradsher Cyclization Reaction. Chem. Eur. J. 2019, 25, 14148–14161. [Google Scholar] [CrossRef]
- Bałczewski, P.; Kowalska, E.; Różycka-Sokołowska, E.; Uznański, P.; Wilk, J.; Koprowski, M.; Owsianik, K.; Marciniak, B. Organosulfur Materials with High Photo- and Photo-Oxidation Stability: 10-Anthryl Sulfoxides and Sulfones and Their Photophysical Properties Dependent on the Sulfur Oxidation State. Materials 2021, 14, 3506. [Google Scholar] [CrossRef]
- Koprowski, M.; Owsianik, K.; Knopik, Ł.; Vivek, V.; Romaniuk, A.; Różycka-Sokołowska, E.; Bałczewski, P. Comprehensive review on synthesis, properties and applications of phosphorus (PIII, PIV, PV) substituted acenes with more than two fused benzene rings. Molecules 2022, 67, 6611. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yan, L.; Zhao, Y.; Murtaza, I.; Meng, H.; Huang, W. Anthracene-based semiconductors for organic field-effect transistors. J. Mater. Chem. C 2018, 6, 7416–7444. [Google Scholar] [CrossRef]
- Huang, J.; Xu Bo Lam, M.-K.; Cheah, K.-W.; Chen, C.H.; Su, J.-H. Unsymmetrically amorphous 9,10-disubstituted anthracene derivatives for high-efficiency blue organic electroluminescence devices. Dye. Pigment. 2011, 89, 155–161. [Google Scholar] [CrossRef]
- Huang, J.; Su, J.-H.; Tian, H. The development of anthracene derivatives for organic light-emitting diodes. J. Mater. Chem. 2012, 22, 10977–10989. [Google Scholar] [CrossRef]
- Anthony, J.E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 2006, 106, 5028–5048. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Marciniak, B.; Kania, S.; Różycka-Sokołowska, E.; Kuliński, J. Electronic properties of chosen naphthalene derivatives. Mol. Cryst. Liq. Cryst. 2022, 743, 103–125. [Google Scholar] [CrossRef]
- Kania, S.; Kościelniak-Mucha, B.; Kuliński, J.; Słoma, P.; Wojciechowski, K. A DFT study of reorganization energy of some chosen carbazole derivatives. Sci. Bull. Phys. Lodz Univ. Technol. 2020, 41, 33–42. [Google Scholar]
- Malloci, G.; Capellini, G.; Mulas, G.; Mattoni, A. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time dependent) density functional theory study. Chem. Phys. 2011, 384, 19–27. [Google Scholar] [CrossRef]
- Gaussian; Revision, A.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; et al. Uranyl Extraction by N, N-Dialkylamide Ligands Studied by Static and Dynamic DFT Simulations. In Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Kania, S.; Kuliński, J. Elimination of impact of RC constant of transient photocurrents measured in organic layers. Sci. Bull. Tech. Univ. Łódź. Phys. 2016, 37, 65–73. [Google Scholar]
- Liu, C.; Huang, K.; Park, W.-T.; Li, M.; Yang, T.; Liu, X.; Liang, L.; Minaric, T.; Noh, Y.-Y. A unified understanding of charge transport in organic semiconductors: The importance of attenuated delocalization for the carriers. Mater. Horiz. 2017, 4, 608–618. [Google Scholar] [CrossRef]
- Shieh, J.-T.; Liu, C.-H.; Meng, H.-F.; Tseng, S.-R.; Chao, Y.-C.; Horng, S.-F. The effect of carrier mobility in organic solar cells. J. Appl. Phys. 2010, 107, 084503-1–084503-9. [Google Scholar] [CrossRef]
- Wo, S.; Headrick, R.L.; Anthony, J.E. Fabrication and Characterization of Controllable Grain Boundary Arrays in Solution Processed Small Molecule Organic Semiconductor Films. J. Appl. Phys. 2012, 111, 073716. [Google Scholar] [CrossRef]
- Lee, C.; Karl, S.K. The effect of substitution on reorganization energy and charge mobility in metal free phthalocyanine. Chem. Phys. 2010, 367, 7–19. [Google Scholar] [CrossRef]
- Sreejith, K.; Menon, C.S.; Sudarsanakumar, C. Electrical conductivity studies on carbazole thin film. Vacuum 2008, 82, 1291–1295. [Google Scholar] [CrossRef]
- Reiss, P.; Couderc, E.; De Girolamo, J.; Pron, A. Conjugated Polymers/semiconductor Nanocrystals Hybrid Materials-Preparation, Electrical Transport Properties and Applications. Nanoscale 2011, 3, 446–489. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sonar, P.; Murphy, L.; Hong, W. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 2013, 6, 1684–1710. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Gundlach, D.J.; Nelson, S.F.; Jackson, T.N. Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics. IEEE Electron. Device Lett. 1997, 18, 606–608. [Google Scholar] [CrossRef]
- Zschieschang, U.; Ante, F.; Kälblein, D.; Yamamoto, T.; Takimiya, K.; Kuwabara, H.; Ikeda, M.; Sekitani, T.; Someya, T.; Blochwitz-Nimoth, J.; et al. Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DN,TT) thin-film transistors with improved performance and stability. Org. Electr. 2011, 12, 1370–1375. [Google Scholar] [CrossRef]
- Shinamura, S.; Osaka, I.; Miyazaki, E.; Takimiya, K. Air-stable and high-mobility organic semiconductors based on heteroarenes for field-effect transistors. Heterocycles 2011, 83, 1187–1204. [Google Scholar] [CrossRef]
- Scher, H.; Shlesinger, M.F.; Bendler, J.T. Time-Scale Invariance in Transport and Relaxation. Phys. Today 1991, 44, 26–34. [Google Scholar] [CrossRef]
- Yamagata, H.; Norton, J.; Hontz, E.; Olivier, Y.; Beljonne, D.; Brédas, J.L.; Silbey, R.J.; Spano, F.C. The nature of singlet excitons in oligoacene molecular crystals. J. Chem. Phys. 2011, 134, 204703. [Google Scholar] [CrossRef]
- Manfredotti, C.; De Blasi, C.; Gallasini, S.; Micocci, G.; Ruggiero, L.; Tepore, A. Analysis of SCLC curves by a new direct method. Phys. Stat. Sol. 1976, 36, 569. [Google Scholar] [CrossRef]
- Mikhaelashvili, V.; Eisenstein, G. Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation. J. Appl. Phys. 2001, 89, 3256–3269. [Google Scholar] [CrossRef]
- Krellner, C.; Haas, S.; Goldmann, C.; Pernstich, K.P.; Gundlach, D.J.; Batlog, B. Density of bulk trap states in organic semiconductor crystals: Discrete levels induced by oxygen in rubrene. Phys. Rev. B 2007, 75, 245115-1–245115-5. [Google Scholar] [CrossRef]
- Bagratishvili, G.D.; Dzhanelidze, R.B.; Jishishvili, D.A.; Piskanovskii, L.V.; Zyuganov, A.N.; Mikhelashvili, V.N.; Smertenko, P.S. Mechanism of charge flow through the M-Ge3N4-GaAs Structure. Phys. Stat. Sol. 1981, 65, 701. [Google Scholar] [CrossRef]
- Pivriskas, A. Charge transport features in disordered organic materials measured by time-of flight (TOF), xerographic discharge (XTOF) and charge extraction by linearly increasing voltage (CELIV) techniques. In Handbook of Organic Materials for Optical and (Photo) Electronic Devices; Ostroverkhova, O., Ed.; Woodhead Publishing Limited: Oxford, UK, 2013; pp. 398–420. [Google Scholar]
- Datta, A.; Mohakud, S.; Pati, S.K. Electron and hole mobilities in polymorphs of benzene and naphthalene: Role of intermolecular interactions. J. Chem. Phys. 2007, 126, 144710-1–144710-7. [Google Scholar] [CrossRef]
- Deng, W.-Q.; Goddard, W.A., III. Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations. J. Phys. Chem. B 2004, 108, 8614–8621. [Google Scholar] [CrossRef]
- Marcus, R.A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 1993, 65, 599–610. [Google Scholar] [CrossRef]
- Hush, N.S. Adiabatic Rate Processes at Electrodes. I. Energy-Charge Relationships. J. Chem. Phys. 1958, 28, 962–972. [Google Scholar] [CrossRef]
- Shuai, Z.; Geng, H.; Xu, W.; Liaoc, Y.; André, J.-M. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chem. Soc. Rev. 2014, 43, 2662–2679. [Google Scholar] [CrossRef]
- McMahon, D.P.; Troisi, A. Evaluation of the External Reorganization Energy of Polyacenes. J. Phys. Chem. Lett. 2010, 1, 941–946. [Google Scholar] [CrossRef]
- Pal, N.; Singha, D.; Jana, A.D. Synthesis, crystal structure, Hirshfeld surface analysis, electronic structure through DFT study and fluorescence properties of a new anthracene based organic tecton. J. Mol. Struct. 2017, 1145, 102–111. [Google Scholar] [CrossRef]
- Ren, H.-S.; Ming, M.-J.; Ma, J.-Y.; Li, X.-Y. Theoretical Calculation of Reorganization Energy for Electron Self-Exchange Reaction by Constrained Density Functional Theory and Constrained Equilibrium Thermodynamics. J. Phys. Chem. A 2013, 117, 8017–8025. [Google Scholar] [CrossRef]
- Mendels, D.; Tessler, N. Drift and Diffusion in Disordered Organic Semiconductors: The Role of Charge Density and Charge Energy Transport. J. Phys. Chem. C 2013, 117, 3287–3293. [Google Scholar] [CrossRef]
- Campbell, J.E.; Yang, J.; Day, G.M. Predicted energy-structure-function maps for the evaluation of small molecule organic semiconductors. J. Mater. Chem. C 2017, 5, 7574–7584. [Google Scholar] [CrossRef]
- Rossi, M.; Sohlberg, K. Predictions of Hole Mobility in Molecular Organic Crystals: Incorporating Thermal Effects. J. Phys. Chem. C 2009, 113, 6821–6831. [Google Scholar] [CrossRef]
- Kim, S.Y.; Seo, H.J.; Kim, S.; Cho, W.K. Formation of Various Polymeric Films via Surface-Initiated ARGET ATRP on Silicon Substrates. Bull. Korean. Chem. Soc. 2021, 42, 761–766. [Google Scholar] [CrossRef]
- Song, Y.; Ha, Y.-G. One-Step Fabricated and Solution-Processed Hybrid Gate Dielectrics for Low-Voltage Organic Thin-Film Transistors. Bull. Korean. Chem. Soc. 2021, 42, 983–987. [Google Scholar] [CrossRef]
- Yu, B.; Ha, Y.-G. Organic–inorganic hybrid gate dielectric using bifunctional polyhedral oligomeric silsesquioxane for low-voltage organic thin-film transistors. Bull. Korean Chem. Soc. 2021, 42, 1351–1356. [Google Scholar] [CrossRef]
Compound | σ | n0 | h | Nv |
---|---|---|---|---|
[S m−1] | [cm−3] | [eV−1 cm−3] | [cm−3] | |
1 | 2.0 × 10−12–5 × 10−9 | (9.4 ± 1.5) × 1014 | (4.8 ± 1.4) × 1015 | (1.1 ± 0.4) × 1015 |
2 | 6.0 × 10−14–7.2 × 10−11 | (3.6 ± 1.1) × 1014 | (6.0 ± 1.8) × 1015 | (1.2 ± 0.4) × 1015 |
3 | 1.3 × 10−14–7.7 × 10−11 | (9.6 ± 2.9) × 1012 | (5.2 ± 1.6) × 1018 | (8.0 ± 2.4) × 1014 |
4 | 7.1 × 10−14–1.2 × 10−13 | (4.7 ± 1.4) × 1013 | (2.5 ± 0.8) × 1016 | (5.9 ± 1.8) × 1015 |
5 | 2.0 × 10−12–5.0 × 10−9 | (3.1 ± 0.9) × 1013 | (1.0 ± 0.3) × 1014 | (4.5 ± 1.4) × 1014 |
Compound | Frontier Orbital Energy Level | Energy Gap | |
---|---|---|---|
EHOMO, [eV] | ELUMO, [eV] | Eg = ELUMO − EHOMO, [eV] | |
1 | −5.150 | −1.592 | 3.558 |
2 | −5.119 | −1.569 | 3.550 |
3 | −5.638 | −2.533 | 3.105 |
4 | −5.682 | −2.582 | 3.100 |
5 | −5.742 | −2.348 | 3.394 |
Compound | Frontier Orbital Energy Level | Energy Gap | |
---|---|---|---|
EHOMO, [eV] | ELUMO, [eV] | Eg = ELUMO − EHOMO, [eV] | |
naphthalene | −6.147 | −1.398 | 4.749 |
anthracene | −5.576 | −2.024 | 3.552 |
tetracene | −5.142 | −2.401 | 2.741 |
carbazole | −5.822 | −1.155 | 4.667 |
Compound | Er | Jij | Ke |
---|---|---|---|
[eV] | [eV] | [Hz] | |
1 | (0.49 ± 0.13) | (0.35 ± 0.17) | (2.5 ± 2.1) × 1013 |
2 | (0.49 ± 0.13) | (0.36 ± 0.18) | (2.7 ± 2.2) × 1013 |
3 | (0.57 ± 0.14) | (0.53 ± 0.27) | (2.5 ± 2.0) × 1013 |
4 | (0.69 ± 0.17) | (0.48 ± 0.24) | (6.2 ± 4.2) × 1012 |
5 | (0.44 ± 0.11) | (0.35 ± 0.17) | (4.2 ± 3.3) × 1013 |
TOF Measurements | from SCLC Data | from TOF and SCLC Data | Calculated Theoretically from DFT | |
---|---|---|---|---|
Derivative | μd | θ | μEd | μE |
[cm2/(Vs)] | [cm2/(Vs)] | [cm2/(Vs)] | ||
1 | (3.6 ± 1.4) × 10−4 | (6.0 ± 1.8) × 10−3 | (6.1 ± 2.7) × 10−2 | (1.1 ± 0.4) × 10−2 |
2 | (4.0 ± 1.6) × 10−4 | (5.3 ± 1.6) × 10−3 | (7.5 ± 3.3) × 10−2 | (2.3 ± 0.9) × 10−2 |
3 | (3.1 ± 1.2) × 10−4 | (1.1 ± 0.3) × 10−2 | (2.7 ± 1.2) × 10−2 | (2.2 ± 0.9) × 10−2 |
4 | (5.0 ± 3.2) × 10−5 | (2.5 ± 0.8) × 10−3 | (2.0 ± 0.9) × 10−2 | (5.3 ± 2.1) × 10−2 |
5 | (2.8 ± 1.8) × 10−4 | (7.0 ± 2.1) × 10−3 | (4.0 ± 1.8) × 10−2 | (3.6 ± 1.4) × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marciniak, B.; Kania, S.; Bałczewski, P.; Różycka-Sokołowska, E.; Wilk, J.; Koprowski, M.; Stańdo, J.; Kuliński, J. Highly Substituted 10-RO-(hetero)acenes—Electric Properties of Vacuum-Deposited Molecular Films. Molecules 2023, 28, 6422. https://doi.org/10.3390/molecules28176422
Marciniak B, Kania S, Bałczewski P, Różycka-Sokołowska E, Wilk J, Koprowski M, Stańdo J, Kuliński J. Highly Substituted 10-RO-(hetero)acenes—Electric Properties of Vacuum-Deposited Molecular Films. Molecules. 2023; 28(17):6422. https://doi.org/10.3390/molecules28176422
Chicago/Turabian StyleMarciniak, Bernard, Sylwester Kania, Piotr Bałczewski, Ewa Różycka-Sokołowska, Joanna Wilk, Marek Koprowski, Jacek Stańdo, and Janusz Kuliński. 2023. "Highly Substituted 10-RO-(hetero)acenes—Electric Properties of Vacuum-Deposited Molecular Films" Molecules 28, no. 17: 6422. https://doi.org/10.3390/molecules28176422
APA StyleMarciniak, B., Kania, S., Bałczewski, P., Różycka-Sokołowska, E., Wilk, J., Koprowski, M., Stańdo, J., & Kuliński, J. (2023). Highly Substituted 10-RO-(hetero)acenes—Electric Properties of Vacuum-Deposited Molecular Films. Molecules, 28(17), 6422. https://doi.org/10.3390/molecules28176422