Hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene: Synthesis, Properties, Modeling Structure
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of 2-FPP
3.3. Synthesis of 2-CEPP
3.4. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ture, S.; Darcan, C.; Türkyılmaz, O.; Kaygusuz, Ö. Synthesis, structural characterization and antimicrobial activities of cyclochlorotriphosphazene derivatives derived from N-(1-Naphthyl)ethylenediamine. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 507–515. [Google Scholar] [CrossRef]
- Lee, S.S.; Mizar, P.; Kucuk, O.; Ture, S. The reactions of cyclotriphosphazene with 2-(2-hydroxyethylamino)ethanol. Spectroscopic studies of the derived products. Phosphorus Silfur Silicon Relat. Elem. 2020, 195, 454–463. [Google Scholar] [CrossRef]
- Koran, K.; Arif, B.; Ali, D.; Dere, A.; Özen, F.; Al-Sehemi, A.G.; Al-Ghamdi, A.; Yakuphanoğlu, F. Investigation of Electrical Properties of Organophosphazene Layer Based Photodiode. Chem. Phys. 2020, 538, 110897. [Google Scholar] [CrossRef]
- Fan, W.; Li, Z.; Liao, Q.; Zhang, L.; Kong, L.; Yang, Z.; Xiang, M. Improving the Heat Resistance and Flame Retardancy of Epoxy Resin Composites by Novel Multifunctional Cyclophosphazene Derivatives. Polymers 2023, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Chistyakov, E.M.; Tupikov, A.S.; Buzin, M.I.; Borisov, R.S.; Kireev, V.V. Preparation of films based on β-diketophosphazene and different amines and study their properties. Mater. Chem. Phys. 2019, 223, 353–359. [Google Scholar] [CrossRef]
- Wang, W.; Wang, F.; Li, H.; Liu, Y. Synthesis of phosphorus-nitrogen hybrid flame retardant and investigation of its efficient flame-retardant behavior in PA6/PA66. J. Appl. Polym. Sci. 2023, 140, e53536. [Google Scholar] [CrossRef]
- Kononevich, Y.N.; Belova, A.S.; Sazhnikov, V.A.; Safonov, A.A.; Ionov, D.S.; Volodin, A.D.; Korlyukov, A.A.; Muzafarov, A.M. Synthesis and properties of new dibenzoylmethanatoboron difluoride dyads connected by flexible siloxane linkers. Tetrahedron Lett. 2020, 61, 152176. [Google Scholar] [CrossRef]
- González-Hernández, A.; León-Negrete, A.; Galván-Hidalgo, J.M.; Gómez, E.; Barba, V. Hexacyclic monomeric boronates derived from tridentate Shiff-base ligands fused by dative N→ B bond. J. Mol. Struct. 2020, 1207, 127779. [Google Scholar] [CrossRef]
- Alhaddad, M.; Chakraborty, P.; Hu, J.; Huang, K.W. Alkyl substituted 4-N-oxazadisilinane cations: A new family of Si protic ionic liquids and its application on esterification reactions. Tetrahedron Lett. 2020, 61, 151941. [Google Scholar] [CrossRef]
- Khazali, M.; Rouhani, M.; Saeidian, H. Utilizing the synergistic effect between imidazole aromaticity and guanidine structure for the computational design of novel uncharged organic superbases. J. Mol. Struct. 2023, 1273, 134348. [Google Scholar] [CrossRef]
- Sano, J.; Habaue, S. Multi-Responsive Polysiloxane/Poly (N-isopropylacrylamide) Interpenetrating Networks Containing Urea and Thiourea Groups. Polymers 2020, 12, 1175. [Google Scholar] [CrossRef]
- Shundrina, I.K.; Oleinik, I.V.; Pastukhov, V.I.; Shundrin, L.A.; Chernonosova, V.S.; Laktionov, P.P. Synthesis of Urethane-Type Polymers with Polydimethylsiloxane Blocks for the Manufacture of Fibrous Matrices by Electrospinning. Polym. Sci. Ser. B 2020, 62, 385–393. [Google Scholar] [CrossRef]
- Schmohl, S.; He, X.; Wiemhöfer, H.D. Boron Trifluoride Anionic Side Groups in Polyphosphazene Based Polymer Electrolyte with Enhanced Interfacial Stability in Lithium Batteries. Polymers 2018, 10, 1350. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Yin, H.-D.; Zhang, Y.-W.; Jiang, J.; Li, C. Coordination geometry of monomeric, dimeric and polymeric organotin (IV) compounds constructed from 5-bromopyridine-2-carboxylic acid and mono-, di- or tri-organotin precursors. J. Mol. Struct. 2013, 1036, 244–251. [Google Scholar] [CrossRef]
- İbişoğlu, H.; Atilla, D.; Tümay, S.O.; Şenocak, A.; Duygulu, E.; Yuksel, F. New cyclotriphosphazene ligand containing imidazole rings and its one-dimensional copper (II) coordination polymer. J. Mol. Struct. 2020, 1208, 127888. [Google Scholar] [CrossRef]
- Bredov, N.S.; Bykovskaya, A.A.; Nguyen, V.T.; Kireev, V.V.; Tupikov, A.S.; Sokol’skaya, I.B.; Posokhova, V.F.; Chuev, V.P. Oligomeric Silsesquioxane–Siloxane Modifiers for Polymer Dental Compounds. Polym. Sci. Ser. B 2020, 62, 182–189. [Google Scholar] [CrossRef]
- Yin, M.; Zhang, C.; Li, J.; Li, H.; Deng, Q.; Wang, S. Highly sensitive detection of benzoyl peroxide based on organoboron fluorescent conjugated polymers. Polymers 2019, 11, 1655. [Google Scholar] [CrossRef] [PubMed]
- You, G.Y.; Cai, Z.; Peng, H.; Tan, X.S.; He, H.W. A well-defined cyclotriphosphazene based epoxy monomer and its application as a novel epoxy resin: Synthesis, curing behaviors, and flame retardancy. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 541–550. [Google Scholar] [CrossRef]
- Uslu, A.; Yeşilot, S. Recent advances in the supramolecular assembly of cyclophosphazene derivatives. Dalton Trans. 2021, 50, 2324–2341. [Google Scholar] [CrossRef] [PubMed]
- Aslan, F.; Ihsan, A.; Soylemez, B. Synthesis of fluorescence organocyclotriphosphazene derivatives having functional groups such as formyl, Schiff base and both formyl and Schiff base without using Ar or N2 atmosphere. J. Mol. Struct. 2017, 1137, 387–395. [Google Scholar] [CrossRef]
- Casella, G.; Carlotto, S.; Lanero, F.; Mozzon, M.; Sgarbossa, P.; Bertani, R. Cyclo-and Polyphosphazenes for Biomedical Applications. Molecules 2022, 27, 8117. [Google Scholar] [CrossRef] [PubMed]
- Kireev, V.V.; Bredov, N.S.; Bilichenko, Y.V.; Borisov, R.S.; Chuev, V.P. Epoxy oligomers based on eugenol cyclotriphosphazene derivatives. Polym. Sci. Ser. A 2008, 50, 609–615. [Google Scholar] [CrossRef]
- Dagdag, O.; El Gouri, M.; El Mansouri, A.; Outzourhit, A.; El Harfi, A.; Cherkaoui, O.; El Bachiri, A.; Hamed, O.; Jodeh, S.; Hanbali, G. Rheological and electrical study of a composite material based on an epoxy polymer containing cyclotriphosphazene. Polymers 2020, 12, 921. [Google Scholar] [CrossRef] [PubMed]
- Zarybnicka, L.; Machotova, J.; Kopecka, R.; Sevcik, R.; Hudakova, M.; Pokorny, J.; Sal, J. Effect of cyclotriphosphazene-based curing agents on the flame resistance of epoxy resins. Polymers 2021, 13, 8. [Google Scholar] [CrossRef]
- Zhou, X.; Qiu, S.; He, L.; Wang, X.; Zhu, Y.; Chu, F.; Wang, B.; Song, L.; Hu, Y. Synthesis of star-shaped allyl phosphazene small molecules for enhancing fire safety and toughness of high-performance BMI resin. Chem. Eng. J. 2021, 425, 130655. [Google Scholar] [CrossRef]
- Sirotin, I.S.; Sarychev, I.A.; Vorobyeva, V.V.; Kuzmich, A.A.; Bornosuz, N.V.; Onuchin, D.V.; Gorbunova, I.Y.; Kireev, V.V. Synthesis of Phosphazene-Containing, Bisphenol A-Based Benzoxazines and Properties of Corresponding Polybenzoxazines. Polymers 2020, 12, 1225. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, N.; Appavoo, D.; Lochab, B. Eco-friendly halogen-free flame retardant cardanol polyphosphazene polybenzoxazine networks. ACS Sustain. Chem. Eng. 2018, 6, 389–402. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, G.; Zhang, Y.; Wu, L.; Jia, Y.; Tan, Y.; Liu, J.; Zhang, X. Enhancement of Flame Retardancy of Colorless and Transparent Semi-Alicyclic Polyimide Film from Hydrogenated-BPDA and 4, 4′-oxydianiline via the Incorporation of Phosphazene Oligomer. Polymers 2020, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Gettleman, L.; Jaeger, D. Uses of Polyphosphazene in Dentistry. In Applicative Aspects of Poly(organophosphazenes); Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2004; pp. 33–47. [Google Scholar]
- Greish, Y.E.; Bender, J.D.; Lakshmi, S.; Brown, P.W.; Allcock, H.R.; Laurencin, C.T. Formation of hydroxyapatite–polyphosphazene polymer composites at physiologic temperature. J. Biomed. Mater. Res. 2006, 77, 416–425. [Google Scholar] [CrossRef]
- Brown, J.L.; Nair, L.S.; Bender, J.; Allcock, H.R.; Cato, T. The formation of an apatite coating on carboxylated polyphosphazenes via a biomimetic process. Mater. Lett. 2007, 61, 3692–3695. [Google Scholar] [CrossRef]
- Ling, Y.; Jiao, J.; Zhang, M.; Liu, H.; Bai, D.; Fenga, Y.; He, Y. A porous lanthanide metal–organic framework based on a flexible cyclotriphosphazene functionalized hexacarboxylate exhibiting selective gas adsorption. Cryst. Eng. Comm. 2016, 18, 6254–6261. [Google Scholar] [CrossRef]
- Koran, K.; Çalışkan, E.; Öztürk, D.A.; Çapan, İ.; Tekin, S.; Sandal, S.; Görgülü, A.O. The first peptide derivatives of dioxybiphenyl-bridged spiro cyclotriphosphazenes: In vitro cytotoxicity activities and DNA damage studies. Bioorg. Chem. 2023, 132, 106338. [Google Scholar] [CrossRef] [PubMed]
- Beytur, A.; Tekin, Ç.; Çalışkan, E.; Tekin, S.; Koran, K.; Görgülü, A.O.; Sandal, S. Hexa-substituted cyclotriphosphazene derivatives containing hetero-ring chalcones: Synthesis, in vitro cytotoxic activity and their DNA damage determination. Bioorg. Chem. 2022, 127, 105997. [Google Scholar] [CrossRef]
- Doğan, H.; Bahar, M.R.; Çalışkan, E.; Tekin, S.; Uslu, H.; Akman, F.; Koran, K.; Sandal, S.; Görgülü, A.O. Synthesis and spectroscopic characterizations of hexakis [(1-(4′-oxyphenyl)-3-(substituted-phenyl) prop-2-en-1-one)] cyclotriphosphazenes: Their in vitro cytotoxic activity, theoretical analysis and molecular docking studies. J. Biomol. Struct. Dyn. 2022, 40, 3258–3272. [Google Scholar] [CrossRef]
- Chistyakov, E.M.; Panfilova, D.V.; Kireev, V.V. Carboxyl Derivatives of Phosphazenes. J. Gen. Chem. 2017, 87, 997–1006. [Google Scholar] [CrossRef]
- Andrianov, A.K.; Marin, A.; Chen, J. Synthesis, Properties, and Biological Activity of Poly[di(sodium carboxylatoethylphenoxy)phosphazene]. Biomacromolecules 2006, 7, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.-C.; Chen, P.-C.; He, G.-J.; Huang, X.-J.; Xu, Z.-K. Preparation of Polyphosphazene Hydrogels for Enzyme Immobilization. Molecules 2014, 19, 9850–9863. [Google Scholar] [CrossRef]
- Jeevananthan, V.; Shanmugan, S. Halogen-free layered double hydroxide-cyclotriphosphazene carboxylate flame retardants: Effects of cyclotriphosphazene di, tetra and hexacarboxylate intercalation on layered double hydroxides against the combustible epoxy resin coated on wood substrates. RSC Adv. 2022, 12, 23322–23336. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, X.; Fu, Y.; Zhu, H.; Zhao, G.; Wang, Z. Curing reaction mechanism and heat resistance properties of hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene/bisphenol A aniline benzoxazine blends. J. Appl. Polym. Sci. 2018, 135, 46389. [Google Scholar] [CrossRef]
- Selin, V.; Albright, V.; Ankner, J.F.; Marin, A.; Andrianov, A.K.; Sukhishvili, S.A. Biocompatible nanocoatings of fluorinated polyphosphazenes through aqueous assembly. ACS Appl. Mater. Inter. 2018, 10, 9756–9764. [Google Scholar] [CrossRef]
- Magiri, R.; Lai, K.; Chaffey, A.; Zhou, Y.; Pyo, H.M.; Gerdts, V.; Mutwiri, G. Intradermal immunization with inactivated swine influenza virus and adjuvant polydi (sodium carboxylatoethylphenoxy) phosphazene (PCEP) induced humoral and cell-mediated immunity and reduced lung viral titres in pigs. Vaccine 2018, 36, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Magiri, R.; Lai, K.; Huang, Y.; Mutwiri, G.; Wilson, H.L. Innate immune response profiles in pigs injected with vaccine adjuvants polydi (sodium carboxylatoethylphenoxy) phosphazene (PCEP) and Emulsigen. Vet. Immunol. Immunopathol. 2019, 209, 7–16. [Google Scholar] [CrossRef]
- Pawar, H.S.; Wagh, A.S.; Lali, A.M. Triethylamine: A potential N-base surrogate for pyridine in Knoevenagel condensation of aromatic aldehydes and malonic acid. New J. Chem. 2016, 40, 4962–4968. [Google Scholar] [CrossRef]
- Bobrov, M.F.; Buzin, M.I.; Primakov, P.V.; Chistyakov, E.M. Investigation of hexakis[2-formylphenoxy]cyclotriphosphazene structure by single crystal X-ray diffraction and computer simulation. J. Mol. Struct. 2020, 1208, 127896. [Google Scholar] [CrossRef]
- Granovsky, A.A. Firefly Version 8. 2013. Available online: http://classic.chem.msu.su/gran/firefly/index.html (accessed on 19 May 2022).
- Schmidt, M.W. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Bode, B.M.; Gordon, B.M. MacMolPlt: A Graphical User Interface for GAMESS. J. Mol. Graph. 1998, 16, 133–138. [Google Scholar] [CrossRef]
Chemical Element | Actual Content | Theoretical Content | ||
---|---|---|---|---|
Weight | Atomic | Weight | Atomic | |
C | 57.84 | 44.7 | 58.22 | 45 |
N | 3.79 | 2.5 | 3.77 | 2.5 |
O | 26.01 | 15.1 | 25.88 | 15 |
P | 8.39 | 2.5 | 8.36 | 2.5 |
H | 3.79 | 35.2 | 3.77 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yudaev, P.; Konstantinova, A.; Volkov, V.; Chistyakov, E. Hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene: Synthesis, Properties, Modeling Structure. Molecules 2023, 28, 6571. https://doi.org/10.3390/molecules28186571
Yudaev P, Konstantinova A, Volkov V, Chistyakov E. Hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene: Synthesis, Properties, Modeling Structure. Molecules. 2023; 28(18):6571. https://doi.org/10.3390/molecules28186571
Chicago/Turabian StyleYudaev, Pavel, Anastasia Konstantinova, Vladimir Volkov, and Evgeniy Chistyakov. 2023. "Hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene: Synthesis, Properties, Modeling Structure" Molecules 28, no. 18: 6571. https://doi.org/10.3390/molecules28186571
APA StyleYudaev, P., Konstantinova, A., Volkov, V., & Chistyakov, E. (2023). Hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene: Synthesis, Properties, Modeling Structure. Molecules, 28(18), 6571. https://doi.org/10.3390/molecules28186571