Recent Advances in the Study of Trivalent Lanthanides and Actinides by Phosphinic and Thiophosphinic Ligands in Condensed Phases
Abstract
:1. Introduction
2. Factors Influencing Dynamics of Ln3+ and An3+
2.1. Concentration of Ligands
2.2. Protonation State of Ligands (pH)
2.3. Types of Co-Existing Ions
2.4. Type of Dilute Phase (Organic Phase)
3. Phosphinic Ligands Bound Lanthanides and Actinides
3.1. The Coordinated Structures of the Complexes
3.2. The Dehydration of Lanthanides and Actinides
3.3. The Covalency of Coordinated Bonds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, S.; Li, Y.; Cheng, J.; Yu, J.; Ren, W.; Yang, S. Active and selective removal of U(VI) from contaminated water by plasma-initiated polymerization of aniline/GO. J. Mol. Liq. 2021, 344, 117687. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Lin, N.; Zhang, Z.; Zhou, J.; Yang, S. Significantly enhanced alkaline stability and cyanide suppression of Prussian blue analogues using montmorillonite for high-performance cesium removal. Sep. Purif. Technol. 2023, 325, 124662. [Google Scholar] [CrossRef]
- Salvatores, M. Nuclear fuel cycle strategies including Partitioning and Transmutation. Nucl. Eng. Des. 2005, 235, 805–816. [Google Scholar] [CrossRef]
- González-Romero, E.M. Impact of partitioning and transmutation on the high level waste management. Nucl. Eng. Des. 2011, 241, 3436–3444. [Google Scholar] [CrossRef]
- Salvatores, M.; Palmiotti, G. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Prog. Part. Nucl. Phys. 2011, 66, 144–166. [Google Scholar] [CrossRef]
- Jiao, Y.; Song, C.; Zhu, Y. Recent developments in the extraction on separation method for treatment of high-level liquid waste. Atom. Energ. Sci. Technol. 2000, 34, 473–480. [Google Scholar]
- Magill, J.; Berthou, V.; Haas, D.; Galy, J.; Schenkel, R.; Wiese, H.W.; Heusener, G.; Tommasi, J.; Youinou, G. Impact limits of partitioning and transmutation scenarios on the radiotoxicity of actinides in radioactive waste. Nucl. Energy 2003, 42, 263–277. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Baaden, M.; Burgard, M.; Wipff, G. TBP at the water-oil interface: The effect of TBP concentration and water acidity investigated by molecular dynamics simulations. J. Phys. Chem. B 2001, 105, 11131–11141. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Mohapatra, P.K.; Manchanda, V.K. Solvent extraction and extraction chromatographic separation of Am3+ and Eu3+ from nitrate medium using Cyanex® 301. Solvent Extr. Ion Exc. 2007, 25, 27–39. [Google Scholar] [CrossRef]
- Benay, G.; Schurhammer, R.; Wipff, G. Basicity, complexation ability and interfacial behavior of BTBPs: A simulation study. Phys. Chem. Chem. Phys. 2011, 13, 2922–2934. [Google Scholar] [CrossRef] [PubMed]
- Benay, G.; Schurhammer, R.; Wipff, G. BTP-based ligands and their complexes with Eu3+ at “oil”/water interfaces. a molecular dynamics study. Phys. Chem. Chem. Phys. 2010, 12, 11089–11102. [Google Scholar] [CrossRef]
- Coupez, B.; Boehme, C.; Wipff, G. Importance of interfacial phenomena and synergistic effects in lanthanide cation extraction by dithiophosphinic ligands: a molecular dynamics study. J. Phys. Chem. B 2003, 107, 9484–9490. [Google Scholar] [CrossRef]
- Dwadasi, B.S.; Goverapet Srinivasan, S.; Rai, B. Interfacial structure in the liquid-liquid extraction of rare earth elements by phosphoric acid ligands: A molecular dynamics study. Phys. Chem. Chem. Phys. 2020, 22, 4177–4192. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Lovering, K.; Bu, W.; Uysal, A. Anions enhance rare earth adsorption at negatively charged surfaces. J. Phys. Chem. Lett. 2020, 11, 4436–4442. [Google Scholar] [CrossRef]
- Lovering, K.; Nayak, S.; Bu, W.; Uysal, A. The role of specific ion effects in ion transport: The case of nitrate and thiocyanate. J. Phys. Chem. C 2020, 124, 573–581. [Google Scholar] [CrossRef]
- Majdan, M. The separation factors of the lanthanides in the Ln(NO3)3-NH4NO3-TBP system. Effects of change in activity coefficients. Hydrometallurgy 1994, 35, 179–185. [Google Scholar] [CrossRef]
- Mokili, B.; Poitrenaud, C. Modelling of the extraction of neodymium and praseodymium nitrates from aqueous solutions containing a salting-out agent or nitric acid by tri-n-butylphosphate. Solvent Extr. Ion Exc. 1996, 14, 617–634. [Google Scholar] [CrossRef]
- Sun, P.; Huang, K.; Liu, H. Specific salt effect on the interaction between rare earth ions and trioctylphosphine oxide molecules at the organic-aqueous two-phase interface: Experiments and molecular dynamics simulations. Langmuir 2018, 34, 11374–11383. [Google Scholar] [CrossRef]
- Nayak, S.; Lovering, K.; Uysal, A. Ion-specific clustering of metal-amphiphile complexes in rare earth separations. Nanoscale 2020, 12, 20202–20210. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, L.; Hao, Y.; Meng, R.; Zhang, X.; Lei, L.; Xiao, C. Effect of counteranions on the extraction and complexation of trivalent lanthanides with tetradentate phenanthroline-derived phosphonate ligands. Inorg. Chem. 2020, 59, 17453–17463. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.; Abdollahy, M.; Darban, A.K.; Mohseni, M. Nitrate ions effects on solvent extraction of rare earth elements from aqueous solutions by D2EHPA: Experimental studies and molecular simulations. J. Mol. Liq. 2021, 333, 116015. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, X.; Tan, R.; Chai, Z.; Wang, D. Key factors determining efficiency of liquid-liquid extraction: Implications from molecular dynamics simulations of biphasic behaviors of CyMe4-BTPhen and its Am(III) complexes. J. Phys. Chem. B 2020, 124, 1751–1766. [Google Scholar] [CrossRef]
- Rout, A.; Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R. Unusual extraction of plutonium(IV) from uranium(VI) and americium(III) using phosphonate based task specific ionic liquid. Radiochim. Acta 2010, 98, 459–466. [Google Scholar] [CrossRef]
- Rout, A.; Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R. Extraction behavior of actinides and fission products in amide functionalized ionic liquid. Sep. Purif. Technol. 2012, 97, 164–171. [Google Scholar] [CrossRef]
- Mohapatra, P.K.; Sengupta, A.; Iqbal, M.; Huskens, J.; Verboom, W. Highly efficient diglycolamide-based task-specific ionic liquids: Synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem. Eur. J. 2013, 19, 3230–3238. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.; Zhang, L.; Shen, L. Task-specific ionic liquids incorporating alkyl phosphate cations for extraction of U(VI) from nitric acid medium: Synthesis, characterization, and extraction performance. J. Radioanal. Nucl. Chem. 2015, 303, 433–440. [Google Scholar] [CrossRef]
- Mohapatra, P.K.; Kandwal, P.; Iqbal, M.; Huskens, J.; Murali, M.S.; Verboom, W. A novel CMPO-functionalized task specific ionic liquid: Synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans. 2013, 42, 4343–4347. [Google Scholar] [CrossRef]
- De Jesus, K.; Rodriguez, R.; Baek, D.L.; Fox, R.V.; Pashikanti, S.; Sharma, K. Extraction of lanthanides and actinides present in spent nuclear fuel and in electronic waste. J. Mol. Liq. 2021, 336, 116006. [Google Scholar] [CrossRef]
- Yudaev, P.A.; Kolpinskaya, N.A.; Chistyakov, E.M. Organophosphorous extractants for metals. Hydrometallurgy 2021, 201, 105558. [Google Scholar] [CrossRef]
- Li, Y.; Dong, X.; Yuan, J.; Pu, N.; Wei, P.; Sun, T.; Shi, W.; Chen, J.; Wang, J.; Xu, C. Performance and mechanism for the selective separation of trivalent americium from lanthanides by a tetradentate phenanthroline ligand in ionic liquid. Inorg. Chem. 2020, 59, 3905–3911. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Sun, T.; Meng, X.; Chen, J.; Xu, C. Thermodynamic insight into the solvation and complexation behavior of U(VI) in ionic liquid: Binding of CMPO with U(VI) studied by optical spectroscopy and calorimetry. Inorg. Chem. 2017, 56, 3014–3021. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, C.; Chaumont, A.; Billard, I.; Hennig, C.; Ouadi, A.; Georg, S.; Wipff, G. Competitive complexation of nitrates and chlorides to uranyl in a room temperature ionic liquid. Inorg. Chem. 2010, 49, 6484–6494. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.B.; Fu, Y.; Popovs, I.; Jansone-Popova, S.; Dai, S.; Jiang, D.-E. Molecular dynamics simulations of complexation of Am(III) with a preorganized dicationic ligand in an ionic liquid. J. Phys. Chem. B 2021, 125, 8532–8538. [Google Scholar] [CrossRef] [PubMed]
- Drader, J.A.; Luckey, M.; Braley, J.C. Thermodynamic considerations of covalency in trivalent actinide-(poly)aminopolycarboxylate interactions. Solvent Extr. Ion Exc. 2016, 34, 114–125. [Google Scholar] [CrossRef]
- Lan, J.-H.; Shi, W.-Q.; Yuan, L.-Y.; Li, J.; Zhao, Y.-L.; Chai, Z.-F. Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coord. Chem. Rev. 2012, 256, 1406–1417. [Google Scholar] [CrossRef]
- Lewis, F.W.; Harwood, L.M.; Hudson, M.J.; Drew, M.G.B.; Desreux, J.F.; Vidick, G.; Bouslimani, N.; Modolo, G.; Wilden, A.; Sypula, M.; et al. Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J. Am. Chem. Soc. 2011, 133, 13093–13102. [Google Scholar] [CrossRef]
- Kelley, M.P.; Bessen, N.P.; Su, J.; Urban, M.; Sinkov, S.I.; Lumetta, G.J.; Batista, E.R.; Yang, P.; Shafer, J.C. Revisiting complexation thermodynamics of transplutonium elements up to einsteinium. Chem. Commun. 2018, 54, 10578–10581. [Google Scholar] [CrossRef]
- Foreman, M.R.S.J.; Hudson, M.J.; Geist, A.; Madic, C.; Weigl, M. An investigation into the extraction of americium(III), lanthanides and d-block metals by 6,6′-Bis-(5,6-dipentyl-[1,2,4]triazin-3-yl)-[2,2′]bipyridinyl (C5-BTBP). Solvent Extr. Ion Exc. 2005, 23, 645–662. [Google Scholar] [CrossRef]
- Matsumura, T.; Takeshita, K. Extraction behavior of Am(III) from Eu(III) with hydrophobic derivatives of N,N,N’,N’-tetrakis(2-methylpyridyl)ethylenediamine (TPEN). J. Nucl. Sci. Technol. 2006, 43, 824–827. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Jiao, R. Extraction of Am(III) and Eu(III) from nitrate solution with purified Cyanex 301. Solvent Extr. Ion Exc. 1996, 14, 61–68. [Google Scholar] [CrossRef]
- Xu, L.; Pu, N.; Li, Y.; Wei, P.; Sun, T.; Xiao, C.; Chen, J.; Xu, C. Selective separation and complexation of trivalent actinide and lanthanide by a tetradentate soft-hard donor ligand: Solvent extraction, spectroscopy, and DFT calculations. Inorg. Chem. 2019, 58, 4420–4430. [Google Scholar] [CrossRef] [PubMed]
- Dam, H.H.; Reinhoudt, D.N.; Verboom, W. Multicoordinate ligands for actinide/lanthanide separations. Chem. Soc. Rev. 2007, 36, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Kolarik, Z. Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-Donors in solutions. Chem. Rev. 2008, 108, 4208–4252. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Madic, C.; Baron, P.; Ozawa, M.; Tanaka, Y. Trivalent minor actinides/lanthanides separation, using organophosphinic acids. J. Alloys Compd. 1998, 271–273, 159–162. [Google Scholar] [CrossRef]
- Tian, G.; Zhu, Y.; Xu, J. Extraction of Am(III) and Ln(III) by dialkyldithiophosphinic acid with different alkyl groups. Solvent Extr. Ion Exc. 2001, 19, 993–1005. [Google Scholar]
- Klaehn, J.R.; Peterman, D.R.; Harrup, M.K.; Tillotson, R.D.; Luther, T.A.; Law, J.D.; Daniels, L.M. Synthesis of symmetric dithiophosphinic acids for “minor actinide” extraction. Inorg. Chim. Acta 2008, 361, 2522–2532. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Mohapatra, P.K. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: A review. Radiochim. Acta 2019, 107, 931–949. [Google Scholar] [CrossRef]
- Hudson, M.J.; Boucher, C.E.; Braekers, D.; Desreux, J.F.; Drew, M.G.B.; Foreman, M.R.S.J.; Harwood, L.M.; Hill, C.; Madic, C.; Marken, F.; et al. New bis(triazinyl) pyridines for selective extraction of americium(III). New J. Chem. 2006, 30, 1171–1183. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E. Glassy wasteforms for nuclear waste immobilization. Metall. Mater. Trans. A 2011, 42, 837–851. [Google Scholar] [CrossRef]
- Chen, J.; Jiao, R.; Zhu, Y. A study on the radiolytic stability of commercial and purified Cyanex 301. Solvent Extr. Ion Exc. 1996, 14, 555–565. [Google Scholar] [CrossRef]
- Modolo, G.; Odoj, R. Influence of the purity and irradiation stability of Cyanex 301 on the separation of trivalent actinides from lanthanides by solvent extraction. J. Radioanal. Nucl. Chem. 1998, 228, 83–89. [Google Scholar] [CrossRef]
- Peterman, D.R.; Greenhalgh, M.R.; Tillotson, R.D.; Klaehn, J.R.; Harrup, M.K.; Luther, T.A.; Law, J.D. Selective extraction of minor actinides from acidic media using symmetric and asymmetric dithiophosphinic acids. Sep. Sci. Technol. 2010, 45, 1711–1717. [Google Scholar] [CrossRef]
- Zhu, Y. The separation of americium from light lanthanides by Cyanex 301 extraction. Radiochim. Acta 1995, 68, 95–98. [Google Scholar] [CrossRef]
- Chen, J.; Tian, G.; Jiao, R.; Zhu, Y. A hot test for separating americium from fission product lanthanides by purified Cyanex 301 extraction in centrifugal contactors. J. Nucl. Sci. Technol. 2002, 39, 325–327. [Google Scholar] [CrossRef]
- Jensen, M.P.; Bond, A.H. Comparison of covalency in the complexes of trivalent actinide and lanthanide cations. J. Am. Chem. Soc. 2002, 124, 9870–9877. [Google Scholar] [CrossRef]
- Tian, G.; Zhu, Y.; Xu, J.; Zhang, P.; Hu, T.; Xie, Y.; Zhang, J. Investigation of the extraction complexes of light lanthanides(III) with bis(2,4,4-trimethylpentyl)dithiophosphinic Acid by EXAFS, IR, and MS in comparison with the americium(III) complex. Inorg. Chem. 2003, 42, 735–741. [Google Scholar]
- He, X.; Tian, G.; Chen, J.; Rao, L. Characterization of the extracted complexes of trivalent lanthanides with purified cyanex 301 in comparison with trivalent actinide complexes. Dalton Trans. 2014, 43, 17352–17357. [Google Scholar] [CrossRef]
- Sun, T.; Xu, C.; Chen, J. Formation of W/O microemulsions in the extraction of Nd(III) by bis(2,4,4-trimethylpentyl)dithiophosphinic acid and its effects on Nd(III) coordination. Dalton Trans. 2016, 45, 1078–1084. [Google Scholar] [CrossRef]
- Sun, T.; Xu, C.; Chen, J.; Duan, W. Formation of W/O microemulsions in the extraction of the lanthanide series by purified Cyanex 301. Solvent Extr. Ion Exc. 2017, 35, 199–209. [Google Scholar] [CrossRef]
- Bessen, N.; Yan, Q.; Pu, N.; Chen, J.; Xu, C.; Shafer, J. Extraction of the trivalent transplutonium actinides americium through einsteinium by the sulfur donor Cyanex 301. Inorg. Chem. Front. 2021, 8, 4177–4185. [Google Scholar] [CrossRef]
- Cao, X.; Heidelberg, D.; Ciupka, J.; Dolg, M. First-principles study of the separation of AmIII/CmIII from EuIII with Cyanex301. Inorg. Chem. 2010, 49, 10307–10315. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Yang, X.; Chai, Z.; Wang, D. Stronger hydration of Eu(III) impedes its competition against Am(III) in binding with N-donor extractants. Inorg. Chem. 2020, 59, 6267–6278. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Ghanty, T.K.; Mohapatra, P.K.; Manchanda, V.K. Selective americium(III) complexation by dithiophosphinates: A density functional theoretical validation for covalent interactions responsible for unusual separation behavior from trivalent lanthanides. Inorg. Chem. 2011, 50, 3913–3921. [Google Scholar] [CrossRef] [PubMed]
- Xu , C.; Rao, L. Interactions of bis(2,4,4-trimethylpentyl)dithiophosphinate with NdIII and CmIII in a homogeneous medium: A comparative study of thermodynamics and coordination modes. Chem. Eur. J. 2014, 20, 14807–14815. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, J.; Weissmann, D.; Dolg, M.; Chen, X. Accurate quantum chemical modelling of the separation of Eu3+ from Am3+/Cm3+ by liquid-liquid extraction with Cyanex272. Phys. Chem. Chem. Phys. 2015, 17, 20605–20616. [Google Scholar] [CrossRef]
- Sun, T.; Xu, C.; Xie, X.; Chen, J.; Liu, X. Quantum chemistry study on the extraction of trivalent lanthanide series by Cyanex301: Insights from formation of inner- and outer-sphere complexes. ACS Omega 2018, 3, 4070–4080. [Google Scholar] [CrossRef]
- Wang, F.; Jia, C.; Pan, D.; Chen, J. Study on short, straight alkyl chain substituted dithiophosphinic acids for actinides and lanthanides extraction separation. Ind. Eng. Chem. Res. 2013, 52, 18373–18378. [Google Scholar] [CrossRef]
- Wang, Z.; Pu, N.; Tian, Y.; Xu, C.; Wang, F.; Liu, Y.; Zhang, L.; Chen, J.; Ding, S. Highly selective separation of actinides from lanthanides by dithiophosphinic acids: An in-depth investigation on extraction, complexation, and DFT calculations. Inorg. Chem. 2019, 58, 5457–5467. [Google Scholar] [CrossRef]
- Pu, N.; Su, J.; Xu, L.; Sun, T.; Batista, E.R.; Chen, J.; Yang, P.; Shafer, J.C.; Xu, C. “Sweeping” ortho substituents drive desolvation and overwhelm electronic effects in Nd3+ Chelation: A case of three aryldithiophosphinates. Inorg. Chem. 2020, 59, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wu, J.; Chang, Y.; Zhang, L.; Yang, Y. Extraction of Am(III) and lanthanides(III) with organo dithiophosphinic acids. Radiochim. Acta 2008, 96, 771–779. [Google Scholar] [CrossRef]
- Xu, Q.; Wu, J.; Zhang, L.; Yang, Y. Extraction of Am(III) and Eu(III) with dialkyldi (or mono) thiophosphinic (or phosphoric) acids. J. Radioanal. Nucl. Chem. 2007, 273, 235–245. [Google Scholar] [CrossRef]
- Benson, M.T.; Moser, M.L.; Peterman, D.R.; Dinescu, A. Determination of pKa for dithiophosphinic acids using density functional theory. J. Mol. Struct. Theochem. 2008, 867, 71–77. [Google Scholar] [CrossRef]
- Torkaman, R.; Moosavian, M.A.; Torab-Mostaedi, M.; Safdari, J. Solvent extraction of samarium from aqueous nitrate solution by Cyanex301 and D2EHPA. Hydrometallurgy 2013, 137, 101–107. [Google Scholar] [CrossRef]
- Ionova, G.; Ionov, S.; Rabbe, C.; Hill, C.; Madic, C.; Guillaumont, R.; Krupa, J.C. Mechanism of trivalent actinide/lanthanide separation using bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex 301) and neutral O-bearing co-extractant synergistic mixtures. Solvent Extr. Ion Exc. 2001, 19, 391–414. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, Z.; Song, Y.-F.; Wang, D. Recent Advances in the Study of Trivalent Lanthanides and Actinides by Phosphinic and Thiophosphinic Ligands in Condensed Phases. Molecules 2023, 28, 6425. https://doi.org/10.3390/molecules28176425
Wang Q, Liu Z, Song Y-F, Wang D. Recent Advances in the Study of Trivalent Lanthanides and Actinides by Phosphinic and Thiophosphinic Ligands in Condensed Phases. Molecules. 2023; 28(17):6425. https://doi.org/10.3390/molecules28176425
Chicago/Turabian StyleWang, Qin, Ziyi Liu, Yu-Fei Song, and Dongqi Wang. 2023. "Recent Advances in the Study of Trivalent Lanthanides and Actinides by Phosphinic and Thiophosphinic Ligands in Condensed Phases" Molecules 28, no. 17: 6425. https://doi.org/10.3390/molecules28176425
APA StyleWang, Q., Liu, Z., Song, Y. -F., & Wang, D. (2023). Recent Advances in the Study of Trivalent Lanthanides and Actinides by Phosphinic and Thiophosphinic Ligands in Condensed Phases. Molecules, 28(17), 6425. https://doi.org/10.3390/molecules28176425