Green Synthesis of Silver Nanoparticles Derived from Papaver rhoeas L. Leaf Extract: Cytotoxic and Antimicrobial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ultraviolet–Visible Spectroscopy Analysis
2.2. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy Analysis
2.3. Electron Dispersive X-ray Spectroscopy Analysis
2.4. X-ray Diffraction Analysis
2.5. Fourier Transform Infrared Spectroscopy Analysis
2.6. Thermogravimetric Analysis–Differential Thermal Analysis
2.7. Atomic Force Microscopy Analysis
2.8. Antimicrobial Activity
2.9. Zeta Analysis
2.10. Cytotoxic Effects
3. Materials and Methods
3.1. Plant Samples, Chemicals, and Microorganisms
3.2. Plant Leaf Extract Preparation
3.3. Manufacturing of Silver Nanoparticles from Plant Leaf Extract
3.4. Structural Characterization and Thermal Properties of Silver Nanoparticles
3.5. Antipathogenic Activity of Silver Nanoparticles
3.6. Cell Culture and Cytotoxic Potentials of Silver Nanoparticles
3.7. Statistically Analyze
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jagtap, R.R.; Garud, A.; Puranik, S.S.; Rudrapal, M.; Ansari, M.A.; Alomary, M.N.; Alshamrani, M.; Salawi, A.; Almoshari, Y.; Khan, J.; et al. Biofabrication of silver nanoparticles (AgNPs) using embelin for effective therapeutic management of lung cancer. Front. Nutr. 2019, 9, 960674. [Google Scholar]
- Eftekhari, A.; Kryschi, C.; Pamies, D.; Gulec, S.; Ahmadian, E.; Janas, D.; Davaran, S.; Khalilov, R. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics 2023, 7, 236. [Google Scholar] [PubMed]
- Eftekhari, A.; Dalili, M.; Karimi, Z.; Rouhani, S.; Hasanzadeh, A.; Rostamnia, S.; Khaksar, S.; Idris, A.O.; Karimi-Maleh, H.; Yola, M.L.; et al. Sensitive and selective electrochemical detection of bisphenol A based on SBA-15 like Cu-PMO modified glassy carbon electrode. Food Chem. 2021, 358, 129763. [Google Scholar] [PubMed]
- Gunashova, G.Y.; Ahmadova, F.R.; Khalilov, R.I. Biosynthesis of silver nanoparticles using thermophilic Bacillus sp. Б1. Adv. Biol. Earth Sci. 2021, 6, 142–145. [Google Scholar]
- Ramazanli, V.N. Effect of ph and temperature on the synthesis of silver nano particles extracted from olive leaf. Adv. Biol. Earth Sci. 2021, 6, 169–173. [Google Scholar]
- Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. Adv. Biol. Earth Sci. 2023, 8, 140–146. [Google Scholar]
- Ahmadov, I.S.; Bandaliyeva, A.A.; Nasibova, A.N.; Hasanova, F.V.; Khalilov, R.I. The synthesis of the silver nanodrugs in the medicinal plant baikal skullcap (scutellaria baicalensis georgi) and their antioxidant, antibacterial activity. Adv. Biol. Earth Sci. 2020, 5, 103–118. [Google Scholar]
- Marsoul, A.; Ijjaali, M.; Oumous, I.; Bennani, B.; Boukir, A. Determination of polyphenol contents in Papaver rhoeas L. flowers extracts (soxhlet, maceration), antioxidant and antibacterial evaluation. Mater. Today Proc. 2020, 31, S183–S189. [Google Scholar]
- Hatipoğlu, A.; Baran, A.; Keskin, C.; Baran, M.F.; Eftekhari, A.; Omarova, S.; Janas, D.; Khalilov, R.; Adican, M.T.; İrtegün İrtegün, S. Green synthesis of silver nanoparticles based on the Raphanus sativus leaf aqueous extract and their toxicological/microbiological activities. Environ. Sci. Pollut. Res. 2023, 1–13. [Google Scholar] [CrossRef]
- Hmamou, A.; Eloutassi, N.; Alshawwa, S.Z.; Al Kamaly, O.; Kara, M.; Bendaoud, A.; El-Assri, E.-M.; Tlemcani, S.; El Khomsi, M.; Lahkimi, A. Total Phenolic Content and Antioxidant and Antimicrobial Activities of Papaver rhoeas L. Organ Extracts Growing in Taounate Region, Morocco. Molecules 2022, 27, 854. [Google Scholar]
- Shahi, S.; Özcan, M.; Maleki Dizaj, S.; Sharifi, S.; Al-Haj Husain, N.; Eftekhari, A.; Ahmadian, E. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol. Mech. Methods 2019, 29, 368–377. [Google Scholar] [PubMed]
- Jafarova, A.F.; Ramazanli, V.N. Antibacterial characteristics of Ag nanoparticle extracted from olive leaf. Adv. Biol. Earth Sci. 2020, 5, 218–223. [Google Scholar]
- Ramazanli, V.N.; Ahmadov, I.S. Synthesis of silver nanoparticles by using extract of olive leaves. Adv. Biol. Earth Sci. 2022, 7, 238–244. [Google Scholar]
- Baran, A.; Baran, M.F.; Keskin, C.; Kandemir, S.I.; Valiyeva, M.; Mehraliyeva, S.; Khalilov, R.; Eftekhari, A. Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. J. Nanomater. 2021, 2021, 2270472. [Google Scholar]
- Baran, A.; Baran, M.F.; Keskin, C.; Hatipoğlu, A.; Yavuz, Ö.; İrtegün Kandemir, S.; Adican, M.T.; Khalilov, R.; Mammadova, A.; Ahmadian, E.; et al. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front. Bioeng. Biotechnol. 2022, 10, 855136. [Google Scholar]
- Baran, A.; Keskin, C.; Baran, M.F.; Huseynova, I.; Khalilov, R.; Eftekhari, A.; Irtegun-Kandemir, S.; Kavak, D.E. Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: Anticancer and antimicrobial activities. Bioinorg. Chem. Appl. 2021, 2021, 2058149. [Google Scholar]
- Baran, M.F.; Keskin, C.; Baran, A.; Hatipoğlu, A.; Yildiztekin, M.; Küçükaydin, S.; Kurt, K.; Hoşgören, H.; Sarker, M.M.R.; Sufianov, A.; et al. Green synthesis of silver nanoparticles from Allium cepa L. Peel extract, their antioxidant, antipathogenic, and anticholinesterase activity. Molecules 2023, 28, 2310. [Google Scholar]
- Pallela, P.N.V.K.; Ruddaraju, L.K.; Ruddaraju, L.K.; Yoon, S.-G.; Yoon, S.-G. Ultra Small, Mono Dispersed green Synthesized Silver Nanoparticles Using Aqueous Extract of Sida cordifolia Plant and Investigation of Antibacterial Activity. Microb. Pathog. 2018, 124, 63–69. [Google Scholar]
- Ipek, P.; Baran, M.F.; Yildiz, R.; Hatipoglu, A. Biosynthesis of silver nanoparticles from Arum dioscoridis plant leaf aqueous extract: Anticancer and antimicrobial properties. JAEFS 2023, 7, 399–407. [Google Scholar]
- Baran, M.F.; Acay, H.; Keskin, C. Determination of Antimicrobial and Toxic Metal Removal Activities of Plant-Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Glob. Chall. 2020, 4, 1900104. [Google Scholar]
- Hatipoğlu, A. Green biosynthesis of silver nanoparticles using Prunus cerasifera pissardii nigra leaf and their antimicrobial activities against some food pathogens. Czech J. Food Sci. 2022, 40, 383–391. [Google Scholar] [CrossRef]
- Veisi, H.; Azizi, S.; Mohammadi, P. Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod. 2018, 170, 1536–1543. [Google Scholar] [CrossRef]
- Renuka, R.; Devi, K.R.; Sivakami, M.; Thilagavathi, T.; Uthrakumar, R.; Kaviyarasu, K. Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application. Biocatal. Agric. Biotechnol. 2020, 24, 101567. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, S.; Tripathi, P. A facile and rapid method for green synthesis of Achyranthes aspera stem extract-mediated silver nano-composites with cidal potential against Aedes aegypti L. Saudi J. Biol. Sci. 2019, 26, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Uddin, I.; Ahmad, K.; Khan, A.A.; Kazmi, M.A. Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor. Sens. Biosens. Res. 2017, 16, 62–67. [Google Scholar]
- Deivanathan, S.K.; Prakash, J.T.J. Green synthesis of silver nanoparticles using aqueous leaf extract of Guettarda speciosa and its antimicrobial and anti-oxidative properties. Chem. Data Collect. 2022, 38, 100831. [Google Scholar] [CrossRef]
- Hamelian, M.; Varmira, K.; Veisi, H. Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential. J. Photochem. Photobiol. B 2018, 184, 71–79. [Google Scholar] [CrossRef]
- David, L.; Moldovan, B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials 2020, 10, 202. [Google Scholar] [CrossRef]
- Garibo, D.; Borbón-Nuñez, H.A.; de León, J.N.D.; Mendoza, E.G.; Estrada, I.; Toledano-Megaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A.; et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020, 10, 12805. [Google Scholar] [CrossRef]
- Yılmaz Öztürk, B.; Gürsu, B.Y.; Dağ, İ. Antibiofilm and Antimicrobial Activities of Green Synthesized Silver Nanoparticles using marine red algae Gelidium corneum. Process Biochem. 2020, 89, 208–219. [Google Scholar]
- Kemala, P.; Idroes, R.; Khairan, K.; Ramli, M.; Jalil, Z.; Idroes, G.M.; Tallei, T.E.; Helwani, Z.; Safitri, E.; Iqhrammullah, M.; et al. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules 2022, 27, 5310. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.E. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pac. J. Trop. Biomed. 2015, 5, 382–386. [Google Scholar] [CrossRef]
- Jebril, S.; Khanfir ben Jenana, R.; Dridi, C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys. 2020, 248, 122898. [Google Scholar] [CrossRef]
- Patil, M.P.; Singh, R.D.; Koli, P.B.; Patil, K.T.; Jagdale, P.S.; Tipare, A.R.; Kim, G.-D. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 2018, 121, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Thirumagal, N.; Jeyakumari, A.P. Structural, Optical and Antibacterial Properties of Green Synthesized Silver Nanoparticles (AgNPs) Using Justicia adhatoda L. Leaf Extract. J. Clust. Sci. 2020, 31, 487–497. [Google Scholar] [CrossRef]
- Atalar, M.N.; Baran, A.; Baran, M.F.; Keskin, C.; Aktepe, N.; Yavuz, Ö.; İrtegun Kandemir, S. Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. Part. Sci. Technol. 2021, 40, 589–597. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Hussein, M.H.; Abo-elmagd Rasha, A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 9, 13071. [Google Scholar] [CrossRef]
- Hamida, R.S.; Abdelmeguid, N.E.; Abdelaal Ali, M.; Bin-Meferij, M.M.; Khali, M.I. Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria Desertifilum sp. extract: Their Antibacterial and Cytotoxicity Effects. Int. J. Nanomed. 2020, 15, 49–63. [Google Scholar] [CrossRef]
- Zein, R.; Alghoraibi, I.; Soukkarieh, C.; Salman, A.; Alahmad, A. In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves. Heliyon 2020, 6, e04594. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abd-El Sayed, M.A.; Zikry, M.M.; Nafady, A. Green Synthesis of AgNPs() Ultilizing Delonix Regia Extract as Anticancer and Antimicrobial Agents**. ChemistrySelect 2020, 5, 13263–13268. [Google Scholar] [CrossRef]
- Sher, N.; Ahmed, M.; Mushtaq, N.; Khan, R.A. Synthesis of biogenic silver nanoparticles from the extract of Heliotropium eichwaldi L. and their effect as antioxidant, antidiabetic, and anti-cholinesterase. Appl. Organomet. Chem. 2023, 37, e6968. [Google Scholar] [CrossRef]
- Irtegun Kandemir, S.; Ipek, P. Antiproliferative effect of Potentilla fulgens on gli-oblastoma cancer cells through downregulation of Akt/mTOR signaling pathway. J. Cancer Res. Ther. 2023, 4. [Google Scholar] [CrossRef]
Pathogen Microorganisms | PR-AgNPs | AgNO3 Solution | Control Antibiotics * |
---|---|---|---|
Escherichia coli | 0.750 ± 0.10 | 0.66 ± 0.10 | 2.00 ± 0.10 |
Staphylococcus aureus | 1.500 ± 0.15 | 2.65 ± 0.20 | 2.00 ± 0.15 |
Pseudomonas aeruginosa | 6.000 ± 0.20 | 0.66 ± 0.10 | 2.00 ± 0.20 |
Bacillus subtilis | 3.000 ± 0.15 | 1.32 ± 0.10 | 1.00 ± 0.15 |
Candida albicans | 0.375 ± 0.10 | 0.66 ± 0.15 | 2.00 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İpek, P.; Yıldız, R.; Baran, M.F.; Hatipoğlu, A.; Baran, A.; Sufianov, A.; Beylerli, O. Green Synthesis of Silver Nanoparticles Derived from Papaver rhoeas L. Leaf Extract: Cytotoxic and Antimicrobial Properties. Molecules 2023, 28, 6424. https://doi.org/10.3390/molecules28176424
İpek P, Yıldız R, Baran MF, Hatipoğlu A, Baran A, Sufianov A, Beylerli O. Green Synthesis of Silver Nanoparticles Derived from Papaver rhoeas L. Leaf Extract: Cytotoxic and Antimicrobial Properties. Molecules. 2023; 28(17):6424. https://doi.org/10.3390/molecules28176424
Chicago/Turabian Styleİpek, Polat, Reşit Yıldız, Mehmet Fırat Baran, Abdulkerim Hatipoğlu, Ayşe Baran, Albert Sufianov, and Ozal Beylerli. 2023. "Green Synthesis of Silver Nanoparticles Derived from Papaver rhoeas L. Leaf Extract: Cytotoxic and Antimicrobial Properties" Molecules 28, no. 17: 6424. https://doi.org/10.3390/molecules28176424
APA Styleİpek, P., Yıldız, R., Baran, M. F., Hatipoğlu, A., Baran, A., Sufianov, A., & Beylerli, O. (2023). Green Synthesis of Silver Nanoparticles Derived from Papaver rhoeas L. Leaf Extract: Cytotoxic and Antimicrobial Properties. Molecules, 28(17), 6424. https://doi.org/10.3390/molecules28176424