Effects of CeO2 Nanoparticles on Nutritional Quality of Two Crop Plants, Corn (Zea mays L.) and Soybean (Glycine max L.)
Abstract
:1. Introduction
2. Results
2.1. Dry Weight of Grain
2.2. Organic Nutrients
2.3. Contents of Mineral Elements
2.4. Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Experimental Design and Growth Conditions
4.3. Nutritional Quality Assessment
4.4. Quantification of Mineral Elements
4.5. Data Analysis and Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cornelis, G.; Ryan, B.; McLaughlin, M.J.; Kirby, J.K.; Beak, D.; Chittleborough, D. Solubility and batch retention of CeO2 nanoparticles in soils. Environ. Sci. Technol. 2011, 45, 2777–2782. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Morales, M.I.; Barrios, A.C.; McCreary, R.; Hong, J.; Lee, W.Y.; Nunez, J.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J. Agric. Food Chem. 2013, 61, 11278–11285. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Y.; Hernandez-Viezcas, J.A.; Hong, J.; Majumdar, S.; Niu, G.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ mu-XRF mapping of nutrients in kernels. Environ. Sci. Technol. 2015, 49, 2921–2928. [Google Scholar] [CrossRef]
- Marchiol, L.; Mattiello, A.; Poscic, F.; Fellet, G.; Zavalloni, C.; Carlino, E.; Musetti, R. Changes in Physiological and Agronomical Parameters of Barley (Hordeum vulgare) Exposed to Cerium and Titanium Dioxide Nanoparticles. Int. J. Environ. Res. Public Health 2016, 13, 332. [Google Scholar] [CrossRef] [PubMed]
- Poscic, F.; Mattiello, A.; Fellet, G.; Miceli, F.; Marchiol, L. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels. Int. J. Environ. Res. Public Health 2016, 13, 577. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Barrios, A.C.; Tan, W.; Rubenecia, R.; Lee, S.C.; Varela-Ramirez, A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ. Sci. Pollut. Res. Int. 2015, 22, 10551–10558. [Google Scholar] [CrossRef] [PubMed]
- Bradfield, S.J.; Kumar, P.; White, J.C.; Ebbs, S.D. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. Plant Physiol. Biochem. 2017, 110, 128–137. [Google Scholar] [CrossRef]
- Du, W.; Gardea-Torresdey, J.L.; Ji, R.; Yin, Y.; Zhu, J.; Peralta-Videa, J.R.; Guo, H. Physiological and Biochemical Changes Imposed by CeO2 Nanoparticles on Wheat: A Life Cycle Field Study. Environ. Sci. Technol. 2015, 49, 11884–11893. [Google Scholar] [CrossRef]
- Mostafavi, F.S.; Zaeim, D. Polymer Coatings for Food Applications. In Polymer Coatings; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Kruhlik, A.S.; Malashkevich, G.E.; Povedailo, V.A.; Ronishenko, B.V.; Tolkachev, V.A.; Yakovlev, D.L. Quenching of [Ce(H2O)n]3+ Fluorescence by Graphene Oxide. J. Appl. Spectrosc. 2019, 86, 384–388. [Google Scholar] [CrossRef]
- Kusmierek, E. A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts 2020, 10, 1435. [Google Scholar] [CrossRef]
- Song, G.; Cheng, N.; Zhang, J.; Huang, H.; Yuan, Y.; He, X.; Luo, Y.; Huang, K. Nanoscale Cerium Oxide: Synthesis, Biocatalytic Mechanism, and Applications. Catalysts 2021, 11, 1123. [Google Scholar] [CrossRef]
- Vasudevan, P. Biogenic synthesis of Cerium oxide nanoparticles using Justicia Adathoda leaves extract: Size-strain study by X-ray peak profile analysis and luminescence characteristics. J. Mol. Struct. 2023, 1272, 134144. [Google Scholar] [CrossRef]
- Rico, C.M.; Johnson, M.G.; Marcus, M.A. Cerium oxide nanoparticles transformation at the root-soil interface of barley (Hordeum vulgare L.). Environ. Sci. Nano 2018, 5, 1807–1812. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Monikh, F.A.; Lynch, I.; Valsami-Jones, E.; Zhang, Z. Growing Rice (Oryza sativa) Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO2 Nanoparticles. Environ. Sci. Technol. 2021, 55, 8654–8664. [Google Scholar] [CrossRef] [PubMed]
- Jiao, C.; Dong, C.; Dai, W.; Luo, W.; Fan, S.; Zhou, L.; Ma, Y.; He, X.; Zhang, Z. Geochemical cycle of exogenetic CeO2 nanoparticles in agricultural soil: Chemical transformation and re-distribution. Nano Today 2022, 46, 101563. [Google Scholar] [CrossRef]
- Jiao, C.; Dong, C.; Xie, C.; Luo, W.; Zhang, J.; Fan, S.; Liu, Y.; Ma, Y.; He, X.; Zhang, Z. Dissolution and Retention Process of CeO2 Nanoparticles in Soil with Dynamic Redox Conditions. Environ. Sci. Technol. 2021, 55, 14649–14657. [Google Scholar] [CrossRef]
- Dong, C.N.; Jiao, C.L.; Xie, C.J.; Liu, Y.B.; Luo, W.H.; Fan, S.X.; Ma, Y.H.; He, X.; Lin, A.J.; Zhang, Z.Y. Effects of ceria nanoparticles and CeCl3 on growth, physiological and biochemical parameters of corn (Zea mays) plants grown in soil. Nanoimpact 2021, 22, 100311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Li, Y.; Zhang, J.; Zheng, L.; Zhao, Y. Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 2015, 9, 855829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ma, Y.; Xie, C.; Guo, Z.; He, X.; Valsami-Jones, E.; Lynch, I.; Luo, W.; Zheng, L.; Zhang, Z. Plant species-dependent transformation and translocation of ceria nanoparticles. Environ. Sci. Nano 2019, 6, 60–67. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, M.; Yang, Q.; Li, J.; Wang, X.; Zhou, Q.; Nagawa, S.; Xia, B.; Xu, T.; Huang, R.; et al. Arabinogalactan protein-rare earth element complexes activate plant endocytosis. Proc. Natl. Acad. Sci. USA 2019, 116, 14349–14357. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Shi, C.; Liu, L.; Wang, C.; Qiao, W.; Gu, Z.; Wang, X. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings. Dose-Response A Publ. Int. Hormesis Soc. 2012, 10, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, X.; Zhou, Q. Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish. Chemosphere 2008, 73, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Byun, J. Utilization and Characterization of Corn -Based by -Products from the Ethanol Production Facilities. Ph.D. Thesis, The University of Nebraska, Lincoln, RI, USA, 2008. [Google Scholar]
- Kim, J.A.; Kim, H.S.; Choi, S.H.; Jang, J.Y.; Jeong, M.J.; Lee, S.I. The Importance of the Circadian Clock in Regulating Plant Metabolism. Int. J. Mol. Sci. 2017, 18, 2680. [Google Scholar] [CrossRef] [PubMed]
- Peraudeau, S.; Roques, S.; Quiñones, C.O.; Fabre, D.; Van Rie, J.; Ouwerkerk, P.B.F.; Jagadish, K.S.V.; Dingkuhn, M.; Lafarge, T. Increase in night temperature in rice enhances respiration rate without significant impact on biomass accumulation. Field Crops Res. 2015, 171, 67–78. [Google Scholar] [CrossRef]
- James, M.G.; Denyer, K.; Myers, A.M. Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 2003, 6, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Werij, J.S.; Furrer, H.; van Eck, H.J.; Visser, R.G.F.; Bachem, C.W.B. A limited set of starch related genes explain several interrelated traits in potato. Euphytica 2012, 186, 501–516. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Sui, L.H.; Wang, W.; Geng, C.M.; Yin, B.H. Visible injury and nitrogen metabolism of rice leaves under ozone stress, and effect on sugar and protein contents in grain. Atmos. Environ. 2012, 62, 433–440. [Google Scholar] [CrossRef]
- Friedman, M.; Brandon, D.L. Nutritional and Health Benefits of Soy Proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef]
- Gładysz, O.; Waśkiewicz, A.; Ciorga, B.; Goliński, P. Soybean. In Oilseed Crops; John Wiley & Sons Ltd.: West Sussex, UK, 2017; pp. 102–122. [Google Scholar] [CrossRef]
- Ghosh, A.; Saha, I.; Dolui, D.; De, A.K.; Sarkar, B.; Adak, M.K. Silver Can Induce Oxidative Stress in Parallel to Other Chemical Elicitors to Modulate the Ripening of Chili Cultivars. Plants 2020, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, M.; Mandal, B.; Saha, S.; Hazra, G.C.; Padhan, D.; Sarkar, D.; Batabyal, K.; Murmu, S.; Chattopadhyay, A.; Bauri, F.K. Zinc and Iron Profiling in Edible Parts of Some Common Vegetable and Fruit Crops: An Exploration of Inter- and Intra-Crop Variation. Agric. Res. 2022, 11, 421–428. [Google Scholar] [CrossRef]
- Yamaji, N.; Ma, J.F. The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci. 2014, 19, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Bao, Y.; Guo, A.; Ma, J. Environmentally Relevant-Level CeO2 NP with Ferrous Amendment Alters Soil Bacterial Community Compositions and Metabolite Profiles in Rice-Planted Soils. J. Agric. Food Chem. 2020, 68, 8172–8184. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Ma, Y.; Yang, J.; Zhang, B.; Luo, W.; Feng, S.; Zhang, J.; Wang, G.; He, X.; Zhang, Z. Effects of foliar applications of ceria nanoparticles and CeCl3 on common bean (Phaseolus vulgaris). Environ. Pollut. 2019, 250, 530–536. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, X.; Dong, C.; Fan, S.; Jiao, C.; Song, Z.; Shen, J.; Zhao, Y.; Li, X.; Zhang, F.; Ma, Y.; et al. Effects of CeO2 Nanoparticles on Nutritional Quality of Two Crop Plants, Corn (Zea mays L.) and Soybean (Glycine max L.). Molecules 2023, 28, 1798. https://doi.org/10.3390/molecules28041798
Gui X, Dong C, Fan S, Jiao C, Song Z, Shen J, Zhao Y, Li X, Zhang F, Ma Y, et al. Effects of CeO2 Nanoparticles on Nutritional Quality of Two Crop Plants, Corn (Zea mays L.) and Soybean (Glycine max L.). Molecules. 2023; 28(4):1798. https://doi.org/10.3390/molecules28041798
Chicago/Turabian StyleGui, Xin, Chaonan Dong, Shixian Fan, Chunlei Jiao, Zhuda Song, Jiaqi Shen, Yong Zhao, Xuanzhen Li, Fawen Zhang, Yuhui Ma, and et al. 2023. "Effects of CeO2 Nanoparticles on Nutritional Quality of Two Crop Plants, Corn (Zea mays L.) and Soybean (Glycine max L.)" Molecules 28, no. 4: 1798. https://doi.org/10.3390/molecules28041798
APA StyleGui, X., Dong, C., Fan, S., Jiao, C., Song, Z., Shen, J., Zhao, Y., Li, X., Zhang, F., Ma, Y., He, X., Lin, A., & Zhang, Z. (2023). Effects of CeO2 Nanoparticles on Nutritional Quality of Two Crop Plants, Corn (Zea mays L.) and Soybean (Glycine max L.). Molecules, 28(4), 1798. https://doi.org/10.3390/molecules28041798