Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe3+
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis
2.2. Fluorescent Spectra Studies of RBNCH
2.3. Colorimetric Spectra Studies of RBNCH
2.4. Characterization and Application of Rhodamine-Anchored Hydrogel Sensors
3. Materials and Methods
3.1. Materials
3.2. Instrumental Characterization
3.3. Synthesis of Monomer RBNCH
- Synthesis of intermediate RBNH: Rhodamine B (2.40 g, 5 mmol) and ethanediamine (1.80 g, 30 mmol) were dissolved in 60 mL EtOH, and refluxed for 12 h. After cooling to ambient temperature, the reaction mixture was added to 60 mL saturated brine solution and extracted with 3 × 20 mL CH2Cl2. The combined organic phase was dried with anhydrous Na2SO4 and concentrated by rotary evaporation. The crude product was purified by neutral alumina column, using CH2Cl2/MeOH (10:1, v:v) as eluent, to obtain RBNH as a pale yellowish solid (1.87 g, 77.8% yield). 1H NMR (400 MHz, CDCl3) δ 7.89 (dd, J = 5.9, 2.8 Hz, 1H), 7.49–7.40 (m, 2H), 7.08 (dd, J = 5.8, 2.8 Hz, 1H), 6.43 (d, J = 8.8 Hz, 2H), 6.37 (d, J = 2.4 Hz, 2H), 6.27 (dd, J = 8.9, 2.4 Hz, 2H), 3.33 (q, J = 7.1 Hz, 8H), 3.22 (t, J = 6.1 Hz, 2H), 2.53 (t, J = 6.1 Hz, 2H), 1.16 (t, J = 7.0 Hz, 12H).
- Synthesis of RBNCH: RBNH (0.48 g, 1 mmol) and triethylamine (0.15 g, 1.5 mmol) were added to a round bottom flask containing 15 mL dehydrated THF and cooled to 0 °C. Acryloyl chloride (0.11 g, 1.2 mmol) was added to the above solution, dropwise via syringe, and stirred for 12 h at ambient temperature. CH2Cl2/MeOH (20:1, v:v) was used as eluent to get the pale yellow solid RBNCH (0.43 g, 80.1% yield). 1H NMR (400 MHz, CDCl3) δ 7.91 (dd, J = 5.9, 2.7 Hz, 1H), 7.46 (dd, J = 5.4, 3.3 Hz, 2H), 7.18–7.04 (m, 2H), 6.51–6.34 (m, 4H), 6.28 (d, J = 7.3 Hz, 2H), 6.19 (dd, J = 17.1, 1.4 Hz, 1H), 6.02 (dd, J = 17.1, 10.3 Hz, 1H), 5.55 (dd, J = 10.3, 1.3 Hz, 1H), 3.34 (q, J = 6.8 Hz, 10H), 3.14 (s, 2H), 1.73 (s, 2H), 1.17 (s, 12H). HRMS: [M + H]+ (m/z), 539.2984.
3.4. General Procedures for Spectroscopic Analysis of RBNCH
3.5. Synthesis and Swelling Properties of P(AAm-co-RBNCH) Hydrogel Sensors
3.6. The Application of Hydrogels as Fluorescent Naked-Eye Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, L.; Meng, J.; Zhang, M.; Liu, T.; Zhang, C. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chem. Commun. 2022, 58, 185–207. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Manna, K.; Pal, S. Recent advances in various stimuli-responsive hydrogels: From synthetic designs to emerging healthcare applications. Mater. Chem. Front. 2022, 6, 2338–2385. [Google Scholar] [CrossRef]
- Lv, Z.-L.; Xu, J.-K.; Li, C.-Y.; Dai, L.; Li, H.-H.; Zhong, Y.-D.; Si, C.-L. pH-responsive lignin hydrogel for lignin fractionation. ACS Sustain. Chem. Eng. 2021, 9, 13972–13978. [Google Scholar] [CrossRef]
- Pang, Q.; Hu, H.-T.; Zhang, H.-Q.; Qiao, B.-B.; Ma, L. Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS Appl. Mater. Interfaces 2022, 14, 26536–26547. [Google Scholar] [CrossRef]
- Li, S.; Miao, Y.-N.; Zhang, M.; Reheman, A.; Huang, L.-L.; Chen, L.-H.; Wu, H. Anti-UV antibacterial conductive lignin-copolymerized hydrogel for pressure sensing. J. For. Eng. 2022, 7, 114–123. [Google Scholar]
- Wang, W.-C.; Zhang, X.-R.; Teng, M.; Huang, Z.-H. Preparation and performance of pH sensitive sodium alginate/charcoal slow-release gel spheres. J. For. Eng. 2022, 7, 128–134. [Google Scholar]
- Bovone, G.; Dudaryeva, O.Y.; Marco-Dufort, B.; Tibbitt, M.W. Engineering hydrogel adhesion for biomedical applications via chemical design of the junction. ACS Biomater. Sci. Eng. 2021, 7, 4048–4076. [Google Scholar] [CrossRef]
- Cross, E.R.; Coulter, S.M.; Pentlavalli, S.; Laverty, G. Unravelling the antimicrobial activity of peptide hydrogel systems: Current and future perspectives. Soft Matter 2021, 17, 8001–8021. [Google Scholar] [CrossRef]
- Guo, Y.-H.; Bae, J.-W.; Fang, Z.-W.; Li, P.-P.; Zhao, F.; Yu, G.-H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Song, C.-J.; Wang, C.; Hu, Y.-Q.; Wu, J.-H. Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol. Pharm. 2020, 17, 373–391. [Google Scholar] [CrossRef]
- Huang, B.; Lin, F.-C.; Tang, L.-R.; Lu, Q.-L.; Lu, B.-L. Research advances of functional cellulose-based hydrogels and its applications. J. For. Eng. 2022, 7, 1–13. [Google Scholar]
- Du, X.-F.; Zhai, J.-Y.; Li, X.-A.; Zhang, Y.-P.; Li, N.-P.; Xie, X.-J. Hydrogel-based optical ion sensors: Principles and challenges for point-of-care testing and environmental monitoring. ACS Sens. 2021, 6, 1990–2001. [Google Scholar] [CrossRef]
- Sun, X.-H.; Agate, S.; Salem, K.S.; Lucia, L.; Pal, L. Hydrogel-based sensor networks: Compositions, properties, and applications-a review. ACS Appl. Bio Mater. 2021, 4, 140–162. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-X.; Liu, Z.-Q.; Verwilst, P.; Koo, S.-Y.; Jangjili, P.; Kim, J.-S.; Lin, W.-Y. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev. 2019, 119, 10403–10519. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.-Y.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.-X.; Ren, S.-F.; Huang, H.; Duan, G.-G.; Liu, K.-M.; Liu, J.-B. Fluorescent and colorimetric sensors based on the oxidation of o-phenylenediamine. ACS Omega 2020, 5, 20698–20706. [Google Scholar] [CrossRef]
- Chen, Y.; Jia, F.-X.; Liu, Y.-J.; Yu, W.-R.; Cai, W.-W.; Zhang, X.-F.; He, H.-D.; Yao, H. The effects of Fe (III) and Fe (II) on anammox process and the Fe–N metabolism. Chemosphere 2021, 285, 131322. [Google Scholar] [CrossRef]
- Nazari, K.; Shokrollahzadeh, S.; Mahmoudi, A.; Mesbahi, F.; Matin, N.S.; Moosavi-Movahedi, A. Iron (III) protoporphyrin/MCM41 catalyst as a peroxidase enzyme model: Preparation and typical test reactions. J. Mol. Catal. A-Chem. 2005, 239, 1–9. [Google Scholar] [CrossRef]
- Shimizu, T. Binding of cysteine thiolate to the Fe(III) heme complex is critical for the function of heme sensor proteins. J. Inorg. Biochem. 2012, 108, 171–177. [Google Scholar] [CrossRef]
- Badawy, S.M.; Liem, R.I.; Rigsby, C.K.; Labotka, R.J.; Defreitas, R.A.; Thompson, A.A. Assessing cardiac and liver iron overload in chronically transfused patients with sickle cell disease. Br. J. Haematol. 2016, 175, 705–713. [Google Scholar] [CrossRef]
- Le, T.H.; Lee, H.J.; Kim, J.H.; Park, S.J. Detection of ferric ions and catecholamine neurotransmitters via highly fluorescent heteroatom co-doped carbon dots. Sensors 2020, 20, 3470. [Google Scholar] [CrossRef]
- Walker, E.M.; Walker, S.M. Effects of iron overload on the immune system. Ann. Clin. Lab. Sci. 2000, 30, 354–365. [Google Scholar] [PubMed]
- En, D.; Guo, Y.; Chen, B.-T.; Dong, B.; Peng, M.-J. Coumarin-derived Fe3+-selective fluorescent turn-off chemosensors: Synthesis, properties, and applications in living cells. RSC Adv. 2014, 4, 248–253. [Google Scholar] [CrossRef]
- Qu, X.-Y.; Liu, Q.; Ji, X.-N.; Chen, H.-C.; Zhou, Z.-K.; Shen, Z. Enhancing the Stokes’ shift of BODIPY dyes via through-bond energy transfer and its application for Fe3+-detection in live cell imaging. Chem. Commun. 2012, 48, 4600–4602. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Sun, M.-T.; Zhang, Z.-P.; Wang, S.-H. A novel dansyl-based fluorescent probe for highly selective detection of ferric ions. Talanta 2013, 105, 34–39. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Bhalla, V.; Sharma, P.R.; Kaur, T.; Qurishi, Y. Thiacalix [4]arene based fluorescent probe for sensing and imaging of Fe3+ ions. Dalton Trans. 2012, 41, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Thirumalaivasan, N.; Aazaad, B.; Awasthi, K.; Sun, K.W.; Wu, S.-P.; Lin, M.-C.; Ohta, N. Novel rhodamine probe for colorimetric and fluorescent detection of Fe3+ ions in aqueous media with cellular imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 242, 118757. [Google Scholar] [CrossRef] [PubMed]
- Diao, Q.-P.; Guo, H.; Yang, Z.-W.; Luo, W.-W.; Li, T.-C.; Hou, D.-Y. A rhodamine-6G-based “turn-on” fluorescent probe for selective detection of Fe3+ in living cells. Anal. Methods 2019, 11, 794–799. [Google Scholar] [CrossRef]
- Cheng, Z.; Zheng, L.; Xu, H.; Pang, L.; He, H. A rhodamine-based fluorescent probe for Fe3+: Synthesis, theoretical calculation and bioimaging application. Anal. Methods 2019, 11, 2565–2570. [Google Scholar] [CrossRef]
- Liu, X.; Chen, A.; Wu, Y.; Kan, C.; Xu, J. Fabrication of fluorescent polymer latexes based on Rhodamine B derivatives and their reusable films for Fe3+ detection. Dyes Pigments 2020, 182, 108633. [Google Scholar] [CrossRef]
- Choudhury, N.; De, P. Recent progress in pendant Rhodamine-based polymeric sensors for the detection of copper, mercury and iron ions. J. Macromol. Sci. Part. 2021, 58, 835–848. [Google Scholar] [CrossRef]
- Roy, A.; Das, S.; Sacher, S.; Mandal, S.K.; Roy, P. A Rhodamine based biocompatible chemosensor for Al3+, Cr3+ and Fe3+ ions: Extraordinary fluorescence enhancement and a precursor for future chemosensors. Dalton Trans. 2019, 48, 17594–17604. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Wang, H.; Wang, Y.; Huang, Q.; Zhang, Q. A novel colorimetric and turn-on fluorescent chemosensor for iron(III) ion detection and its application to cellular imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 168, 37–44. [Google Scholar] [CrossRef]
- Li, C.; Xiang, K.; Liu, Y.; Zheng, Y.; Tian, B.; Zhang, J. A novel colorimetric chemosensor for Cu2+ with high selectivity and sensitivity based on Rhodamine B. Res. Chem. Intermediat. 2015, 41, 10169–10180. [Google Scholar] [CrossRef]
- El Kaoutit, H.; Estévez, P.; Ibeas, S.; García, F.C.; Serna, F.; Benabdelouahab, F.B.; García, J.M. Chromogenic and fluorogenic detection of cations in aqueous media by means of an acrylic polymer chemosensor with pendant Rhodamine-based dyes. Dyes Pigments 2013, 96, 414–423. [Google Scholar] [CrossRef]
- Ji, S.-Z.; Meng, X.-M.; Ye, W.-P.; Feng, Y.; Sheng, H.-T.; Cai, Y.-L.; Liu, J.-S.; Zhu, X.-F.; Guo, Q.-X. A rhodamine-based “turn-on” fluorescent probe for Fe3+ in aqueous solution. Dalton Trans. 2014, 43, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, H.-Q.; Luo, J.; Liu, X.-Y. Synthesis of an amphiphilic copolymer bearing rhodamine moieties and its self-assembly into micelles as chemosensors for Fe3+ in aqueous solution. React. Funct. Polym. 2012, 72, 169–175. [Google Scholar] [CrossRef]
- Lin, F.-Y.; Yu, L.-P. Thiourea functionalized hydrogel photonic crystal sensor for Cd2+ detection. Anal. Methods 2012, 4, 2838–2845. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, S.-H.; Lyu, J.-T.; Lu, F.; Yue, X.-F.; Lv, J.-G. A visual volumetric hydrogel sensor enables quantitative and sensitive detection of copper ions. Chem. Commun. 2015, 51, 8078–8081. [Google Scholar] [CrossRef]
- Qu, Z.X.; Meng, X.; Duan, H.D.; Qiu, D.W.; Wang, L.Z. Rhodamine-immobilized optical hydrogels with shape deformation and Hg2+-sensitive fluorescence behaviors. Sci. Rep. 2020, 10, 7723. [Google Scholar] [CrossRef]
- Jiang, C.; Li, Y.-S.; Wang, H.; Chen, D.-S.; Wen, Y.-Q. A portable visual capillary sensor based on functional DNA crosslinked hydrogel for point-of-care detection of lead ion. Sens. Actuators B-Chem. 2020, 307, 127625. [Google Scholar] [CrossRef]
- Ozay, H.; Ozay, O. Rhodamine based reusable and colorimetric naked-eye hydrogel sensors for Fe3+ ion. Chem. Eng. J. 2013, 232, 364–371. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Gao, R.; Kan, C.; Xu, J. Portable quantitative detection of Fe3+ by integrating a smartphone with colorimetric responses of a Rhodamine-functionalized polyacrylamide hydrogel chemosensor. Sens. Actuators B-Chem. 2021, 340, 129958. [Google Scholar] [CrossRef]
- Samanta, T.; Das, N.; Singha, J.; Shunmugam, R. Unusual Red-OrangeEmission from Rhodamine-Derived Polynorbornene for Selective Binding to Fe3+ Ions in an Aqueous Environment. Anal. Methods 2020, 12, 4159–4165. [Google Scholar] [CrossRef]
- Qiu, X.-Y.; Huang, J.; Wang, N.; Zhao, K.-J.; Cui, J.-W.; Hao, J.-C. Facile synthesis of water-soluble rhodamine-based polymeric chemosensors via schiff base reaction for Fe3+ detection and living cell imaging. Front. Chem. 2022, 10, 845627. [Google Scholar] [CrossRef]
- Lin, H.; Huang, J.; Ding, L. A recyclable optical fiber sensor based on fluorescent carbon dots for the determination of ferric ion concentrations. J. Light. Technol. 2019, 37, 4815–4822. [Google Scholar] [CrossRef]
- Xia, J.; Zhuang, Y.-T.; Yu, Y.-L.; Wang, J.-H. Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Microchim. Acta 2017, 184, 1109–1116. [Google Scholar] [CrossRef]
- Wang, B.-B.; Liu, L.-J.; Liao, L.-Q. Light and ferric ion responsive fluorochromic hydrogels with high strength and self-healing ability. Polym. Chem. 2019, 10, 6481–6488. [Google Scholar] [CrossRef]
- Wu, S.-W.; Zhou, C.; Ma, C.-M.; Yin, Y.-Z.; Sun, C.-Y. Carbon quantum dots-based fluorescent hydrogel hybrid platform for sensitive detection of iron ions. J. Chem. 2022, 2022, 3737646. [Google Scholar] [CrossRef]
Hydrogel Code | RBNCH/g | AAm/g | Molar Ratio | H2O/mL | DMSO/mL |
---|---|---|---|---|---|
P-1 | 0.0807 | 2.12 | 0.5/99.5 | 1.5 | 6 |
P-2 | 0.121 | 2.11 | 0.75/99.25 | 1.5 | 6 |
P-3 | 0.161 | 2.11 | 1/99 | 1.5 | 6 |
P-4 | 0.242 | 2.10 | 1.5/98.5 | 1.5 | 6 |
P-5 | 0.323 | 2.09 | 2/98 | 1.5 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Zheng, M.; Ma, X.; Zhang, Y.; Jiang, S.; Li, J.; Zhang, C.; Liu, K.; Li, L. Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe3+. Molecules 2023, 28, 6572. https://doi.org/10.3390/molecules28186572
Jiang D, Zheng M, Ma X, Zhang Y, Jiang S, Li J, Zhang C, Liu K, Li L. Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe3+. Molecules. 2023; 28(18):6572. https://doi.org/10.3390/molecules28186572
Chicago/Turabian StyleJiang, Dandan, Minghao Zheng, Xiaofan Ma, Yingzhen Zhang, Shaohua Jiang, Juanhua Li, Chunmei Zhang, Kunming Liu, and Liqing Li. 2023. "Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe3+" Molecules 28, no. 18: 6572. https://doi.org/10.3390/molecules28186572
APA StyleJiang, D., Zheng, M., Ma, X., Zhang, Y., Jiang, S., Li, J., Zhang, C., Liu, K., & Li, L. (2023). Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe3+. Molecules, 28(18), 6572. https://doi.org/10.3390/molecules28186572